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Darboux-deformed barriers and resonances in quantum mechanics
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Scattering states in the continuum are used as Darboux transformation functions to deform square barrier potentials. The results include
complex as well as real new potentials. It is shown that an appropriate superposition of Breit-Wigner distributions connects the transmission
coefficient of one dimensional short range potentials.
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Se usan estados de dispérscomo funciones de transformanien el nétodo de Darboux para obtener nuevos potenciales (reales o com-
plejos) a partir de barreras cuadradas. Se muestra que una supérpapitipiada de distribuciones de Breit-Wigner permite construir una
buena aproximaodn del coeficiente de transnisi.

Descriptores:Transformaciones de Darboux; vectores de Gamow; distdbube Breit-Wigner.
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1. Introduction Ref. 21). Similar results have been obtained for short range
attractive potentials [22, 23]. Indeed, the construction of

The study of decaying systems was fundamental for estabSchbdinger solutions for complex eigenvalues is sound by
lishing quantum mechanics as the theory of the microscopitiSe!f (seeg.g.[24-27]). _ .

world. Indeed, in his paper of alpha decay [1], Gamow im- Th_ls work presents a gre_lph|cal _metho_d to obtain Gamow
posed aroutgoing wave boundary conditiam the solutions ~ €Nergies: = ¢x + ie; associated with arbitrary shape short
of the Schodinger equation for a radial symmetric potential F2nge potentials. In particular, we shall focus on the square
(see also [2, 3]) and found that the involved eigenvalues arQ.arrler potential. As it will be seen, the_ Darboux tran§forma-
complexe = E —T'/2, T > 0. Thus, Gamow functions 10N generates acomplex potential Whll'e the furthe'r iteration
W represent quasi-stationary (resonant) staiesfd '~ of the procedure carries out a real barrier. The main result is
are the energy and lifetime, respectively). Resonant states that the supersymmetric partner (Darboux transformed) po-
are formally scattering states in the continuum and usua“)t,en_tlals are constructed V|a.the scattering states, a procedure
refer to metastable behavior [4,5] (see also [6]). They behavlé’h'?h has been neglected in almost all the literature on the
asymptotically as purely outgoing waves (Gamow-SiegerfUPiect (see though [20,22,23, 28]).

functions) and are associated with poles of the S-matrix in  The next section introduces general expressions to gen-
the 4th quadrant of the complexplane [7,8]. The fact that €rate short range 1-dimensional potentials by using Gamow
U diverges at large distances is usually stressed to mot€ctors as transformation functions. In Sec. 3 we present a
vate the study of the rigged Hilbert space [9], the mathematdraphical method to obtain the Gamow energies in terms of
ical structure of which lies on the spectral theorem of Dirac 2 finite sum of Lorentz-Breit-Wigner distributions converg-
Maurin, Gelfand and Vilenkin [10] (see also [11]). The use-ing to the transmission coefficient of the involved potential.
fulness of Gamow functions was realized also by Zel'dovichThe method is applied to the square barrier potential. Finally,
in 1961 [12], who proposed a procedure to define an appro>€c- 4 contains some concluding remarks.

priate norm, followed by Hokkyo [13], Berggren [14] and
Romo [15]. Hence, the Gamow functions can be normalize
to form a complete set of states but in a space which is not”

the Hilbert space. For short range potentials in one dimension the resonances
In this paper we use a relaxed definition of the physi-can be studied by means of the transmission coefficient in the
cally interpretable Gamow-Siegert functions in the contextregime of scattering energies. The real parts of the Gamow
of Darboux-deformations of a given potential (see e.g. thesnergies r, represent the positions of the resonances and the
review papers in Ref. 16). The Darboux-Gamow transfor-absolute value of the imaginary paet|, is proportional to
mation has been previously applied to the harmonic oscillathe width2|e;| = T' of the involved peaks. Following Tay-
tor [17,18] and Coulomb-like potentials [19, 20]. In both lor [29], we shall work on resonances for which the width
cases, after the transformation, the discrete spectrum is prés much less than the spacing between thee,[' < AFE.
served and, occasionally, it is enlarged by a single compleXccording to our definition, we look for solutions of the
eigenvalue associated to normalized eigenfunctions (see alSchidinger equationf{/2m = 1)

Darboux-Gamow transformations
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-+ Vu=-eu

1)

with C 3 € = k2, and the outgoing boundary condition:

lim (v Fiku) = 0. (2)
Now, let us introduce a functiofi = 3(z, ¢) as follows
d
8= i Inwu. 3)

After this logarithmic transformation, the Séidinger equa-
tion (1) is transformed to the Riccati one

B+ B +e=V, 4)

which conveniently can be decomposed as
~Pr+ PR~ B +er=V, (5)
—B7 +2BrPr + e =0. (6)

If 5 = 0, equation (6) leads te; = 0. In the sequel, we
shall assumdmg # 0 so thateg # 0 ande; # 0. The
advantage of introducing the complex functigns that the
potentialV in (1,4,5) is automatically intertwined with a new
oneV, by means of the Darboux transformation

V=V+24. 7)
The solutiong; of the corresponding Scbdinger equation
—y’ +Vy=Ey (8)
are also easily obtained
W(u, ®
y= VD) ©

whereW (x, %) stands for the Wronskian of the involved func-
tions and® is eigensolution of (1) with eigenvalug For a
|
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general potential, i€,, is in the discrete spectrum &f, it is
straightforward to show thaf, is a square integrable solu-
tion of (8) as®,, is in L?(a,b) ande & {&,} /&y [17-20, 22].

In general, the members of the new det,} do not form

an orthogonal set of vectors although they are normaliz-
able [18,19]. If€ is in the scattering energies &f, theny

will have the same global properties &419]. The new po-
tential V' is complex sinces € C. Hence, the terrhmV #£ 0
could modify the number of particles (seey.[30]). The it-
eration of the procedure is easy once a finite denumerable set
of solutionsu has been given [31, 32]:

Vo=V +26 () (10)
with 8(a) = B(x, €, ) is a new function fulfilling
—3' @)+ a)+a=V, acC. (11)

The new potential; is, in general, complex. However, if
a =€, it becomes real [17,19]:

/
va:xf—zhn(;) (12)
and the new solution¥, such thatd, ¥ = £V, read
U= (e—&)P — ylm <;) . (13)
3. Gamow Vectors for the square barrier
Let us consider equation (1) with the potential
0, x < —b/2
Vizg)=< Vo, —b/2<z<b/2 (14)
0, b/2 < x
whereVy > 0, b > 0. For a particle coming from the left

the general solution is

Aetkr 4 Aiéf(zk:)) (sin gb) e~k (@+b), x < —b/2
ke 2 { ( gb qb) }
A=~ (|i(kcos L —igsin L ) singz
B(z) = A(R,q) 2 2 (15)
—&—[(qcos%b—iksin%b)cosqa:}), —b/2<x<b/2
AA(k,fq) eth(z=b), b/2 < x
with A=constantk? = E, ¢>=k%>—-1}, and
I'I'he transmission coefficiefit reads
(k cos %b — 1gsin %b) (q cos %b — ik sin %) . Tr= ‘A(]% q) (17)

Similar expressions hold for particles coming from the right.

Itis clear that, for = E > 0 andVj, fixed, the coefficient
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1F
(/2)?
r, E) = . 18
0 ) 8 w(€R7 ) (ER _ E)2 + (F/2)2 ( )
As it is well known, the superposition of a denumerable set
0.6 of these distributions (each one centered at one resonance
E,, n = 1,2, ..) entails an approximation of the coeffi-
0.4 cientT such that the larger the numbat of involved reso-
nances, the higher will be the precision of the approximation:
0.2
JUUU s
0 .JU TZWN(GR) = Zw(ER,En). (19)
1000 1002 1004 1006 1008 1010 n=1

FIGURE 1. The functionsT’ (solid curve) andvy (dotted curve)  The Fig. 1 depicts the behaviour of the sum(er) as con-
for V' = 1000 andb = 10. trasted with the transmission coeffici€fitfor a barrier of
strengthV, = 1000 and widthb = 10. For these values

1007.5 of the parameters our method successfully connect ten Breit-
! Wigner distribution resonances with the first ten peak® of
1005 The precision is lost for large values of the energy$ 1),
1002.5 for which I" is not narrow anymore as compared wik¥.
A A k k Finally, Fig. 2 shows the behavior of the twice transformed
1000 V’ﬁl \\, barrier as constructed by means of Eq. (12). The appearance
997.5 of ‘hair’ over the top of these barriers induces stronger reso-
nant phenomena. In general, the new scattering statetl
995 have a delay longer than for the initial ones.
992.5
-2 -1 0 ! 2 4. Concluding remarks

FIGURE 2. The top of the twice Darboux-deformed square barriers
for Vo = 1000, b = 5 with the first (gray curve), second (dotted \We have found resonances above the top of a square barrier
curve) and third (solid curve) resonances. by using a superposition of (Lorentz) Breit-Wigner distribu-
tions centered atgr, each one of widtl® = 2|¢;|. The
‘f)ointe = eg + ies is in the fourth quadrant of the complex
lane ife; < 0, and defines outgoing solutions of the in-
@Eﬁved Schédinger equation (compare with Ref. 34). These
solutions transformed the initial barrier into a complex poten-
. ) tial by means of the Darboux-deformations. The iteration of
Fhere Is not solution Oﬁ - 0,500 <T' <1, a”?' the tunngl— the method produced barriers with ‘hair’. Both of these new
ing effect plgys the principal rF"e- Hence, ne|thelr the Slmplekinds of potentials admit resonant states for which the global
transparencies nor.the tupnelmg waves can be mterpre.ted. gﬁalytical behavior of the initial resonances are preserved.
Gamow vectors. It is required a certain delay (phase shift) M\l these results can be seen as a supplement of previous

tEe traveling of glerlan(l)(ljved wave func_t|onsf. In other Wokrd_s’works, including the cases of discrete initial spectra [17-21]
the transmissiofi” should present a series of narrow peaks in, .y scaled interwined" potentials [35] (see also [26, 27]).

orde.r to mcllude resonance energies (sge F'g‘ 1). Such an )ur method can be easily extended to ‘soft’ potentials (work
fect is obtalngd by the adequatg combmatlpn of the strengtn] this direction is in preparation). Finally, we want to stress
Vo 2”0' the widthb of the potential. In particular, we take that, as far as we known, the use of scattering states in the
Vo /42> 1[22]. continuum as transformation functions starts to be exhaus-

Let us remark that Coeﬁ'c'ef‘ﬂ in (15) is grbltrary. tively studied in the literature. We hope that the present work
Thereby,.A_ = A(k,q) cIearIy_ provides the outgoing b_ound— has shed some light onto this subject.
ary condition of® for the pointsk such thatA = 0. Since
the transmission coefficiedt in (17) is exactly the same
for these new parameters, the resonance picture is clear: tiscknowledgements
pointseg = F, for whichT = 1, are the resonaces while the
width I' = 2|¢;| of the peaks define the inverse of the life- The author is indebted to Prof. O Rosas-Ortiz for critical ob-

time (fore; < 0). Each of the peaks correspond to a lorentzservations and remarks. The support of CONACYT projects
(Breit-Wigner) distribution centered af, = E: 50766, 49253-F, and Cinvestav is acknowledged.

T has a series of local maxima and minima. The maxima ar
reached for the values df such thatA is minimum. These
energies are known as transparencies because the partic
travel trough the barrier zone as if they were free of interac
tions [33]. If0 < ¢ = E < Vj, theng is pure imaginary,
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