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Quantum control with periodic sequences of non resonant pulses
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The resonant quantum control techniques are vulnerable to cumulative errors specially if the manipulation operations involve many indivic
steps. It is shown that non trivial operations can be induced by non resonant fields challenging too simplified control models.
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El control ciantico resonante es sensible a la acumalade errores, especialmente si el proceso involucra muchas operaciones individuale:
Se muestra que, a tr@és de campos externos no resonantes, se pueden inducir mecanismos no triviales de control que se contraponen
modelos simplificados convencionales.
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1. Introduction Hy has quantum mechanical properties while the manipula-

. ) tion partV(¢) typically depends on certain classical parame-
The dynamics of quantum systems, represented by time dgars or fields:

pendent Hamiltonian& (t), is encoded in the family of uni-
tary operatord/(t, ty) describing the evolution of the system
in the time intervalt, t] (7 = 1): One of the most interesting exact solutions of (1-3) general-
izing therotating wave approximatioarises if

H(t) = Hy + eV (¢). 3)

iU(t tO) = _ZH(t)U(t7 tO)? U(t07 tO) =1 (1) . .
dt V(t) = e Myei @
The essential problem in the control theory is the gener-

ation of arbitrary unitary operations causing a desired evoluwith V' a time independent operator affd, o] = 0. The

tion of the quantum system. The main mathematical dilemm&orresponding evolutiotV (t) = U (¢, 0) becomes :

is to determine the proper Hamiltoni&f(¢) which generates , ,

a givenU (t, o) according to (1). o U(t) = e "Pe om0tV 5)
These evolution operators must have exponential repre- ) ) )

sentations in terms of Hermitian operatdfsg (¢, t,), called ~ (We putto = 0), where the first factor is the unitary trans-

the effective Hamiltoniansf the system irito, ], defined by formation to the “rotating frame” and the second one can be

the Baker-Campbell-Hausdorff (BCH) formulae [1-3]: interpreted as the evolution operator in fidrame. By tak-
ing Q2 = H, one obtains the simplest exact description of the
Ut to) = e~ H(t—to) Hett(Lto) (2)  resonant process (the generalized Rabi rotations).

The construction of the effective Hamiltonians (2) for a given
quantum system is, in general, a quite complicated task?. 1he Resonant control

even in the case of finite dimensional systems. The theo- o )
retical group techniques may, in some cases, provide the gé\ frequently used mechanism in control theory is to generate

siredU (t, t,) as a product of a long sequence of elementaryN€ évolution operations by taking full advantage of the sen-
steps [4-6]; however, such formal solutions are not alway§'t'V'ty of the system to pulses of some patrticular frequencies

the most convenient from the practical point of view. (the resonant control technique). In this case, the external
One of the typical tools of quantum control is to induce fiéld is generally of the form:

the dynamical operations by means of soft, patiently repeated 1. 4

pulses. Suppose.g, an initially stationary system (repre- V(t) = 3 [TV + e ™IVTT . (6)

sented byH,) is being manipulated by an external field. If

the strengthe of this field is small enough, and if the proba- Such harmonic, monochromatic field issonantto Hy, in
bility of causing radiative transitions is negligible, the properthe conventional sense, if = wq, with wg = E; — Ey,
description is then semiclassicak., the stationary system the difference of any pair of{, eigenvalues. Notice that
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Uo(Tp) = e oo Ty = 27 /wy, will be, in this case, pro- is reached within a timé¢ = 7/w;) of such a transition is,
portional tol in the spectral subspaceg, H,,, correspond- in this caseg?/w? and it is non zero fow # wy. Figure 1
ing to this pair of energy levels. In turn, the evolution opera-shows this maximum probability as a functionwffor dif-
tor U (Tp) will then be proportional te—*V7: a small “rota- ~ ferent values of. There is a marked peak in the resonance
tion” in H; & H,, which becomes cumulative if the operation which is sharper as the strength of the field tends to zero.
is applied over many oscillation periods of the external field.The mean width of the curve i, telling the transitions oc-
A perturbative description is therefore not proper in this casegur just in the resonance regime if the intensity of the field is
even ife is small. To the contrary, this cumulative effect do small enough.
not occur in the non resonant case“ wy: the external field
will only produce a slighprecessiorof the system aroundits 2 > A geometric picture
basic evolutiorly(t) = e~*Hot [7,8].

An elementary illustration of the phenomenon previ-
2.1. The Rabi rotations ously described [11-13] corresponds to the Hapmap

. . o . 8% — S? [14-16]. The state$p(t)) of the system can be
In order to provide a clear picture of this sr'[uatl.on, ConSIderaSSOCiated with the points of a unitary two-sphéfe(the
the simplest case of a two-level systeny(sit) with corre-

X X Poincaé sphere) with its center at the origin of a frame de-
sponding states and energjés [2) andEy, L respectively,  finag py the vectorss;, es, es, provided that orthogonal

perturbed by the mo_nochromatic, harmonic field (6) in thegiates correspond to antipodal points [11]. The Hamilto-
dipole approximation: nian (7), expressed in terms of spin Pauli matrices (take for

simplicity £1 = —wo /2, E> = wo/2), has the form:
H(t) = E1|1)(1] + E»|2)(2| plicity By = —wo/2, B2 = wo/2)

= [e T - € —i%tos  i%to:
+5 [ I+ e 2) (] ) H(t) = Doy + Se #7018, (1)
The state of the system, at an arbitrary timis (compare with (4)). It = 0, the evolution operator
lp(t)) = a1(2)[1) + az(t)]2), 8) U(t) = e=ites

wherea, (t), ay(t) are the respective probability amplitudes causes rotations of a stgtét)) upon the sphere surface with
of finding the system in the stat¢l), |2) (under the initial  an angular frequenay,/2 arounde; (the natural evolution
conditiona; (0) = 1, az(0) = 0) at that moment: trajectory, see Fig. 2). When the external field is applied,
) Eq. (5) reads

3 . w1
las(t)? = =5 sin® T, Jar(t)P =1 - |aa(8)]*, (9)

wi 2 U(t) _ efigtagefi%t[(wgfw)0'3+50'1]. (12)

with w; = 1/£2 4 (wo —w)? [9, 10]. In the resonant case In the rotating framel(¢)) describes a circular trajectory

(w = wyp), (8) reduces to arounde; = (¢/|wo — w|)e1 + e3 with an angular frequency
c c w1/2 (see Fig. 2). Ife < |wp — w], this trajectory practi-
|p(t)) = cos 5t\l) + sin 5t|2>, (10)  cally coincides with the basic one (the angle betwegand

e} is o = arctane/|wy — wl), meaning that the whole evo-
which represents a rotation of the state of the system betweeduation process is confined in a narrow belt of widith = 2«
1), |2), with an angular frequency/2. If the field is weak  around the orbit defined b¥,. In the inertial framee} ro-
enough, the process is slow and free of radiative jumps. Thigates aroune; with an angular frequenay and|¢(t)) pre-
phenomenon is known as “Rabi rotation” [9]. When the pro-cesses around the natural evolution orbit keeping its position
cess is continued for a complete period of time, the evoluon the sphere confined again to the same belt (see Fig. 2).
tion operator/ (Ty) coincides withe=%V0 | indicating that
the rotations can be accumulated by applying the operation & 1
number of times. The system can then be softly manipulated:
once in its ground statdl), it slowly collects information

&e=0.5w,
from the exterior and makes a transition to the excited state, (™ > 8:03602
|2); next, it returns td1) and so on. “ £=0.1wy

To the contrary, if the frequency of the driving field is
non resonant, the basic evolution operdti(t) produces a
violent draft of the system along its natural evolution orbit
and the precession effects are hardly visible. Even so, the
transitions|1) < |2) are not completely suppressed in this FIGURE 1. The maximum probability of finding the system in the
frequency regime. In fact, the maximum probability (which excited state has a peak which is sharper as 0.
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eg Q e3 and |¢(t)) rotates arounde; with an angular frequency
€/2. After one periodI; the polar positiord changes by
00 = e /wy, and even when is small, the process can be
|1> superposed by a number of times u@ reaches an arbi-
trary value (the Rabi rotations betwefn, |2), see Fig. 3).
The difference between the evolution of Fig. 2 and that of
Fig. 3is usually taken as an argument that/ifv) — w| < 1,
then the resonant control operations upon one qubit (Fig. 3)
can be selectively performed with negligible non resonant
i consequences for the other ones (Fig. 2). However, the con-
|¢(t)> trol problem is far from being completely solved.

S
pOYPETE

3. The selectivity breaking in the step by step
operations

A very important amendment appears for systems composed
by a great number of qubits. In this case, the most effi-
cient control techniques involves operations developed step
by step, always with a monochromatic field of frequency
° proper to manipulate just one part of the system (a qubit or a
€1 |2> pair of levels) [4-6, 17]. Consistently with the mechanism of
Fig. 2, itis assumed that the non resonant qubits will ignore
this field. This is indeed true for the proper parameters,
circulates arounj (dotted curve). This vector rotates arousg bL_jt alyvays un(_:ler the condition that the external field is ap-
from the point of view of the inertial frame, meaning the evolution plled in a continuous way. It turns OUF however that, for the )
is precessing around the unperturb@g-orbit. In both cases, the  iNterrupted sequences of pulses, the final response may be, in

FIGURE 2. If e = 0, |¢(t)) describes a circular trajectory orthogo-
nal toes (solid curve). Wherz # 0, in the rotating framel¢(t))

trajectory is confined to a sharp belt of width. spite of all, unexpected [18].
To illustrate this phenomenon suppose one has a pair of
es noninteracting qubits),,, ., with characteristic frequen-

ciesw, wy respectively. Suppose also that a unitary operation
is carried out orf),, by means of a harmonic field of strength
¢ and frequencw acting during a timé. Then, this field is
turned off (presumably while other fields are being applied on
QRu,) for atimer; before it is turned on again, etc. The evo-
lution operators in a complete period of tinié € T + 1),

are

|6(2))

_i%¥0 e _4E _
UWQ(T) A R AT EPS 12T10'36 15T [(wo—w)oz+eoi]

— e—i%[onl+wT1]ase—iT1G, (13)

.."..' ............................ Uw(T) — e—i%(Tl—‘rTl)o’;;e—i%Tlo'l. (14)
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Let now 73 and 7, be such that e “1'¢ and
et 1/2)won+wTilos generate rotations ofr-rad on Q,,
states aroundj; ande; respectively, whilez—#(«/2)(Ti+71)o3
generates also rotations afrad on@,, states arounes,

then
w1 Ty = (2n + 1), (15)
. 2) _
woT1 + le = (2m + 1)7T, (16)
FIGURE 3. When the external field is resonant, the system per- w(Ti + 1) = (2L + 1), 17)

forms Rabi rotations.
wheren, m,l € Z*. If the sequence is applied many times,

However, in the exactly resonant cde= Ho, something extraordinary happens),,, (the non resonant
CitouT qubit!) experiences an effect similar to the Rabi rotations
U(Ty) = e 2770 (see Fig. 4).
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FIGURE 4. A sequence of interrupted pulses applied in the proper

time intervals, may cause the escape of the system out of the con-

finement zone. In the most dramatic case, the system may exper
ment an effect similar to the Rabi rotations (see [18]).

€3

2)

€1

FIGURE 5. If a sequence of resonant pulses are applied in an inter-

rupted way in the proper time intervals, the Rabi rotations may be
completely annihilated (following [19]).

In fact, the effective rotation of the state @f,, after a
timeT is

00 = 2arctan
|wo — wl
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in the plane generated ky; ande}. After applying several
times this “on” and “off” sequences),,, will have escaped
from the confinement zone. The evolution of the system will
be comparable to the resonant “stationary” one, changing the
polar positiord of its state at will. What is happening mean-
while to @, ? It turns out that the alphabet of the “on-off”
pulses is, in the same way, determinant. If the sequence is
applied an even number of times, the Rabi rotations will be
completely annihilated (see Fig. 5).

Now a question arises: is it possible that these phenom-
ena, namely, theevival of the non resonant effects and the
total annihilation of the Rabi rotations, simultaneously hap-
pen? The answer ES!. From (15-17) it follows that

n+1
w1

2(m—1) 20+1
+ = .
W — W

(18)
w

The question is now: for which values ofl, m this expres-
sion is held for all values of? There are different families of
cases [19]:

(i) For0 < wy < w, (18) impliesn < m < [ and
20+1)/2m+ 1wy <w < (21 +1)/(2(m — n))wo.
The right hand end of this interval corresponds to

. ¢ — 0 while the left hand one to the case— cc.

|_

(i) For0 < w < wy, (18) states thdt< m,l—m < n and
(2l4+1)/2(n+m+1))wo < w < (214+1/2m+1)wy,
where now the left hand end corresponds to the case
¢ — 0 and the right hand one to— oo.

Time intervalsT; andr; can then be evaluated from these
ranges of frequencies, for a chosen tripletl,m). It is
worthwhile to mention that, in both cases, the non reso-
nant cumulative rotations af,,, can reach an angular speed
w’ ~ ¢/m, which is comparable to that in the Rabi rotations
(namelye/2). It can be shown that this effects could have a
resonant reinterpretation when— 0; in any other case they
have a pure non resonant nature [18].

It seems to be that this phenomena become specially sig-
nificant only for an unlikely coincidence in the parameters in
these periodical on-off sequences, however, there are some
evidences that when applying arbitrary sequences of inter-
rupted pulses, the state of the system will perform an erratic
movement indicating that it is out of control [18]. This is a
very important challenges.g, in designing a quantum com-
puter, since after some number of operations, the system will
not be able to store information. Yet, not all the news are bad,
since there is an evidence that the off resonant effects not al-
ways destabilize the system: if orderly applied, they might
be also used to maintain the stability [18], permitting then to
manipulate the system in a more precise way.
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