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Donaldson-Witten invariants for flows on four manifolds
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After a survey of the cohomological quantum field theory, we review the computation of their Donaldson-Witten invariants. These invariants
are generalized for smooth flows defined on the four manifold using notion of asymptotic cycles of higher dimensions than one introduced
recently by S. Schwartzman.
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Despúes de repasar la teorı́a co-homoĺogica de campos, revisamos los cálculos de los invariantes de Donaldson-Witten. Estos invariantes son
generalizados para flujos suaves definidos en cuatro variedades usando la noción de ciclos asintóticos para dimensiones mayores que uno
introducido recientemente por S. Schwartzman.
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1. Introduction

It is known that the Jones-Witten invariants [1] can be
generalized in the presence of smooth vector fields on
the 3-manifold as did Verjovsky and Vila [2] using the
one-dimensional asymptotic cycles defined by S. Schwartz-
man [3]. Donaldson develop a theory to classify4-
dimensions, manifolds using the instantonic solutions (gauge
theories) a mathematical review is given in Refs. 4 and 5. E.
Witten in Refs. 6 and 7, using a twisted version of aN = 2
super Yang-Mills theory in four dimensions, construct a topo-
logical quantum field theory. We will focus in this context
and extend the Donaldson-Witten theory in the case where
there exist flows over the four manifold.

2. Asymptotic Cycles

For the Donaldson-Witten case it is necessary to consider
flows of dimension greater than one (for an introduction to
the theory of dynamical systems see [8]). in this case we
will be interested in cycles of dimensionp = 0, 2, 4 and
therefore we will need a foliation of the manifold and define
asymptotic cycles (elements of then-th homology group) of
higher dimensions, that will help us in order to generalize the
Donaldson-Witten invariants.

To give a foliation in dimensionp it is necessary to give
a closed subsetS over a smooth manifoldM , divided into
subsetsLα. Then, we will endowM of a collection of closed
disksDp×Dn−p, whereDp is the horizontal disk andDn−p

is the vertical one. These sets are calledflow boxes(see [9]),
whose interior covers allM .

The measure, the orientation and the flow lines, will de-
fine ageometric current(Lα, µ). Suppose thatM is covered
by a system of flow boxes(Dp×Dn−p)i (endowed with par-
titions of unity). Then, everyp-form ω can be decomposed
into a finite sumω =

∑
i ωi, where eachωi has its own sup-

port in thei-th flow box. Now we can integrate out everyωi

over each horizontal disk(Dp × {y})i and obtain a continu-
ous functionfi over(Dn−p)i. Thus we can take the average
of this function using the transversal measuresµ

〈(Lα, µ), ω〉 =
∫

(Dn−p)i

µ(dy)

(∫

(Dp×{y})i

ωi

)
. (1)

This current is closed in the sense of de Rham,i.e., if ω=dφ
whereφ has compact support, then〈(Lα, µ), dφ〉 = 0, since
we can writeφ =

∑
i φi. Therefore the expression

∫

(Dp×{y})i

dφi

vanishes. Ruelle and Sullivan [10] shown that this is precisely
an element of thep-th cohomology group.

A quantifier is a continuous field ofp-vectors overM ,
tangent to the orbits and invariant under the action ofL. A
quantifier is called positive if it is distinct from zero in ev-
ery point ofM and determines the orientation of the tangent
space of the orbit. Some useful results that will justify the ex-
istence of cycles is given Refs. in 9 and 11: The asymptotic
cycles are provided by

Aµ =
∫

M

(ω, ν)dµ,

which is an element ofHp(M,R). Now If ν is a positive
definite quantifier andµ an invariant measure coming from
a n-form ω, thenωyν is closed andAµ can be obtained by
Poincaŕe duality, and it is an element ofHn−p(M,R) deter-
mined byωyν. This is an important result given by Schwartz-
man [9].

This is not the only way to specify a foliation. In [11],
Sullivan defines structures ofp-cones and operators acting
over the vectors of the cones.
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3. Donaldson-Witten Invariants

We will discuss briefly the Donaldson-Witten invariants. We
will focus in the Witten description [6] in terms of correlation
functions (expectation values of some operators).

We only consider a BRST superchargeQ and satisfy
Q2 = 0. Now we need a BRST invariant action, which is
very important because it gives topological invariants [7]. In-
finitesimal BRST transformations yield

[Q, Aa
µ] = ψa

µ,

{Q, ψa
µ} = −Dµφa, (2)

[Q,φa] = 0,

whereAa
µ is the gauge field,ψa

µ a fermionic field andφ a
scalar field. We define aBRST exact commutatorif it can be
written as{Q, Ω} for someΩ. One fact is that the energy-
momentum tensorTαβ is covariantly conserved and it can be
written as one of these BRST commutatorsTαβ = {Q,λαβ},
where λαβ is some operator. Also we can observe that
the lagrangianL is invariant if it is a BRST exact operator
L = {Q,V }. We define the Donaldson-Witten invariants
with the path integral formalism, where the Donaldson poly-
nomials are given by correlation functions,

〈O〉 = Z(O) =
∫
DX exp{−L/e∈}O, (3)

where theDX represent de measure of the fields of the the-
ory, e is the coupling constant andO are the observables of
the theory.

One of the main properties of the path integral for BRST
exact operators{Q, Ω}, is that the expectation value is zero〈{Q, Ω}〉 for all Ω, if DX is invariant under supersymme-
try. An important fact, is that in order toZ be a topological
invariant (metric independent) is necessary that satisfies the
property

〈{Q,O}〉 = 0, for all O (Donaldson-Witten poly-
nomials). With this property we can prove that the correla-
tion functions are independent of the metricgµν on M and
the coupling constante, i.e. δgZ = 0 andδeZ = 0. Then
Z can be evaluated whene is small and give us topological
invariants. The observables of the theory can be constructed
as,

dWγk−1 = {Q, Wγk
}, (4)

with Wγ0(x) = (1/8π2)Trφ2(x). This observables are
not BRST invariant, but if we consider the product(·, ·) :
Hk(M)×Hk(M) → R

Oγk ≡ (γk, Wγk
) =

∫

γk

Wγk
, (5)

for k = 0 Wγ0 = Oγ0 . This define BRST invariants,i.e.

{Q,Oγk} =
∫

γk

{Q,Wγk
} =

∫

γk

dWγk−1 = 0. (6)

For that reason the BRST commutator ofOγk
only depends

of the homology class ofγ, then the correlation functions are
written as

〈Oγk1 . . .Oγkr 〉 =
∫

(DX ) exp(−L/e2)
r∏

i=1

∫

γki

Wγki
. (7)

At this point we have defined the Donaldson invariants on a
4-manifold. In a natural way we will extend this invariants to
the moduli space.

We choose a moduli spaceM such thatd(M) = n where
n is a positive integer, that supposition assume that the fields
(φ, λ) don’t have zero modes, the only zero modes are those
of the gauge fieldAα tangent toM therefore the zero modes
are the associated toψα. After integrating in the limit of weak
coupling (e → 0) the non-zero modes, we obtain the measure
da1 . . . dandψ1 . . . dψn, where ai, ψj are the bosonic and
fermionic zero modes. The effective functionalO′ that only
depends of the zero modes isO′ = Φi1,...in

(ak)ψi1 . . . ψin ,
whereΦ is ann-form inM. Substituting the last expression
and the measure in(7) we obtainZ(O) =

∫
M

Φ explicitly

Z(O) =
∫

M

da1 . . . dandψ1 . . . dψnΦi1,...,inψi1 . . . ψin . (8)

Suppose thatO = O1 . . .O` with
∑`

r=1 nr = n
where nr is the number of zero modes ofOrk . In-
tegrating out the non-zero modes of every one, we ob-
tain O′r = Φ(r)

i1,...inr
(ak)ψi1 . . . ψinr , with (1 ≤ r ≤ `)

where Φ(r)
i1,...inr

is a nr-form in M, and we can write
Φ = Φ(1) ∧ . . . ∧ Φ(`). Integrating out over the non-zero
modes and substituting in(7) we obtain

Z(Oα1 . . .Oα`
) =

∫

M

Φ(α1) ∧ . . . ∧ Φ(α`). (9)

So the differential forms inM are

Φ(γ0) =
1

8π2
Tr〈φ〉2, (10)

Φ(γ1) =
∫

γ1

Tr
(

1
4π2

〈φ ∧ ψ〉
)

, (11)

Φ(γ2) =
∫

γ2

1
4π2

Tr
(
−iψ ∧ ψ + 〈φ〉F

)
, (12)

Φ(γ3) =
∫

γ3

1
4π2

Tr
(
ψ ∧ F

)
, (13)

Φ(γ4) =
1

8π2

∫

M

Tr
(
F ∧ F

)
. (14)

Here theW ′
γk

s, has ghost numberU = 4 − kγ , there-
fore for eachOγk we can associate a(4 − kγ)-form
Φ(γk) over M. This correspond to theDonaldson map
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Hk(M) → H4−k(M). Witten [6] proved that this elements
are in the cohomology class ofM. Finally we will take the
following convention for2-cyclesγ2 we will denote it byΣ,
whose codimension is2 and the Donaldson-Witten invariants
(the intersection number)

〈Oγk1 . . .Oγkr 〉 = #
(
Hγk1

∩ . . . ∩Hγkr

)
. (15)

4. Donaldson-Witten Invariants for Flows

Now we generalize the Donaldson-Witten invariants, when
there exist flows over a manifoldM .

Consider a positive quatifierνp overM and a system of
flow boxesDp

1×Dn−p
1 , . . . ,Dp

j ×Dn−p
j such that this cover

all the manifold. Herep is the dimension of each disk. Ex-
ist a set of transversal measuresτ1, . . . , τj with support in the
Borel sets of each transversal diskDn−p

1 , . . . ,Dn−p
j , then the

geometric current is given by

〈(Lα, τ),Wγp
〉 =

∑

i

∫

(Dn−p)i

τi(dy)

×




∫

(Dp×{y})i

Wγp,i


 , (16)

where Wγp,i are the differential forms in(4) associated
to the observables with support in thei-th flow box i.e.,

Wγp =
j∑

i=1

Wγp,i.

These currents are closed and they are the analogous to
the “winding number” [2] of one-dimensional cycles and by
duality defines an asymptotic cycle inHp(M,R) which is a
functionalHp(M ;R) → R and we define the “asymptotic”
operator inspired in terms of the winding cycles [2] as fol-
lows, when we do not have a quantifier, we will return to the
case without flows. Let a positive quantifierν1, . . . , ν4 of di-
mension1, . . . , 4 respectively and together with the currents
and flow boxes define the“asymptotic” observableas

Oγk(µ, νk) =
∫

M

W̃γk
dµ =

∫

M

Wγk
yν1dµ

(hereW̃γi denotes the contractionWγiyνi anddµ is the vol-
ume form given by a4-form). We can interpret the integral
as averaged cycles in the flow boxes.

Also we are working in a smooth manifold, then every
volume element is given by a4-form dµ = ω. Making
use of the Schwartzman theorem,ωyνp is a closed(4 − p)-
form, from which we will obtain a asymptoticp-cycle by the
Poincaŕe duality [an element of theHp(M,R)].

Remark: In this case we only consider the case where
Wγp andνp are ap-form and ap-vector respectively, other-

wise the observablesOγk(µ, νk), will be indefinite

Oγ1(µ, ν1) =
∫

M

Tr
1

4π2
(φψ)yν1dµ, (17)

Oγ2(µ, ν2) =
∫

M

Tr
1

4π2
(−iψ ∧ ψ + φF)yν2dµ, (18)

Oγ3(µ, ν3) =
∫

M

Tr
1

4π2
(ψ ∧ F)yν3dµ, (19)

Oγ4(µ, ν4) =
∫

M

Tr
1

8π2
(F ∧ F)yν4dµ. (20)

These asymptotic observables satisfy the following proper-
ties:

{Q,

∫

γk+1

Wγk+1} = {Q,

∫

M

Wγk+1yνk+1dµ}

=
∫

M

{Q,Wγk+1}yνk+1dµ =
∫

M

dWγk
yνk+1dµ = 0. (21)

Here we have used the fact that the measure is invariant with
respect to the flow. These asymptotic observables are BRST
invariant, this is an important property because the expecta-
tion values of the observablesOkj will be topological invari-
ants (of the dynamical system) and they are independent of
the cohomology class.

We will use the following notation for cycles of different
dimension. The observables will be denoted byOkj (µ, νkj ),
where kj take values 0, 1, . . . , 4, and they satisfy

r∑
j=1

kj = d(M).

For a simply connected4-dimensional closed and ori-
ented manifoldM with quantifiersνi con i = 0, 1, . . . , 4,
and a probability invariant measureµ, we define the correla-
tion functions as

Zνµ(Ok1(µ, νk1), . . . ,Okr (µ, νkr ))

=
∫

(DX ) exp(−L/e2)
r∏

j=1

∫

M

W̃kj dµ. (22)

This expression is reduced to the case of Donaldson-
Witten(7), when the measure is localized on the cycles. This
means if

µ =
r∑

i=1

µi

where eachµi is distributed uniformly over the cycles. Ifta
and tb are generators of the Lie algebrasu(N) they satisfy
Tr(tatb) = Nδab. For our case we haveN = 2 for example
for 2-cycles

Oγ2 =
∫

γ2

1
2π2

(−iψa ∧ ψa + φaF a). (23)
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Our case is non-abelian (su(2)), but it doesn’t present any
problem, because we are working at the level of the Lie alge-
bra and not directly with the group, therefore we don’t have
the problem that appears in the Jones-Witten case [2].

Now proceed to perform the integral over the non-zero
modes, as in the case without flows. Denote this observ-
able byO′ kj (µ, νkj ) = Φ̃i1,...,in(ai, νkj )ψ

i1 . . . ψin , where
ai denotes the zero modes of the gauge field andψ are the
zero modes of the fermionic field,̃Φ(a, νkj

) is a function that
only depends of the zero modes of the gauge field and con-
tains the information of the flow. Once we integrate out over
the fermionic degrees of freedom we obtain

Z(O′kj (µ, νkj
)) =

∫

M

Φ̃1,...,nda1 . . . dan. (24)

whereΦ̃kj
µ is an-form in the moduli space. The zero modes

of the gauge field can be regarded as a basis of an-form in
the moduli spacei.e., da1 . . . dan can be used as a volume
element.

On the other hand, we know that the moduli spaceM
hasM as boundary, we supposea1, . . . , a4 are the coordi-
nates overM , therefore is possible to see the moduli space
locally as a foliation (collar)M × F , whereF is a manifold
of dimensionn − 4. The total dimension is determined by
d(M) = 8p1(E)− 3

2 (χ(M) + σ(M))).
We would be able to induce “flow boxes” over the mod-

uli space. Given the volume element in (24) da1, . . . , dan,
which is an-form, where the first four coordinates corre-
spond to the space-time, we sayda1 ∧ . . .∧da4 = α define a
volume element inM . Given the quantifierνkj , together with
α will define an asymptotic cycle of the Schwartzman theo-
rem, transversal toF , thereforeHn(M) can be separated in
a part associated to the flowHkj (M) (the Ruelle-Sullivan
class) and a(n− kj)-form where it doesn’t exist flow, i.e we
get∫

M

Φ̃1,...,nda1 . . . dan

=
∑

i

∫

Fi




∫

Bi×{y}

Φ̃1,...,nda1da2da3da4


da5 . . . dan. (25)

This expression is analogous to the currents defined by (16),
whereB is a flow box contained inM andy belongs toF .
Consider the expression between the bracket, as a winding
cycle associated to the flow of the boundary ofM, as fol-
lows:

Aµ4 =
∫

B

Φ̃1,...,nyνkdµ4, (26)

this expression define the asymptotic cycle in the mod-
uli space, in the sense thatAµ4 × F , where dµ4 =
da1da2da3da4.

Now we proceed to integrate out the zero modes, com-
pletely analogous to the case without flows. We going back
again to the Donaldson map, since the path integral is inte-
grated over the fields, not over the space-time coordinates.
Finally we obtain the mapHk(M) → H4−k(M) given by:

Φγ1
µ =

∫

M

Tr
1

4π2
(〈φ〉ψ)yν1dµ, (27)

Φγ2
µ =

∫

M

Tr
1

4π2
(−iψ ∧ ψ + 〈φ〉F)yν2dµ, (28)

Φγ3
µ =

∫

M

Tr
1

4π2
(ψ ∧ F)yν3dµ, (29)

Φγ4
µ =

∫

M

Tr
1

8π2
(F ∧ F)yν4dµ. (30)

As it was seen previously these forms contain information
about the asymptotic operators ofM that are induced locally
over the boundary of the moduli space. Now we will define
the intersection number analogous in the case without flows

〈Oγk1 (µ, νk1) . . .Oγkr (µ, νk1)〉

= #
(
Hγ̃k1

∩ . . . ∩Hγ̃kr

)
. (31)

HereHγi are the asymptotic cycles inM dual toΦ̃γi
µ .

5. Conclusions

We have extended the Donaldson-Witten invariants in the
case that exist flows over the four manifold. We recover the
case without flows when the measure are localized on the cy-
cles. The measure defined over all the manifold give an av-
erage of the flow. In a future work we will generalize the
Donaldson-Witten invariants on K̈ahler manifolds, and the
Seiberg-Witten invariants.
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