REVISTA MEXICANA DE FiSICA S53(4) 118-120 AGOSTO 2007

On the WKB approximation of noncommutative quantum cosmology
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In this work we propose a formalism to introduce the effects of noncommutativity to classical cosmological models. The method is based on
noncommutative quantum cosmology and by means of a WKB type approximation the noncommutative classical solutions can be obtained.
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En este trabajo se propone un formalismo para introducir los efectos de la no conmutatividad a modeldgimmswalsicos. El rdtodo
esta basado en la cosmolagiantica no conmutativa en la cual por medio de la aproxitmaeVKB se obtienen las solucionesésicas no
conmutativas.

Descriptores: No conmutatividad; cosmoldg clantica.
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1. Introduction plored. The same seems to be the case for the relativistic
guantum mechanics. The importance of the semiclassical ap-

During the early days of quantum mechanics and quamurﬁroximation in the relativistic case is pr_obably best apprec_i-
field theory, continuous space-time and Lorentz symmetryfited in quantum cosmology [5], specifically, in the analysis
was considered inappropriate to describe the small scal@f the Wheeler-Dewitt equation which is essentially a Klein-
structure of the universe. It was also argued that one shoulf0rdon equation on the minisuperspace [6].

introduce a fundamental length scale, limiting the precision !N the last few years there have been several attempts to
of position measurements. The introduction of fundamenta$tudy the possible effects of noncommutativity in the classi-
length is suggested to cure the ultraviolet divergencies occal cosmological scenario [7, 8]. In Ref. 9 the authors avoid
curing in quantum field theory. H. Snyder was the first tothe d|ff|c_ult|es of analyzing rjoncommutatlve cosmological
formulate these ideas mathematically [1], introducing non Models, if these would be derived from the full noncommuta-
commutative coordinates brings an uncertainty in the positive theory of gravity. Their proposal introduces the effects
tion. The success of the renormalisation made people forg&f Noncommutativity at the quantum level, namely quan-
about these ideas for some time. But when the quantizatiof/Mm cosmology, by deforming the minisuperspace through a
of gravity was considered thoroughly, it became clear that thé/oyal deformation of the Wheeler-DeWitt equation, similar
usual concepts of space-time are inadequate and that spa¢@-noncommutative quantum mechanics [10].

time has to be quantised or noncommutative, in some way. 1 he aim of this work is to apply a WKB type method to

Quantum cosmology, is a simplified approach to the stud noncommutative quantum cosmology, and find the noncom-
' utative classical solutions, avoiding in this way the difficult

of the very early universe , which means that the gravitation ?Sk to solve this cosmological models in the complicated

and matter variables have been reduced to a finite number (r]amework of noncommutative gravity [11]. We know how

degrees of freedom (these models were extensively StUd'eto introduce noncommutativity at a quantum level, by taking

by means of Hamiltonian methods in the 1970's, for FeVIEWS 1o account the changes that the Moyal product of functions

see [2, 3]); for homogenous cosmological models the metric .
. : . . induces on the quantum equation, and from there calculate
depends only on time, this permits to integrate the space d

pendence and obtain a model with a finite dimensional con?-ﬁe effects of noncommutativity at the classical level. This
figuration spaceminisuperspacewhose variables are the 3- also has the advantage that for some noncommutaive models

. . 7. for which the quantum solutions can not be found, the non-
metric components. One way to extract useful dynamical in-

formation is through a WKB type method. The semiclassicalcomm'“'t'.atlve clgssmal solutlo_ns arise very easily from this

Y . . ; formulation. This procedure is presented through an exam-
or WKB approximations is usually discussed in text books . .

L S ple,the Kanstowski-Sachs cosmological.

on nonrelativistic quantum mechanics in the context of sta*
tionary statesj.e., determination of the energy eigenvalues
and eigenfunctions [4]. This approximation can also be use®, The Cosmological Kantowski-Sachs Model
to obtain approximate and in some cases exact solutions of
the dynamical problen,e,, full Schibdinger equation, sothe The Kantowski-Sachs Universe is one of the simplest
utility of the semiclassical approximation in obtaining exactanisotropic cosmological models [12]. The Kanstowski-
solutions of the Sclirdinger equation has not yet fully ex- Sachs line element is
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from this solutions and using (2) and (9) we obtain the clas-

. sical solutions
ds® = —N2dt2 + (2V38) gp2 1 o(-2v36)

o/ . 1 48
xe(=239) (462 4 sin? 0dy?) . 1 Q(t) = ——=In | = cosh? (2v/3Ps, (t — t
e ( sin® fdp?) (1) () 7 n Pz cos ( V3Pg,( 0)) )
From the general relativity lagrangian we can construct the
canonical momenta, B(t) = Bo + 2P, (t — to), (11)

o = 796—\/&372\5@9’ I = Ee—ﬁﬁfwﬁﬂﬂ ) these'solutions are the same that one gets by solving the field
N N equations of general relativity.
and the corresponding Hamiltonian

g N —vas-avae I T 4 s | (3) 3. Noncommutative Kantowski-Sachs model
24 ’
by canonical quantization we obtain the Wheeler-DeWitt

(WDW) equation, using the usual identifications

In this section we construct noncommutative quantum cos-
mology for the Kantowski-Sachs model and calculate the
noncomutative classical evolution via a WKB type approxi-

Mo — — 0 and s — —i 0 mation. To get the classical cosmological solutions would be
2= 7' s 71% a very difficult task in any model of noncommutative grav-
ity [11], as a consequence of the highly nonlinear character
we get ! . . :
of the field equations. One can introduce a noncommutative
0 180232 4. ) = 0, 4 deformation of the minisuperspace variables [9]
002 0p?
N — : : [€2, B] = if. (12)
in this parametrization the WDW equation has very simple
form; and the solutions to this equation are given by This noncommutativity can be formulated in terms of non-
 tiEB _ V30 commutatl\{e minisuperspace functions with the Moyal prod-
b=e Kiy <4e ) ’ (®)  uct of functions
wherev is the separation constant aid, are the modi- i8 (660, —5500
fied Bessel functions. We now proceed to apply the WkB / (£:0)*9(€2, 8) = f(£2, f)e # )9(975)‘ (13)

method. For this we propose the wave function

U(3,Q) = ei(sl(5)+52(ﬂ))7 (6)

Then the noncommutative WDW equation can be written as

(1§ + 13 - V(2,0)) x ¥(2,6) =0,  (14)
the WKB approximation is reached in the limit
we know from noncommutative quantum mechanics [10],

‘3512(5) ’ < (351 (ﬂ))z ‘355(9) ‘ < <352(Q))2 (7) that the symplectic structure is modified changing the com-
032 ap ’ 002 o9 ’ mutator algebra. It is possible to return to the original com-
yielding the Einstein-Hamilton-Jacobi (EHJ) equation mutative variables and usual commutation relations if we in-

troduce the following change of variables
052(\* | (9518)\* _ o —2v3n
— —4 =
( 90 ) + a7 8e 0, (8)
solving Eq.(8) gives the functions;, So, and using the defi-
nition for the momenta
g’ aQ [3_3_4862@91‘3@%)] Y(Q,5) =0, (16)
which combined with Eq.(2) and fixing the value of
N(t) = 24e~V38~2V32 we find

Q—Q+ gﬂﬁ and 68— 03— gHQ7 (15)

appliying these ideas and using Eq.(4) we find the noncom-
mutative Wheeler-DeWitt equation (NCWDW)

g

assuming that we can writg(<2, 8) = ¢¥3"# X (Q2) the equa-

$1(8) = Ps, 3, tion for X (Q) is
1 d? )
- 2 _ —2V30Q —3iv0 ,—2/3Q 2 _
S2(9) 7 Pg —48e [_dQ? + 48e7 " + 3v ] X(Q)=0, (A7)
P A /Pgo — 48e—2V3Q then the solutions of the NCWDW equation are
+ %arctanh 2 ; (10)
%o W(Q,0) = FVIIL, (4 HRY) ()
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Usually the next step is to construct a “Gaussian” waved. Conclusion and outlook
packet that can be normalized and do the physics with the

new wave function. This is not needed for our purposes, age found the noncommutative classical solutions for the

we will be applying the WKB method. Using Eq. (7) and
U ~ exp(£imf) exp(£iS(Q)), (29)
we arrive at

Sl(ﬂ) = Pﬁoﬁv

1
SQ(Q) = 7%\/P620 — 4867\/5013[’0 672\/§Q

(20)

VP2, — 48e~V30Ps0 —2v30
0
Ps, ’

P
+ 259 arctanh

V3

Kantowski-Sachs model by applying a WKB type method
to the noncommutative Wheeler-DeWitt equation, yielding
the noncommutative generalization of the Einstein-Hamilton-
Jacobi equation, from which the noncommutative classi-
cal evolution is obtained. We know from the commutative
case that the classical solution obtained from the WKB type
method are solutions to Einstein’s field equations, this gives
confidence that the noncommutative solutions found by this
method could be solutions to the noncommutative Einstein’s
equations. Due to the complexity of the noncommutative
theories of gravity [11], classical solutions to the noncom-
mutative field equations are almost impossible to find, but in

from which we obtain the noncommutative classical solutionsme approach of noncommutative quantum cosmology and by

1
_72\/3

B(t) = Bo + 2Pz, (t — to)

Q(t)

In

48 1
g COSh2 (2\/§Pﬁ0 (t — to))] — §9P50,
0

. (21)

50tanh2 [2\/§Pgo (t— to)} ,

means of the WKB-type procedure, they can be constructed.

Acknowledgments

these solutions have already been obtained in [13], in that paA/e will like to thank M.P. Ryan for enlightening discussions
per the authors do a deformation of the simplectic structur®n quantum cosmology. This work was partially supported
at a classical level, modifying the Poisson brackets to includdy CONACyYT grants 47641 and 51306, also by PROMEP

noncommutativity.

grants UGTO-CA-3 and PROMEP-PTC-085.

—_

. H. SnyderPhys. Rew1(1947) 38.

2. M.P. Ryan, in: Hamiltonian CosmologySpringer, Berlin,
1972).

3. M. MacCallum, in:General Relativity: An Einstein Centenary
Survey edited by S. Hawking and W. Israel (Cambridge Uni-
versity Press, Cambridge, England, 1979).

. D. Bohm, Quantum TheoryPrentice-Hall, Englewood Clifss,
NJ, 1955); Ph M. Morse and H. Feshbadhethods of The-
oretical Physic§¥McGraw-Hill, New York, 1953) Vol. 2; L.I.
Schiff, Quantum Mechanic@McGraw-Hill, New York, 1955);
A. Messiah,Quantum Mechanic@North-Holland, Amsterdan,
1961) Vol. 1.

5. D.N. Page, "Lectures on Quantum Cosmology"Gravitation:
A Banff Summer Institutegdited by R. Mann and P. Wesson
(World Scientific, Singapore, 1991).

6. B.S. DeWitt,Phys. Rev160(1967) 1113.

. J.M. Romero and J.A. Santiagd/od. Phys. Lett. 20 (2005)
78.

8. R. Brandenberger and P.M. Ho,Phys. Rev. D66 (2002)
023517; Q.G. Huang and M. Li,Nucl. Phys. B713 (2005)
219; Q.G. Huang and M. LiJHEP0306(2003) 014; H.s. Kim,
G.S. Lee, H.W. Lee, and Y.S. Myundg?hys. Rev. Y0 (2004)
043521; H.s. Kim, G.S. Lee, and Y.S. Myuniglod. Phys. Lett.
A 20(2005) 271; D.J. Liu and X.Z. Li, Phys. Rev. TD (2004)
123504.

9. H. Garda-Compan, O. Obre@n, and C. Rafnez, Phys. Rev.
Lett. 88(2002) 161301.

J. Gamboa, M. Loewe, and J.C. RojBtys. Rev. 34067901,
M. Chaichian, M.M. Sheikh-Jabbari, and A. TureanRhys.
Rev. Lett862716.

H. Garda-Compéan, O. Obre@n, C. Rarirez, and M. Sabido,
Phys. Rev. D68 (2003) 044015; H. Gara-Compaén,

O. Obre@n, C. Rarnirez, and M. Sabido, Phys. Rev. D68
(2003) 045010; M. BAados, O. Chandia, N. Grandi, F.A.
Schaposnik, and G.A. Silv&hys. Rev. 064 (2001) 084012;
H. Nishino and S. RajpootPhys. Lett. B532 (2002) 334;
V.P. Nair, “Gravitational Fields on a Noncommutative Space”,
hep-th/0112114; S. Cacciatori, D. Klemm, L. Martucci, and
D. Zanon,Phys. Lett. B536 (2002) 101; S. Cacciatori, A.H.
Chamseddine, D. Klemm, L. Martucci, W.A. Sabra, and D.
Zanon, “Noncommutative Gravity in Two Dimensions”, hep-
th/0203038; Y. Abe and V.P. Nair,"Noncommutative Grav-
ity: Fuzzy Sphere and Others”, hep-th/0212270; M.A.
Cardella and Daniela Zanon, “Noncommutative Deformation
of Four-dimensional Einstein Gravity”, hep-th/0212071; A.H.
Chamseddine, “Invariant Actions for Noncommutative Grav-
ity”, hep-th/0202137; J.W. MoffatPhys. Lett. B491 (2000)
345;Phys. Lett. B193(2000) 142.

12. R. Kantowski and R. Sachg, Math. Phys7 (1966) 443.

13. G.D. Barbosa and N. Pinto-Netd?hys. Rev. D70 (2004)
103512, [arXiv:hep-th/0407111].

10.

11.

Rev. Mex. 5. S53(4) (2007) 118-120



