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On the WKB approximation of noncommutative quantum cosmology
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In this work we propose a formalism to introduce the effects of noncommutativity to classical cosmological models. The method is based on
noncommutative quantum cosmology and by means of a WKB type approximation the noncommutative classical solutions can be obtained.
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En este trabajo se propone un formalismo para introducir los efectos de la no conmutatividad a modelos cosmológicos cĺasicos. El ḿetodo
esta basado en la cosmologı́a cúantica no conmutativa en la cual por medio de la aproximación WKB se obtienen las soluciones clásicas no
conmutativas.
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1. Introduction

During the early days of quantum mechanics and quantum
field theory, continuous space-time and Lorentz symmetry
was considered inappropriate to describe the small scale
structure of the universe. It was also argued that one should
introduce a fundamental length scale, limiting the precision
of position measurements. The introduction of fundamental
length is suggested to cure the ultraviolet divergencies oc-
curing in quantum field theory. H. Snyder was the first to
formulate these ideas mathematically [1], introducing non-
commutative coordinates brings an uncertainty in the posi-
tion. The success of the renormalisation made people forget
about these ideas for some time. But when the quantization
of gravity was considered thoroughly, it became clear that the
usual concepts of space-time are inadequate and that space-
time has to be quantised or noncommutative, in some way.

Quantum cosmology, is a simplified approach to the study
of the very early universe , which means that the gravitational
and matter variables have been reduced to a finite number of
degrees of freedom (these models were extensively studied
by means of Hamiltonian methods in the 1970’s, for reviews
see [2, 3]); for homogenous cosmological models the metric
depends only on time, this permits to integrate the space de-
pendence and obtain a model with a finite dimensional con-
figuration space,minisuperspace, whose variables are the 3-
metric components. One way to extract useful dynamical in-
formation is through a WKB type method. The semiclassical
or WKB approximations is usually discussed in text books
on nonrelativistic quantum mechanics in the context of sta-
tionary states,i.e., determination of the energy eigenvalues
and eigenfunctions [4]. This approximation can also be used
to obtain approximate and in some cases exact solutions of
the dynamical problem,i.e., full Schr̈odinger equation, so the
utility of the semiclassical approximation in obtaining exact
solutions of the Schrödinger equation has not yet fully ex-

plored. The same seems to be the case for the relativistic
quantum mechanics. The importance of the semiclassical ap-
proximation in the relativistic case is probably best appreci-
ated in quantum cosmology [5], specifically, in the analysis
of the Wheeler-DeWitt equation which is essentially a Klein-
Gordon equation on the minisuperspace [6].

In the last few years there have been several attempts to
study the possible effects of noncommutativity in the classi-
cal cosmological scenario [7, 8]. In Ref. 9 the authors avoid
the difficulties of analyzing noncommutative cosmological
models, if these would be derived from the full noncommuta-
tive theory of gravity. Their proposal introduces the effects
of noncommutativity at the quantum level, namely quan-
tum cosmology, by deforming the minisuperspace through a
Moyal deformation of the Wheeler-DeWitt equation, similar
to noncommutative quantum mechanics [10].

The aim of this work is to apply a WKB type method to
noncommutative quantum cosmology, and find the noncom-
mutative classical solutions, avoiding in this way the difficult
task to solve this cosmological models in the complicated
framework of noncommutative gravity [11]. We know how
to introduce noncommutativity at a quantum level, by taking
into account the changes that the Moyal product of functions
induces on the quantum equation, and from there calculate
the effects of noncommutativity at the classical level. This
also has the advantage that for some noncommutaive models
for which the quantum solutions can not be found, the non-
commutative classical solutions arise very easily from this
formulation. This procedure is presented through an exam-
ple,the Kanstowski-Sachs cosmological.

2. The Cosmological Kantowski-Sachs Model

The Kantowski-Sachs Universe is one of the simplest
anisotropic cosmological models [12]. The Kanstowski-
Sachs line element is
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From the general relativity lagrangian we can construct the
canonical momenta,
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and the corresponding Hamiltonian
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by canonical quantization we obtain the Wheeler-DeWitt
(WDW) equation, using the usual identifications

ΠΩ = −i
∂

∂Ω
and Πβ = −i

∂
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[
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in this parametrization the WDW equation has very simple
form; and the solutions to this equation are given by

ψ = e±iν
√

3βKiν

(
4e−
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)
, (5)

whereν is the separation constant andKiv are the modi-
fied Bessel functions. We now proceed to apply the WKB
method. For this we propose the wave function

Ψ(β, Ω) = ei(S1(β)+S2(Ω)), (6)

the WKB approximation is reached in the limit
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yielding the Einstein-Hamilton-Jacobi (EHJ) equation
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solving Eq.(8) gives the functionsS1, S2, and using the defi-
nition for the momenta

Πβ =
dS1(β)

dβ
, ΠΩ =

dS2(Ω)
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, (9)

which combined with Eq.(2) and fixing the value of
N(t) = 24e−
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from this solutions and using (2) and (9) we obtain the clas-
sical solutions

Ω(t) =
1

2
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3
ln

[
48
P 2

β0

cosh2
(
2
√

3Pβ0(t− t0)
)]

,

β(t) = β0 + 2Pβ0(t− t0), (11)

these solutions are the same that one gets by solving the field
equations of general relativity.

3. Noncommutative Kantowski-Sachs model

In this section we construct noncommutative quantum cos-
mology for the Kantowski-Sachs model and calculate the
noncomutative classical evolution via a WKB type approxi-
mation. To get the classical cosmological solutions would be
a very difficult task in any model of noncommutative grav-
ity [11], as a consequence of the highly nonlinear character
of the field equations. One can introduce a noncommutative
deformation of the minisuperspace variables [9]

[Ω, β] = iθ. (12)

This noncommutativity can be formulated in terms of non-
commutative minisuperspace functions with the Moyal prod-
uct of functions

f(Ω, β) ? g(Ω, β) = f(Ω, β)ei θ
2

(←−
∂Ω
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∂β−←−∂β

−→
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)
g(Ω, β). (13)

Then the noncommutative WDW equation can be written as

(−Π2
Ω + Π2

β −V(Ω, β)
)

? Ψ(Ω, β) = 0, (14)

we know from noncommutative quantum mechanics [10],
that the symplectic structure is modified changing the com-
mutator algebra. It is possible to return to the original com-
mutative variables and usual commutation relations if we in-
troduce the following change of variables

Ω → Ω +
θ

2
Πβ and β → β − θ

2
ΠΩ, (15)

appliying these ideas and using Eq.(4) we find the noncom-
mutative Wheeler-DeWitt equation (NCWDW)

[
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assuming that we can writeΨ(Ω, β) = e
√

3νβX(Ω) the equa-
tion for X(Ω) is
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then the solutions of the NCWDW equation are
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. (18)
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Usually the next step is to construct a “Gaussian” wave
packet that can be normalized and do the physics with the
new wave function. This is not needed for our purposes, as
we will be applying the WKB method. Using Eq. (7) and

Ψ ' exp(±imβ) exp(±iS(Ω)), (19)

we arrive at
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from which we obtain the noncommutative classical solutions
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these solutions have already been obtained in [13], in that pa-
per the authors do a deformation of the simplectic structure
at a classical level, modifying the Poisson brackets to include
noncommutativity.

4. Conclusion and outlook

We found the noncommutative classical solutions for the
Kantowski-Sachs model by applying a WKB type method
to the noncommutative Wheeler-DeWitt equation, yielding
the noncommutative generalization of the Einstein-Hamilton-
Jacobi equation, from which the noncommutative classi-
cal evolution is obtained. We know from the commutative
case that the classical solution obtained from the WKB type
method are solutions to Einstein’s field equations, this gives
confidence that the noncommutative solutions found by this
method could be solutions to the noncommutative Einstein’s
equations. Due to the complexity of the noncommutative
theories of gravity [11], classical solutions to the noncom-
mutative field equations are almost impossible to find, but in
the approach of noncommutative quantum cosmology and by
means of the WKB-type procedure, they can be constructed.
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