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Se realiza el estudio de una solución de las ecuaciones acopladas de la teorı́a conocida como Einstein−Maxwell−Dilaton−Axion (EMDA)
con el fin de obtener información sobre el acoplamiento de los campos escalares con el campo de normaU(1). Para obtener una solución a
las ecuaciones de EMDA se considera una métrica que admita dos vectores de Killing espaciales, posteriormente dicha métrica se transforma
en una ḿetrica de Einstein−Rosen, en la cual se puede interpretar el espacio−tiempo como: espacio cilı́ndrico, ondas planas o modelo
cosmoĺogico. Se estudia el modelo cosmológico en cuanto a su cinemática, posibles singularidades y el comportamiento asintótico de
los campos y de la ḿetrica, observando que la métrica, cerca de la singularidad tiene un comportamiento llamado término de velocidad
asint́oticamente dominante, AVDT (Asymptotically velocity-term dominated).

Descriptores:Cosmoloǵıas inhomogeneas; singularidades.

We carry out the study of a solution of the coupled equations of the theory known as Einstein-Maxwell-Dilaton-Axion (EMDA) with the
purpose of obtaining information of the coupling of the scalar fields with the U(1)gauge fields. To obtain a solution of the equations of EMDA
we consider a metric that possesses two space-like Killing vectors, later the metric is transformed into an Einstein-Rosen metric where can
interpret the space-time as either: a cylindrical space, a plane wave space, or a cosmological model. The cosmological model is studied in its
kinematics, possible singularities, and the asymptotic behavior of the fields and the metric. We observe that the metric near the singularity
has a behavior of the type “asymptotically velocity-term dominated‘” (AVDT).
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1. Introducción

A bajas enerǵıas en la teorı́a de cuerdas, al realizar la compac-
tación de dimensiones de una cuerda heterótica correspon-
diente a la clasificación Ramond−Ramond del caso bosóni-
co, se hacen presentes grados de libertad, los cuales son los
campos escalares Dilaton(φ) y Axion (κ) acoplados son
los campos electromagnético(Aµ) y gravitacional(gµν). Es-
tos constituyen la teorı́a conocida comoEinstein−Maxwell
−Dilaton−Axion (EMDA), obteniendo aśı la accíon efecti-
va cuatro dimensional, después de compactar seis de las diez
dimensiones correspondientes a la cuerda heterótica [1].

S[φ, κ, gµν , Aµ]

=
∫

d4x
√−g





R− 2(∂φ)2 − eφ(∂κ)2

2

−e−2φF 2 − κFµν F̃µν



 , (1)

dondeR es el escalar de curvatura de Riemann,Fµν el tensor
antisiḿetrico de Maxwell yF̃µν su dual. El marco de cuerdas
y de Einstein están relacionados, por medio de la transforma-
ción conformegµν(s) = e−φgµν(E) dondes indica el marco
de cuerdas yE el marco de Einstein. Por lo que la acción (1)
se encuentra ya transformada.

Un sutil punto en este tratamiento es que se está extra-
polando el comportamiento asintótico de soluciones v́alidas
en un ŕegimen de acoplamiento débil a regiones cercanas a
la singularidad del Big-Bang, o sea a un régimen de acopla-
miento fuerte en el cual se esperarı́a que las correcciones de

más alto orden a la teorı́a perturbativa, como los efectos de
las cuerdas no perturvativas, deberı́an ser importantes, por lo
tanto en este régimen el comportamiento cualitativo deéstas
soluciones se pueden desviar de aquel derivado para las solu-
ciones de una teorı́a de cuerdas completa.

Sin embargo hay razones para creer queG2 soluciones
debeŕıan proveer una descripción geńerica de modelos cos-
mológicos en la vecindad de la singularidad.

Una forma de obtener una solución a las ecuaciones de
campo que se obtienen de la variación de la accíon, es por
medio de proponer una ḿetrica que rompa la homogeneidad
del espacio en una dirección, es decir que admita dos vectores
de Killing espacialoides∂τ y ∂σ, de la forma.

ds2 =
∆
X

dx2 − ∆
Y

dy2 +
X

∆
(dτ + Ndσ)2

+
Y

∆
(dτ + Mdσ)2, (2)

donde se propone la siguiente estructura para las funciones
métricas:

X = εx2 + 2nx + α, Y = εy2 + 2my − α, (3)

M = νx2 + 2bx, N = −νy2 + 2βy, (4)

ε = 1, 0,−1, ν = 1, 0,−1 ∆ = M −N. (5)

Siendon, m, b, β, α constantes. Una solución a las
ecuaciones EMDA está dada por los siguientes campos dila-
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TABLA I. Transformaciones correspondientes a(x, y) → (z, t) para pasar del elemento de lı́nea (2), a una ḿetrica de Einstein−Rosen (10)

ε x y Condiciones

1
√

α− n2 sinh z − n
√

α + m2 cosh t−m α− n2 > 0 α + m2 > 0

1 exp z
2

− n exp t
2
−m α = n2 = −m2 = 0

-1
√

α + n2 sin z + n
√

m2 − α sin t + m α + n2 > 0 m2 − α > 0

1 exp z
2

− n
√

α + m2 cosh t−m α = n2

1
√

n2 + m2 cosh z − n exp t
2
−m α = −m2

0 z2n2−α
2n

t2+α
2m

−

TABLA II. Clasificacíon de los distintos tipos de espacios

ε G̃aG̃a

1
− (α− n2)(α + m2)

2∆
(cosh 2t + cosh 2z) Cosmoloǵıa

1 0 Ondas Planas

-1
(α + n2)(m2 − α)

2∆
(cos 2t− cos 2z) Cosmoloǵıa

1 − (n2 + m2)

4∆
e2z Cosmoloǵıa

1
(n2 + m2)

4∆
e2t Cilı́ndrico

0
t2 − z2

∆
Cosmoloǵıa

tónico, axíonico y electromagńetico, respectivamente [2],

e2φ(x,y)=
ω(x2+y2)

∆
, κ(x, y)=

2(by+βx)
ω(x2+y2)

+ κ0, (6)

Aτ (x, y)=−q0y−g0x

∆
, Aσ(x, y)=

νxy(q0x+g0y)
∆

, (7)

dondeκ0 y ω son paŕametros de axion y dilaton mientras que
g0 y q0 est́an relacionados con el campo electromagnético.
Las ecuaciones están restringidas a satisfacer las siguientes
condiciones algebraicas,

ν2q2
0 = 2ωβ(mν + βε), g0β − q0b = 0, (8)

ν2g2
0 = 2ωb(−nν + bε), nβ + mb = 0. (9)

2. Espacio Tiempo de Einstein−Rosen

El elemento de linea (2) puede ser transformado en un
elemento de lı́nea caracterı́stico de un espacio−tiempo de
Einstein−Rosen de la forma.

ds2 = exp(f)(dz2 − dξ2) + γabdxadyb. (10)

Las funcionesf , γab dependen del tiempo (coordenadaξ)
y de la coordenada espacialz. En nuestro caso (2) como es-
pacio de Einstein−Rosen, toma la forma explı́cita:

ds2 = ∆(dz2 − dt2)

+
G

∆
{χ(dx + Ndy)2 + χ−1(dx + Mdy)2}, (11)

dondeχ =
√

X/Y y G =
√

XY . Ésta se obtiene por medio
de renombrar las variablesτ → x, σ → y y de las transfor-
maciones(x, y) → (z, t), que dependen de los valoresn, m,
ε y ν. Algunas de las posibles transformaciones de las coor-
denadas(x, y) → (z, t), se presentan en la Tabla I.

Una cantidad importante en este espacio−tiempo de
Einstein−Rosen es eĺarea de la superficie de transitividad,
dada por,

G̃ =
√

det γab. (12)

La cual al obtener su gradientẽGµ, es posible determinar
el comportamiento local del espacio−tiempo; es decir sĩGµ

es espacialoide (̃GµG̃µ > 0) decimos que el espacio−tiempo
es ciĺındrico, si es nulo corresponde a ondas planas y final-
mente si es temporaloide (G̃µG̃µ < 0) o vaŕıa de punto a
punto, puede ser usado para describir modelos cosmológicos
u ondas gravitacionales colisionantes.

Para las transformaciones obtenidas en la Tabla I,
es posible realizar la siguiente clasificación para el
espacio−tiempo (11).

3. Caracterizacíon de un Espacio−Tiempo

Las propiedades cineḿaticas de un espacio−tiempo, son
obtenidas por medio de la descomposición de la derivada co-
variante de un campo vectorial tangente a las lı́neas geod́esi-
cas de dicho espacio, su descomposición es [3]:

ua;b = −u̇aub + wab + σab +
Θhab

3
, (13)

donde se toma a,

u̇a := ua;bu
b = dua/dτ, ; u̇aua = 0, (14)
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wab := u[a;b] + u̇[a u b]; wabu
b = 0, (15)

σab := u(a;b) + u̇(a u b) −
Θhab

3
; σabu

b = 0, (16)

hab := gab + uaub, (17)

Θ := ua
;a. (18)

Donde u̇a, Θ, wab y σab son llamadas aceleración, ex-
pansíon, rotacíon y distorsíon (shear) respectivamente. Con
ayuda de estas cantidades, podemos obtener el parámetro de
desaceleración:

q := − 3
Θ2

(∇aΘ)ua − 1, (19)

que se lee de la forma siguiente, siq es positivo el espacio
se expande desaceleradamente y siq es negativo se expande
aceleradamente.

El estudio del paŕametroσ = σabσ
ab proporciona la in-

formacíon sobre el comportamiento isotrópico del espacio.
Es decir siσ tiende a cero respecto al parámetro temporal, se
dice que el espacio tiende a comportarse isotrópicamente.

Además en un espacio−tiempo, trayectorias paralelas ve-
cinas pueden enfocarse hacia un punto del espacio−tiempo,
indicando esto una posible singularidad, la cual puede ser en-
contrada por medio de la ecuación de Raychaudhuri [4]:

Θ̇ = −Rabu
aub + u̇a

;a + wabw
ab − σabσ

ab − Θ2

3
, (20)

que es obtenida de la identidad de Ricci, dondeΘ̇ es la deri-
vada con respecto a un parámetroτ que es el parámetro que
define a la geod́esicaX(τ), la cual es tangente al campo vec-
torial ua.

La informacíon acerca del enfoque de geodésicas vecinas
se puede leer de la ecuación de Raychaudhuri (20) de la for-
ma siguiente: Si̇Θ < 0 entonces las geodésicas se enfocan o
tienden a converger en algún punto del pasado o del futuro y
si Θ̇ > 0, se separan.

4. Cosmoloǵıa de Einstein−Rosen

Nos enfocaremos al estudio del primer espacio cos-
mológico que se muestra en la Tabla II. Considerando el cam-
po vectorial:

ua =
1√
∆

δa
t , ua = −

√
∆δt

a, (21)

obtenemos el siguiente comportamiento del modelo cos-
mológico, con ayuda de los parámetros cineḿaticos.

Las componentes del elemento de lı́nea (11) toman la for-
ma caracterı́stica:

X = (α− n2) cosh2 z, Y = (α + m2) sinh2 t, (22)

M = ν(
√

α− n2 sinh z − n)2 + 2b(
√

α− n2 sinh z − n),
(23)

N = −ν(
√

α + m2 cosh t−m)2+2β(
√

α + m2 cosh t−m).
(24)

Este espacio cosmológico se expande(Θ > 0) desacele-
radamente(q > 0), adeḿas el espacio es anisotrópico a tiem-
pos tempranos y conforme se incrementa el tiempo se vuelve
isotrópico por completo(σ → 0). Este comportamiento se
muestra analı́ticamente y se ilustra en la figura (??)

Al trabajar con la ecuación de Raychaudhuri (20) se ob-
serva queΘ̇ diverge parat → 0, dado que en ella aparece un
término de la forma:

Θ̇ v − 1
(sinh t)2

, (25)

y no es possible ajustar los parámetros en elĺım t → 0, para
evitar esta singularidad. Por lo que podemos concluir que el
espacio cosmológico no es libre de singularidades y será in-
teresante estudiar el comportamiento de los campos EMDA
en este punto.

TABLA III. Comportamiento asintótico de los campos ent → ∞
y t → 0

t → 0 t →∞
φ → cte φ → 1

2
ln(ω

ν
)

κ → cte κ → κ0

Ax(t, z) → cte Ax(t, z) → 0

Ay(t, z) → cte Ax(t, z) → g0

FIGURA 1. Gráfica de los paŕametros de desaceleración(q), expan-
sión (Θ) y distorsíon (σ), en funcíon del tiempot, con los valores
m = n = 2, β = −b = −1, α = 5, ν = 1 y z = 2.
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El estudio de los campos (6-7) de la teorı́a EMDA, en los
reǵımenes asintóticost →∞ y t → 0, proporciona informa-
ción sobre el comportamiento de los campos y del espacio.
Para el caso del espacio cosmológico que se trabaja, obtene-
mos la siguiente información considerando la coordenadaz
constante.

Podemos observar que parat → ∞, los distintos cam-
pos se vuelven constantes, por lo que elúnico campo que
actuaŕa sera el campo gravitacional.

Un prototipo de modelo cosmológico anisotŕopico
corresponde a la ḿetrica de Kasner,

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2 (26)

cuyas constantespi cumplen las condiciones,

p1 + p2 + p3 = (p1)2 + (p2)2 + (p3)2 = 1. (27)

La forma de la ḿetrica de Kasner describe el compor-
tamiento local del espacio-tiempo cercano a la singularidad
(t → 0) para el caso de soluciones inhomogéneas y aniso-
trópicas de las ecuaciones de Einstein, pero con un conjunto
diferente de valores depi en cada punto de la hipersuperficie
de singularidad. Belinskii, Khalatnikov y Lifshitz(BKL) pro-
ponen describir una singularidad de un espacio homogéneo y
vaćıo como una sucesión infinita de espacios de Kasner (esto
se conoce como la conjetura BKL).

Hay un caso especial de la conjetura BKL llamado térmi-
no de velocidad asintóticamente dominante, AVDT (Asymp-
totically velocity-term dominated), en estos casos la singula-
ridad no seŕa descrita por una sucesión infinita de espacios
de Kasner sino por un solo espacio de Kasner. Esto ocurre en
nuestro modelo, como veremos a continuación.

Considerando el comportamiento asintótico (t → 0) de
las componentes de la métrica (11) obtenemos,

∆ → ν{A2 + (
√

α + m2 −m)2}
+ 2{bA− β(

√
α + m2 −m)} = cte = k, (28)

Gχ

∆
→ (α− n2)(cosh z)2

k
, (29)

Gχ−1

∆
→ (α + m2)t2

k
. (30)

Aśı la métrica toma la forma en el lı́mite t → 0:

ds2 = k(dz2 − dt2) +
X

k
(dx + Ndy)2

+
(α + m2)t2

k
(dx + Mdy)2 (31)

Por lo que cercano a la singularidad se comporta como un
espacio de Kasner(p3 = 1, ; p2 = p1 = 0), y no como una
sucesíon de espacios de Kasner, es decir tiene el comporta-
miento AVDT. Lo cual es una forma de extender el resultado
de M. Narita, T. Torii y K. Maeda (NTM) [5].

5. Conclusiones

En la teoŕıa EMDA se pueden estudiar espacio-tiempos
anisotŕopicos, con el proṕosito de modelar universos tempra-
nos que posteriormente se volverán isotŕopicos.

Realizando el estudio cinemático de un caso cosmológi-
co, se obtiene que el espacio se expande desaceleradamente
y no es libre de singularidades. Los campos se vuelven cons-
tantes a tiempos grandes, por lo que al incrementarse el tiem-
po los campos se desacoplan dando paso a un espacio donde
únicamente el campo gravitacional es dominante.

Se establece que en dicho caso cosmológico, la ḿetrica
toma la forma de un espacio de Kasner cerca de la singulari-
dad (t = 0) y no una sucesión infinita de espacios de Kasner
por lo que su comportamiento corresponde al Término de ve-
locidad asint́oticamente dominante (AVTD), que es un caso
especial de BKL.
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