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Se realiza el estudio de una solutide las ecuaciones acopladas de ldigecmnocida como EinsteirMaxwell—Dilaton—Axion (EMDA)
con el fin de obtener informami sobre el acoplamiento de los campos escalares con el campo deln@rm&ara obtener una soléci a
las ecuaciones de EMDA se considera ur@rina que admita dos vectores de Killing espaciales, posteriormente ditheanrse transforma
en una natrica de EinsteirRosen, en la cual se puede interpretar el espa@mpo como: espacio éildrico, ondas planas o modelo
cosmobgico. Se estudia el modelo cosmgico en cuanto a su cingatica, posibles singularidades y el comportamiento asaat de
los campos y de la étrica, observando que laétnica, cerca de la singularidad tiene un comportamiento llam@mdairio de velocidad
asinbticamente dominante, AVDT (Asymptotically velocity-term dominated).

Descriptores:Cosmologias inhomogeneas; singularidades.

We carry out the study of a solution of the coupled equations of the theory known as Einstein-Maxwell-Dilaton-Axion (EMDA) with the
purpose of obtaining information of the coupling of the scalar fields with the U(1)gauge fields. To obtain a solution of the equations of EMDA
we consider a metric that possesses two space-like Killing vectors, later the metric is transformed into an Einstein-Rosen metric where can
interpret the space-time as either: a cylindrical space, a plane wave space, or a cosmological model. The cosmological model is studied in its
kinematics, possible singularities, and the asymptotic behavior of the fields and the metric. We observe that the metric near the singularity
has a behavior of the type “asymptotically velocity-term dominated"” (AVDT).

Keywords: Inhomogeneous cosmologies; singularities.

PACS: 98.88.-k; 02.40.Xx; 11.25.-w

1. Introduccion mas alto orden a la teta perturbativa, como los efectos de
. . ) ) las cuerdas no perturvativas, ddberser importantes, por lo
Abajas energs en la tede de cuerdas, al realizar la compac- tanto en esteégimen el comportamiento cualitativo dstas

tacion de dimensiones de una cuerda Itea correspon-  sojyciones se pueden desviar de aguel derivado para las solu-
diente a la clasificabn Ramond-Ramond del caso bosi-  ¢jones de una tet de cuerdas completa.

co, se hacen presentes grados de libertad, los cuales son los gj, embargo hay razones para creer Guesoluciones
campos escalares Dilataip) y Axion (x) acoplados son  gepefan proveer una descrifizi gerérica de modelos cos-

los campos electromagtico(4,) y gravitacionalg,.,)- Es- molagicos en la vecindad de la singularidad.
tos constituyen la te@ conocida comdinstein-Maxwell Una forma de obtener una solania las ecuaciones de

—Dilaton—Axion (EMDA), obteniendo ésla accbn efecti-  campo que se obtienen de la varéacide la acdn, es por

dimensiones correspondientes a la cuerda ogtar[1]. del espacio en una direéai, es decir que admita dos vectores
S[, s Gy A, ] de Killing espacialoide®; y d,, de la forma.
[ K A A X
R - 2(9¢)? — <90 ds? = Zda? — Sdy? + L (dr + Ndo)®

~ [dtaevs L X

_em26F? _ gk, v

dondeR es el escalar de curvatura de Riemafip, el tensor
antisimétrico de Maxwell yF,,, su dual. El marco de cuerdas donde se propone la siguiente estructura para las funciones
y de Einstein esin relacionados, por medio de la transforma-metricas:
cion conformey,,,(s) = e*¢gm,(E) dondes indica el marco
de cuerdas ¥ el marco de Einstein. Por lo que la aoei(1) X = ex® 4+ 2nx + a, Y=e?+2my—a, (3)
se encuentra ya transformada.

Un sutil punto en este tratamiento es que sa egtra-

+ %(dTJera)z, 2

M = va? + 2bz, N=—-vy*+28y, (4)

polando el comportamiento aditico de solucionesalidas e=1,0,—1, v=10-1 A=M-N. (5
en un Egimen de acoplamientctil a regiones cercanas a
la singularidad del Big-Bang, o sea a w@gimen de acopla- Siendon, m, b, 3, « constantes. Una solum a las

miento fuerte en el cual se espéaaque las correcciones de ecuaciones EMDA eatdada por los siguientes campos dila-
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TABLA |. Transformaciones correspondientegsay) — (z,t) para pasar del elemento deda (2), a una gtrica de EinsteinrRosen (10)

€ X y Condiciones
1 va—n2sinhz —n va +m?2cosht —m a-n2>0 a+m?>0
1 =PE —n %pt—m a=n’=-m?=0
-1 va+n2sinz+n vm?2 —asint +m a+n?>0 mP—a>0
1 =PE —n va+m2cosht —m a=n?
1 vn?+m2coshz —n %pt—m a=—m?
22’)12—(1 ,2 [e%
0 2n t2:1 —
TABLA Il. Clasificacon de los distintos tipos de espacios ds® = exp(f)(dz® — d&?) + Yapda“dy". (10)
— Las funcioned, ., dependen del tiempo (coordengfa
€ GaG* y de la coordenada espacialEn nuestro caso (2) como es-
—(a—n?) (o +m? ) pacio de EinsteinRosen, toma la forma explta:
1 X (cosh 2t + cosh 2z)  Cosmologa
2 ds® = A(dz? — dt?)
G
1 0 Ondas Planas + E{X(dm + Ndy)Q +X_1(dx+Mdy)2}7 (11)
+n2 2 . _ - . .
4 latn)m a)(cos 2% — c0s22) Cosmologa dondey = \/X/Y'y G = VXY Esta se obtiene por medio
2A de renombrar las variables— x, o0 — y y de las transfor-
(n? +m?) ,_ ] macionegz,y) — (z,1), que dependen de I_os valonesm,
1 ~—an ¢ Cosmologa e y v. Algunas de las posibles transformaciones de las coor-

denadagz,y) — (z,t), se presentan en la Tabla I.

(n2+m2)62t Una cantidad importante en este espatiempo de

! 4A Clindrico Einstein-Rosen es efirea de la superficie de transitividad,
22 dada por, }
0 X Cosmologa G = /det Yap. (12)
La cual al obtener su gradientg,, es posible determinar
tonico, axbnico y electromaggtico, respectivamente [2], el comportamiento local del espacitiempo; es decir 7,
S es espacialoideﬁ,téﬂ > 0) decimos que el espacidiempo
6243(:8,3/):“(33 +y°) ( ):2(@4‘533) o, (6) escilndrico, si es nulo corresponde a ondas planas y final-
A T w(rty?) ’ mente si es temporaloid€(,G* < 0) o vaia de punto a
A y):_qoy—gow Al y)zvxy(qox+goy) @ Euonr:géguede_ ser usado parlaldescribir modelos cagjivois
-, —a o A A gravitacionales colisionantes.

Para las transformaciones obtenidas en la Tabla |,
dondex, y w son paametros de axion y dilaton mientras que es posible realizar la siguiente clasifidati para el
go Y qo esén relacionados con el campo electron&t@w.  espacie-tiempo (11).
Las ecuaciones &gt restringidas a satisfacer las siguientes

condiciones algebraicas, 3. Caracterizacibn de un Espacio-Tiempo

2 2 —
viqy = 2wB(mv + Be),  gob — gob = 0, (8) Las propiedades cineaticas de un espacidiempo, son
V262 = 2wb(—nw +be),  nB+mb=0. 9) obtenidas por medio de la descompdsicile la derivada co-

variante de un campo vectorial tangente aflasds geoési-
cas de dicho espacio, su descompasi@s [3]:

2. Espacio Tiempo de Einsteir-Rosen Ohyy
Ug;b = —UgUp + Wap + Tap + 3 (13)

El elemento de linea (2) puede ser transformado en u
elemento deihea caractéstico de un espacietiempo de
Einstein-Rosen de la forma. Ug 1= ua;bub = dug/dT,; Ugu® =0, (14)

rc]ionde se toma a,
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Wab ‘= Ulq;b] + 7v.L[aub]; wabub =0, (15) 9 9
X = (a—n?)cosh®z, Y = (a+m?)sinh’t, (22)

Ohap gapu’ =0, (16)

3 M = v(v/a —n2?sinhz — n)? 4+ 2b(v/a — n2sinh z — n),

Oab = u(a;b) + u(aub) -

(23)
hab = Gab T UqUp, (17)
a N = —v(va + m2cosht—m)?+28(\/ o + m2 cosh t—m).
O:=u’,. (18) (24)
Dondet,, ©, wyp Y 04 Son llamadas acelerdxi, ex- Este espacio cosnmmjico se expand& > 0) desacele-

panson, rotacdn y distorsbn (shear) respectivamente. Con radamentéq > 0), adenas el espacio es anisopico a tiem-
ayuda de estas cantidades, podemos obtenera@igao de  pos tempranos y conforme se incrementa el tiempo se vuelve

desaceleradn: isotropico por completdo — 0). Este comportamiento se
3 muestra an@ticamente y se ilustra en la figura®)
q:= 7@(va@)ua -1, (19) Al trabajar con la ecuaon de Raychaudhuri (20) se ob-

serva qued diverge para — 0, dado que en ella aparece un
que se lee de la forma siguiente gsés positivo el espacio termino de la forma:
se expande desaceleradamente ¢ es negativo se expande
aceleradamente. o 1
. : . . DT o (25)
El estudio del pa@imetrooc = o,,0® proporciona la in- (sinh ¢)?
formac_bn_so_bre el comportamiento i§6pico del espacio. y no es possible ajustar los panetros en eim ¢ — 0, para
Es decir sir tiende a cero respecto al panetro temporal, Sé  gyjitar esta singularidad. Por lo que podemos concluir que el
dice que el espacio tiende a comportarse tgpgamente. espacio cosmébico no es libre de singularidades y&@r-

~ Ademas en un espacidiempo, trayectorias paralelas ve- (eresante estudiar el comportamiento de los campos EMDA
cinas pueden enfocarse hacia un punto del espdeimpo, o, este punto.

indicando esto una posible singularidad, la cual puede ser en-
contrada por medio de la ecuanide Raychaudhuri [4]:

TABLA Ill. Comportamiento asiftico de los campos en— oo

: a, b a ab ab 92 yt—0
O = —Rgpuu’ + U + wapw® — 0ap0 ~ 35 (20) 0 P
. . . " - . ¢ — cte ¢ — Lln(2)

gue es obtenida de la identidad de Ricci, dofdes la deri- 27y
vada con respecto a un panetror que es el pametro que K — cte k= Ko
define a la geoekicaX (1), la cual es tangente al campo vec- Az (t, z) — cte Ay(t,z) =0
torial u®. Ay(t,z) — cte Az (t,z) — go

La informacbn acerca del enfoque de gésitas vecinas
se puede leer de la ecuanide Raychaudhuri (20) de la for- 6 |
ma siguiente: SP < 0 entonces las geédicas se enfocan o : o)
tienden a converger en aig punto del pasado o del futuro y : q °

si© > 0, se separan.

4. Cosmologa de Einstein-Rosen

Nos enfocaremos al estudio del primer espacio cos-
molbgico que se muestra en la Tabla Il. Considerando el cam-2
po vectorial:

1
u® = ﬁag, Ug = —VAS, (21) |
obtenemos el siguiente comportamiento del modelo cos- 0 5 10
moldgico, con ayuda de los pﬁ:‘metrqs cinerdticos. FIGURA 1. Gréfica de los p@metros de desaceleréi(q), expan-
Las componentes del elemento ek (11) toman lafor-  sion (©) y distorsbn (o), en funcbn del tiempat, con los valores
ma caractéstica: m=n=2083=-b=-1l,a=5v=1yz=2.
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El estudio de los campos (6-7) de la iedEMDA, en los
regmenes asifiticost — ooy t — 0, proporciona informa-

cion sobre el comportamiento de los campos y del espacio. Gx _ (o — n?)(cosh 2)? (29)

Para el caso del espacio cosogito que se trabaja, obtene- A k ’

mos la siguiente informagn considerando la coordenaca Gy ! (o +m?)t?

constante. A A : (30)
Podemos observar que para— oo, los distintos cam-

pos se vuelven constantes, por lo qudieico campo que Asi la métrica toma la forma en €lrhite ¢ — 0:

actuaa sera el campo gravitacional.
Un prototipo de modelo cosmimjico anisotbpico ds® = k(dz? — dt?) + %(dm + Ndy)?

corresponde a la étrica de Kasner,

2 t2
amI et May? (3
ds® = —dt® + 12P1da? + tP2dy? + 1272422 (26) k
cuyas constantes cumplen las condiciones, Por lo que cercano a la singularidad se comporta como un
espacio de Kasn =1,; = p1 = 0), y no como una
ptp = ()P + )+ e =1 @) &P @s =1; b2 =1 =0). ¥

sucesbn de espacios de Kasner, es decir tiene el comporta-

La forma de la rétrica de Kasner describe el compor- miento AVDT. Lo cual es una forma de extender el resultado
tamiento local del espacio-tiempo cercano a la singularidage M. Narita, T. Torii y K. Maeda (NTM) [5].

(t — 0) para el caso de soluciones inhordagas y aniso-

tropicas de las ecuaciones de Einstein, pero con un conjunto

diferente de valores dg en cada punto de la hipersuperficie 5.  Conclusiones
de singularidad. Belinskii, Khalatnikov y Lifshitz(BKL) pro-

ponen describir una singularidad de un espacio h@negy En la teofa EMDA se pueden estudiar espacio-tiempos
vado como una suces infinita de espacios de Kasner (esto anisotbpicos, con el prasito de modelar universos tempra-
se conoce como la conjetura BKL). nos que posteriormente se vol@&arisotbpicos.

Hay un caso especial de la conjetura BKL llamaétorti- Realizando el estudio cindatico de un caso cosnimji-

no de velocidad asioticamente dominante, AVDT (Asymp- ¢o, se obtiene que el espacio se expande desaceleradament
totically velocity-term dominated), en estos casos la singulay ng es libre de singularidades. Los campos se vuelven cons-
ridad no seit descrita por una sucési infinita de espacios tantes a tiempos grandes, por lo que al incrementarse el tiem-
de Kasner sino por un solo espacio de Kasner. Esto ocurre #d los campos se desacoplan dando paso a un espacio dondk
nuestro modelo, como veremos a contin0aci Gnicamente el campo gravitacional es dominante.
Considerando el comportamiento astitto (¢ — 0) de Se establece que en dicho caso cogmiab, la nétrica
las componentes de lagica (11) obtenemos, toma la forma de un espacio de Kasner cerca de la singulari-
dad (t = 0) y no una sucdsi infinita de espacios de Kasner
A — v{A? + (Va+m?2 —m)?} por lo que su comportamiento corresponde&iilino de ve-
locidad asinbticamente dominante (AVTD), que es un caso
+2{bA - B(Va+m? —m)} =cte=k,  (28) especial de BKL.
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