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The influence of higher dimensions in noncommutative field theories is considered. For this purpose, we analyze the bosonic sector of
a recently proposed 6 dimensional SU(3) orbifold model for the electroweak interactions. The corresponding noncommutative theory is
constructed by means of the Seiberg-Witten map in 6D. We find in the reduced bosonic interactions in 4D theory, couplings which are new
with respect to other known 4D noncommutative formulations of the Standard Model using the Seiberg-Witten map.
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Se considera el efecto de la presencia de dimensiones extra en las teorı́as de campo no conmutativas. Para este propósito, se analiza el
sector bośonico del recientemente propuesto modelo de orbifoldio SU(3) para las interacciones electro-débiles. La teoŕıa no conmuntativa
correspondiente se contruye utilizando el mapa de Seiberg-Witten en 6D. Encontramos en las interacciones bosónicas reducidas en la teorı́a
de 4D acoplamientos que son nuevos con respecto a otras formulaciones no conmutativas conocidas en 4D del modelo estándar que utilizan
el mapa de Seiberg-Witten.

Descriptores:No conmutatividad; dimensiones extra.

PACS: 11.10.Nx; 12.10.-g; 12.60.-i

1. Introduction
A renewed interest in theories in 6D has recently emerged [1].
An anomaly free gauged supergravity inD = 6, the Salam-
Sezgin model [2], has been considered. This model is
compactified on a 2-sphere and in four dimensions gives a
SU(2) × U(1) gauge theory [3]. In particular, it has been
argued that these theories with 3-Branes could point out to-
wards solving the cosmological constant problem [4]. Also,
in Ref. 5 it is shown that chaotic inflation consistent with con-
straints coming from the amplitude of the cosmic microwave
anisotropies can be naturally realized.

In the search for a unified theory of elementary particles,
the incorporation of the Higgs field in the standard model
(SM) of electroweak interactions has motivated various pro-
posals in 6D [6]. These are 6D pure gauge theories, in which
after dimensional reduction the Higgs field naturally arises.
Recently new proposals have been made, considering orb-
ifold compactifications; in Ref. 7, aU(3)× U(3) model was
considered. In these works the mass term of the Higgs po-
tential is generated radiatively, with a finite value without the
need of supersymmetry. Further, aSU(3) model was devel-
oped in Refs. 8 and 9 with one Higgs doublet and a predicted
W -boson mass. In this case the weak angle has a nonrealis-
tic value, although it can be improved by an extended gauge
group as in Ref. 7 or by the introduction of anU(1) factor as
done in Ref. 8.

Noncommutativity in field theories has been the subject
of an important number of works in the last few years. In par-

ticular, the Seiberg-Witten construction [10] and its general-
ization for any gauge group [11] have been studied. This con-
struction allows to express the noncommutative gauge fields
in terms of the usual ones and their derivatives, maintaining
the same degrees of freedom. It has been extended for non-
commutative matter fields, which also can be generated in
terms of the commutative matter fields and gauge fields of
interest [11]. By this procedure, noncommutative versions of
the standard model and consequently the electroweak inter-
action sector have been give in Ref. 12 (see also Ref. 13). As
a consequence, new interactions among the fields of the the-
ory are predicted. In this work, we will investigate the non-
commutative generalization of the bosonic sector of Gauge
Higgs unification models in 6D based on theSU(3) gauge
group compactified onT 2/Z2 [9]. The noncommutative ex-
tension is obtained by means of the Seiberg-Witten map. We
calculate, for the bosonic sector, the resulting first order cor-
rections and compare them with the results obtained in other
works.

2. The 6-Dimensional Model

Let us consider a Yang-Mills theory in 6-dimensional space-
time with aSU(3) gauge group, the Lagrangian of the theory
is

L = −1
2
TrFmnFmn,

the field strength tensor is defined by
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Fmn = ∂mAn − ∂nAm − ig6[Am, An],

andg6 is the coupling constant in 6D. This action is inter-
preted by a dimensional reduction on an orbifoldT 2/ZN for
N = 3, 4, 6 [9]. The result of this reduction is given by

L=−1
2
TrFµνFµν+2TrDµAzD

µAz−g2Tr [Az, Az]
2
, (1)

whereg = g6

√
V is the gauge coupling of the 4-dimensional

effective theory,V is the volume of the two extra dimensions
and

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ],

DµAz,z = ∂µAz,z − ig[Aµ, Az,z] = Fµz,z. (2)

The orbifold reduction [9] for the gauge fieldsAm leads to
the 4-dimensionalAµ and the two complex components of
the scalar boson doublet (Higgs), which are contained in the
Az andAz gauge fields,

Aµ =
(

Wµ 0
0 0

)
+

1
2
√

3

(
BµI 0
0 −2Bµ

)
,

Az =
1√
2

(
0 φ
0 0

)
,

Az =
1√
2

(
0 0
φ† 0

)
.

Substituting these expressions in the Lagrangian (1) we find

L = −1
2
TrFµν(W )Fµν(W )− 1

4
Fµν(B)Fµν(B)

+ (Dµφ)† (Dµφ)− V (φ) , (3)

where

Dµφ =
(

∂µ − 1
2
igW a

µ τa − 1
2
ig tan θW Bµ

)
φ,

tan θW =
√

3 and V (φ) =
g2

2
|φ|4 .

Thus this Lagrangian has aSU(2) × U(1) invariance with
a scalar massless doublet with a quartic potential. However,
as show in Ref. 14, quantum fluctuations induce corrections
to the potentialV (φ) which can trigger radiative symmetry
breaking. The leading terms in the one-loop effective poten-
tial for the Higgs are,

Veff (φ) = −µ2 |φ|2 + λ |φ|4 .

Assumingµ2 > 0, so that electroweak symmetry breaking
can occur, we have that〈|φ|〉 = ν/

√
2 with ν = µ/

√
λ.

3. Noncommutative Gauge Theories

3.1. Noncommutative space-time

Noncommutative space-time incorporates coordinatesx̂µ,
given by operators that satisfy the following relations,

[x̂µ, x̂ν ] = iθµν , (4)

whereθµν = −θνµ are real numbers. The Weyl-Wigner-
Moyal correspondence establishes an equivalence between
the Heisenberg algebra of the operatorsx̂µ and the function
algebra inRm. It has an associative and noncommutative star
product, the Moyal?-product, given by,

f(x) ? g(x) ≡
[
exp

(
i

2
∂

∂xα
θαβ ∂

∂yβ

)
f(x)g(y)

]

y→x

= f (x) g (x) +
i

2
θαβ∂αf (x) ∂βg (x) +O(θ2). (5)

Since we will work with a non-Abelian gauge group, our
functions are matrix valued, and the corresponding matrix
Moyal product is denoted by an∗. Therefore, a theory on
the noncommutative space of thex̂ is equivalent to a theory
of usual fields, where the function product is substituted by
the Moyal∗ product. This suggests that any theory can be
converted into a noncommutative one by replacing the ordi-
nary function product with the∗ product.

3.2. The Seiberg-Witten Map

For an ordinary Yang-Mills theory, the gauge field and the
strength field tensor transformations can be written as:

δλAµ = ∂µλ + iλAµ − iAµλ

δλFµν = iλFµν − iFµνλ. (6)

For the noncommutative gauge theory, we use the same equa-
tions (6) except that the matrix multiplications are replaced
by the∗ product. Then the gauge field and the strength field
tensor transformations are [10]:

δ̂λ̂Âµ = ∂µλ̂ + iλ̂ ∗ Âµ − iÂµ ∗ λ̂,

δ̂λ̂F̂µν = iλ̂ ∗ F̂µν − iF̂µν ∗ λ̂, (7)

from which the original Yang-Mills theory (6) results in the
limit θ → 0. As shown by Kontsevich [15], at the level of
the physical degrees of freedom there is a one to one relation
between the commutative and the noncommutative theories.
Nevertheless both theories are quite different, as noncommu-
tativity generates new couplings. An infinitesimal commuta-
tive gauge transformationδλAµ = ∂µλ+ iλAµ− iAµλ, will
induce the noncommutative one,

Âµ(A + δλA) = Âµ(A) + δ̂λ̂Âµ(A). (8)

This is the so called Seiberg-Witten map.

The solution to (8) can be obtained by setting
Âµ = Aµ + A′µ(A) and λ̂ = λ + λ′(λ,A), whereA′µ and
λ′ are local functions ofλ andAµ of first order inθ. Then
substituting in (8) and expanding to first order,
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A′µ(A + δλA)−A′µ(A)− ∂µλ′ − i[λ′, Aµ]− i[λ,A′µ]

= −1
2

θαβ(∂αλ∂βAµ + ∂βAµ∂αλ). (9)

One solution of this equation is given by [10],

Âµ(A) = Aµ + A′µ(A)

= Aµ − 1
4

θαβ {Aα, ∂βAµ + Fβµ}+O(θ2), (10)

λ̂(λ, A) = λ + λ′(λ, A)

= λ +
1
4

θαβ {∂αλ,Aβ}+O(θ2), (11)

from which it turns out that,

F̂µν = Fµν +
1
4
θαβ (2 {Fµα, Fνβ}

−{Aα, (Dβ + ∂β)Fµν}) +O(θ2). (12)

These Eqs. (10), (11), (12) are the explicit form of the
Seiberg-Witten map, which in this way can be constructed
for any Lie algebra of transformations [11].

4. The noncommutative model

As previously mentioned, our purpose is the construction of a
noncommutative version of the 6-dimensionalSU(3) gauge
theory presented in Sec. 2.

The noncommutative action is given by:

ŜNC = −1
2
Tr

∫
d6xF̂mnF̂mn, (13)

where

F̂mn = Fmn +
1
4
θkl (2 {Fmk, Fnl}

−{Ak, (Dl + ∂l)Fmn}) +O(θ2). (14)

Here the indexesm,n, k and l take the values0, . . . , 3, z
and z. Thus the noncommutative parameterθkl can be:
θµν (noncommutativity among the 4-dimensional space-time
coordinates),θµz, θµz (noncommutativity among the 4-
dimensional space-time coordinates and the extra dimensions
coordinates) andθzz (noncommutativity between the extra
dimensions). After somewhat cumbersome computations, we
obtain the following expression for these corrections in terms
of theSU(2) andU(1) field strengthsWµν andBµν respec-
tively, the corresponding gauge fieldsWµ andBµ and the
Higgs fieldφ,

L̂NC =− 1
2
TrWµνWµν − 1

4
BµνBµν + (Dµφ)† (Dµφ)− g2

2
|φ|4

− 1
4
θαβ

{
1

2
√

3
Tr

[
4{Wµα, Bνβ}Wµν + 2{Wµα,Wνβ}BµνI − {Wα, DβWµν}BµνI − {Bα, DβWµν}Wµν

]

+
1

2
√

3
Bα∂βBµνBµν − 1

2
√

3
BµαBνβBµν + 2(Dµφ)†

(
Wµα − 1

2
√

3
BµαI

)
(Dβφ) + H.c.

+ (Dµφ)†
(
Wα − 1

2
√

3
BαI

)(−→
∂ β +

−→
Dβ

)
(Dµφ) + (Dµφ)†

(←−
∂ β +

←−
Dβ

)(
Wα − 1

2
√

3
BαI

)
(Dµφ)

+ ig
[
φ†(Dαφ)(Dβφ)†φ− (Dβφ)†(Dαφ)φ†φ

]
− ig3φ†φφ†WβWαφ− g2

[
φ†

(
Wα +

1
2
√

3
BαI

)
∂β(φφ†)φ

− 2√
3
Bα∂β(φφ†)φ†φ + φ†∂β(φφ†)

(
Wα +

1
2
√

3
BαI

)
φ
]}

+
i

2
θzz

{
− 2i(Dµφ)†

(
Wµν +

1√
3
BµνI

)
(Dνφ) +

g

2

[
φ†φ(Dµφ)†(Dµφ)− (Dµφ)†φφ†(Dµφ)

]

− g φ†
(
WµνWµν +

1√
3
WµνBµν − 1

4
BµνBµν

)
φ

}
. (15)

In this equation there are new interactions with respect to the
ones found in the 4D noncommutative formulations of the
SM [12, 16], for instance the interactions between the weak
gauge fields and the electromagnetic field which appear in the
first terms that multiply the four-dimensional noncommu-

tativity parameterθαβ . Of particular interest are the correc-
tions corresponding to noncommutativity between the extra
dimensions,i.e. the terms multiplied byθzz, given by in-
teractions among the Higgs and the gauge bosons, and also
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higher order Higgs self-interactions. Considering only these
sort of corrections, we have,

L̂NC = −1
2
TrWµνWµν − 1

4
BµνBµν + (Dµφ)† (Dµφ)

− g2

2
|φ|4 +

i

2
θzz

{
− 2i (Dµφ)†

(
Wµν +

1√
3
BµνI

)

× (Dνφ) +
g

2
[
φ†φ (Dµφ)† (Dµφ)

− (Dµφ)† φφ†(Dµφ)
]

−gφ†
(
WµνWµν+

1√
3
WµνBµν−1

4
BµνBµν

)
φ

}
. (16)

The noncommutative corrections in this Lagrangian are
dimension-six operators, well known from the electroweak
effective Lagrangian technique [17], a scheme in which the
effects of these terms can be studied in a model-independent
manner.

5. Conclusions

In this work we explore the consequences of noncommutativ-
ity in a 6-dimensional model, by means of the Seiberg-Witten
map. We consider theSU(3) gauge Higgs unification model
of the electroweak interactions of Refs. 14 and 9, compacti-
fied to 4D on an orbifoldT 2/ZN for N = 3, 4, 6. We analyze
noncommutativity among all the 6-dimensional coordinates.
As a consequence of the orbifold symmetries, it turns out that
there are no corrections to the model due to noncommutativ-
ity among the 4D coordinates and the two-extra dimensions.
We find that the corrections we obtain, in particular those cor-
responding to noncommutativity among the 4D coordinates,

differ from the ones of noncommutative models calculated di-
rectly in 4D, also by means of the Seiberg-Witten map [12],
for instance interactions between the weak gauge fields and
the electromagnetic field which appear in the first terms that
multiply the four-dimensional noncommutativity parameter
θαβ in Eq. (15).

As well as in the commutative model, the spontaneous
symmetry breaking should arise dynamically, from first order
quantum corrections. Thus it would be interesting to include
matter and to study the corresponding noncommutative cor-
rections, which could be done following [11], progress in this
direction will be reported elsewhere.

As mentioned in the introduction, the model we are con-
sidering here has a too high value for the weak angle. How-
ever, accordingly with Ref. 9, it can be extended in such a
way that it correctly reproduces the standard model data at
low energies. Thus we can expect that in a noncommuta-
tive version of this extended model, the kind of corrections
presented here will still be present, in particular those cor-
responding to noncommutativity between extra dimensions.
Finally, from the results of the particular noncommutative
model we started with, which could be interesting on its own,
we can conclude that noncommutativity in higher dimen-
sional models can have interesting consequences and phe-
nomenological effects beyond those of four dimensional non-
commutative theories. The study of the phenomenological
consequences and more realistic models, including matter
fields, is in progress.
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