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Extra-dimensional noncommutative field theory model
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The influence of higher dimensions in noncommutative field theories is considered. For this purpose, we analyze the bosonic sector of
a recently proposed 6 dimensional SU(3) orbifold model for the electroweak interactions. The corresponding honcommutative theory is
constructed by means of the Seiberg-Witten map in 6D. We find in the reduced bosonic interactions in 4D theory, couplings which are new
with respect to other known 4D noncommutative formulations of the Standard Model using the Seiberg-Witten map.

Keywords:non-commutativity; extra dimensions.

Se considera el efecto de la presencia de dimensiones extra en fas @®icampo no conmutativas. Para este gsitp, se analiza el
sector boénico del recientemente propuesto modelo de orbifoldio SU(3) para las interacciones etbids-d_a teda no conmuntativa
correspondiente se contruye utilizando el mapa de Seiberg-Witten en 6D. Encontramos en las interacéinites beducidas en la téar
de 4D acoplamientos que son nuevos con respecto a otras formulaciones no conmutativas conocidas en 4D debmdaietpiesttilizan
el mapa de Seiberg-Witten.

Descriptores:No conmutatividad; dimensiones extra.

PACS: 11.10.Nx; 12.10.-g; 12.60.-i

1. Introduction ticular, the Seiberg-Witten construction [10] and its general-
ization for any gauge group [11] have been studied. This con-
Struction allows to express the noncommutative gauge fields
é'n terms of the usual ones and their derivatives, maintaining
e same degrees of freedom. It has been extended for non-

Arenewed interest in theories in 6D has recently emerged [1
An anomaly free gauged supergravitylih= 6, the Salam-
Sezgin model [2], has been considered. This model i

compactified on a 2-sphere and in four dimensions gives . : . :
commutative matter fields, which also can be generated in

SU(2) x U(1) gauge theory [3]. In particular, it has been . . .
argued that these theories with 3-Branes could point out tof[-ermS of the commutative matter fields and gauge fields of

wards solving the cosmological constant problem [4]. Also interest [11]. By this procedure, noncommutative versions of

in Ref. 5itis shown that chaotic inflation consistent with con—th?_ standatrd rr]nodetl) and c_onsegu?ntll)zl the el?ctrcl:)zw?af;ntzr-
straints coming from the amplitude of the cosmic microwaye?¢tion sectornave e(_a'nt glvet!n el (Siﬁ af;cl)d € f h )-th S
anisotropies can be naturally realized. a consequence, new interactions among the fields of the the-

In the search for a unified theory of elementary particles,Ory are predicted. In this work, we will investigate the non-

the incorporation of the Higgs field in the standard moolelcommutatlve generalization of the bosonic sector of Gauge

(SM) of electroweak interactions has motivated various pro—nggs unification models in 6D based on the/(3) gauge

o 5 . ]
posals in 6D [6]. These are 6D pure gauge theories, in whicouP compactified off”"/Z [9]. The noncommutative ex

. ) . . . .___tension is obtained by means of the Seiberg-Witten map. We
after dimensional reduction the Higgs field naturally arises. : 2

S calculate, for the bosonic sector, the resulting first order cor-
Recently new proposals have been made, considering O"%&ctions and compare them with the results obtained in other
ifold compactifications; in Ref. 7, &(3) x U(3) model was P

considered. In these works the mass term of the Higgs pov_vorks.

tential is generated radiatively, with a finite value without the
need of supersymmetry. FurtherS&/(3) model was devel- 2. The 6-Dimensional Model
oped in Refs. 8 and 9 with one Higgs doublet and a predicted
W-boson mass. In this case the weak angle has a nonrealiset us consider a Yang-Mills theory in 6-dimensional space-
tic value, although it can be improved by an extended gaugéme with aSU(3) gauge group, the Lagrangian of the theory
group as in Ref. 7 or by the introduction of &i{1) factoras s
done in Ref. 8. r— 7}Tranan
Noncommutativity in field theories has been the subject 2 ’
of an important number of works in the last few years. In par-the field strength tensor is defined by
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where6*” = —@"# are real numbers. The Weyl-Wigner-
Frp = OmAn — OnAp — ig6[Am, Anl, Moyal correspondence establishes an equivalence between
and g is the coupling constant in 6D. This action is inter- the Heisenberg algebra of the operatotsand the function
preted by a dimensional reduction on an orbifé®l/Z for algebra inR™. It has an associative and noncommutative star

N = 3, 4,6 [9]. The result of this reduction is given by product, the Moyak-product, given by,
1 ) ‘
L=—_-TvF,, F*"+2TrD,A; D" A, —¢°Tr [A., As]°, (1 i 0 .5 0
3 D, PIUSAT @ ) g = (o (550 07 s ) @0t

y—x

whereg = g¢\/V is the gauge coupling of the 4-dimensional

zl;fgctlve theoryV is the volume of the two extra dimensions ~ _ f(2)g(z)+ 5 080, f (2) 959 (z) + O(62). (5)
Fuy = 0, A, — 0, A — ig[Ay, A, Since we will work with a non-Abelian gauge group, our
DA,z =0,A,z—ig[A,, Asz] = Fl.z. (2)  functions are matrix valued, and the corresponding matrix

Moyal product is denoted by an Therefore, a theory on
The orbifold reduction [9] for the gauge fields,, leads to  the noncommutative space of tfids equivalent to a theory
the 4-dimensional,, and the two complex components of of ysual fields, where the function product is substituted by
the scalar boson doublet (Higgs), which are contained in thghe Moyal« product. This suggests that any theory can be

A, and Az gauge fields, converted into a noncommutative one by replacing the ordi-
A W, 0 1 B,I 0 nary function product with the product.
“_< 0 0>+2\/§< 0 —2Bu>’
_ 1 /0 ¢ 3.2. The Seiberg-Witten Map
z \/§ 0 O ’
1 0 0 For an ordinary Yang-Mills theory, the gauge field and the
Az = — ( t ) strength field tensor transformations can be written as:
v2\oe" 0
Substituting these expressions in the Lagrangian (1) we find OnAy, = BN+ iAA, — A\
1 ) 1 )
L= —STE, (W)FY (W) = 2 Fu (B)F™(B) O\Fpy = iAFyy, — iF A\ (6)
t
+(Dpg) (D"¢) =V (9), (3) For the noncommutative gauge theory, we use the same equa-
where tions (6) except that the matrix multiplications are replaced
1 1 by thex product. Then the gauge field and the strength field
D,¢ = <3;L - §igW§Ta — 5igtan GWBM> o, tensor transformations are [10]:
2 ~ o~ ~ o~ o~ o~ o~
tanfy = V3 and V(¢):%|¢|4. O3 Ay = 0N +idx Ay —iA, x A,
Thus this Lagrangian has $0/(2) x U(1) invariance with O3 Fpuw = A By — iF % A, 7

a scalar massless doublet with a quartic potential. However,

as show in Ref. 14, quantum fluctuations induce correction§om which the original Yang-Mills theory (6) results in the
to the potential’ (¢) which can trigger radiative symmetry limit & — 0. As shown by Kontsevich [15], at the level of
breaking. The leading terms in the one-loop effective potenthe physical degrees of freedom there is a one to one relation

tial for the Higgs are, between the commutative and the noncommutative theories.
v 216 4\ ol Nevertheless both theories are quite different, as noncommu-
eft (¢) = —p” [0 + Algl" tativity generates new couplings. An infinitesimal commuta-
Assumingu? > 0, so that electroweak symmetry breaking tive gauge transformation 4,, = 9, A +iAA, —iA, A, will
can occur, we have thalp|) = v/v/2 with v = u/v/. induce the noncommutative one,
3. Noncommutative Gauge Theories Au(A+03A) = Au(A) + 554, (A). ®)
3.1. Noncommutative space-time This is the so called Seiberg-Witten map.

__ The solution to (8) can be obtained by setting
Ay = Ay + AL (A) andX = A + N(A, A), where A, and

A" are local functions ok and A4, of first order inf. Then
[@*,z"] = 6", (4)  substituting in (8) and expanding to first order,

Noncommutative space-time incorporates coordinatés
given by operators that satisfy the following relations,
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4. The noncommutative model

AL(A +63A) — AL(A) — AN — N AL — [, A;] As previously mentioned, our purpose is the construction of a
] noncommutative version of the 6-dimensiowdr (3) gauge
=3 eaﬁ(aa)\aBAM + 0 A,0aN). 9) theory presented in Sec. 2.

The noncommutative action is given by:
One solution of this equation is given by [10], R 1 o
~ Sye = —=Tr / d®zF,,, F™", (13)
Au(A) = Ay + AL (A) 2
1 ) where
= A -7 0P {Aa,0sA, + Fg,} + O(6%),  (10) ~ )
~ an = an + 79kl (2 {Frnka Frbl}
AN A) =X+ N (N A) 4
— {4k, (D1 + &) Fun}) + O(6%). (14)

— At g {0a), Ag} + 0(67), (11)
4 Here the indexesn,n,k and! take the value9),... 3,z
from which it turns out that, andz. Thus the noncommutative paramet#f can be:
0¥ (noncommutativity among the 4-dimensional space-time
ﬁW = F, + lgaﬁ (2{F.a, F,3} coordinates),##*, 6#* (noncommutativity among the 4-
4 dimensional space-time coordinates and the extra dimensions
—{Aa, (Dg +03) Fu}) + 0(6%). (12)  coordinates) and** (noncommutativity between the extra

dimensions). After somewhat cumbersome computations, we
These Egs. (10), (11), (12) are the explicit form of theobtain the following expression for these corrections in terms
Seiberg-Witten map, which in this way can be constructedf the SU(2) andU (1) field strengthdV#* and B*” respec-
for any Lie algebra of transformations [11]. tively, the corresponding gauge fieléfs* and B* and the
| Higgs fieldg,

. 1 1 2
Enc == 5T Wu W = 2B B* + (D) (D*9) — L o]’

1 1
- ﬁw{ 575 [ B} WP 42 W, Wi} BT — {Woy, DWos} B~ { B, Ds Wi JWH
1

1
Bals By B ~ ~—=BuaBupB" + 2D"6)! (Wya = —=Bual ) (Do) + Hec,

2V/3 2V/3
Baf) (5)ﬁ + ﬁﬁ) (Du(b) + (D“¢)T (g,@ + i_),g) (Wa —

1
Jri
23

(Do) (W — -

1
2V3 2V3

+i9[01(Da)(Ds) 0 = (D) (Da0)oa] — ig®6" 66 WaWois — g2 [ (Wa + 5= BuT)0s(001)0

Bol)(D,0)

2 1
= T5Ba03(6616'6 + 6195(09") (Wa + = Bal )6 }

+ ;e{ —2i(D,) (W™ + %sz) (Du6) + £ [616(Due) ! (D"6) — (D) 60! (D"6)]

1

ool (e + L

1
W, B — 4BWBW)¢}. (15)

In this equation there are new interactions with respect to the
ones found in the 4D noncommutative formulations of theltativity parametes®’. Of particular interest are the correc-
SM [12, 16], for instance the interactions between the wealfions corresponding to noncommutativity between the extra
gaugeflelds and the falectromagnetl_c fleld_whlch appea””th&imensions,i.e. the terms multiplied by**, given by in-

first terms that multiply the four-dimensional noncommu- ioractions among the Higgs and the gauge bosons, and also
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higher order Higgs self-interactions. Considering only thesaliffer from the ones of noncommutative models calculated di-
sort of corrections, we have, rectly in 4D, also by means of the Seiberg-Witten map [12],
R 1 1 for instance interaptiqns bet\_/veen the weak gauge fields and
Lyno = —5Te W, W — 2B, B + (Dug)' (D"0) the electromagnetic field which appear in the first terms that
multiply the four-dimensional honcommutativity parameter
92 4 i . NV T 6% in Eq. (15).
=5 1ol 4+ 507 — 2i(Dud) (W + ﬁB I) As well as in the commutative model, the spontaneous
symmetry breaking should arise dynamically, from first order
x (D, ) + 9 [¢T¢(Dﬂ¢)f (D*¢) guantum corrections. Thus it would .be interesting to ipclude
2 matter and to study the corresponding noncommutative cor-
_ (D;Ab)T ¢¢T(Du¢)] rections, which could be done following [11], progress in this
direction will be reported elsewhere.
1W,WB“”1BWB“")¢}. (16) ' As mentioned in the mtroduchon, the model we are con-
V3 4 sidering here has a too high value for the weak angle. How-
ever, accordingly with Ref. 9, it can be extended in such a
The noncommutative corrections in this Lagrangian arewvay that it correctly reproduces the standard model data at
dimension-six operators, well known from the electroweaklow energies. Thus we can expect that in a noncommuta-
effective Lagrangian technique [17], a scheme in which theaive version of this extended model, the kind of corrections
effects of these terms can be studied in a model-independeptesented here will still be present, in particular those cor-
manner. responding to noncommutativity between extra dimensions.
Finally, from the results of the particular noncommutative
model we started with, which could be interesting on its own,
we can conclude that noncommutativity in higher dimen-

In this work we explore the consequences of noncommutativsional models can have interesting consequences and phe-
ity in a 6-dimensional model, by means of the Seiberg-Witter’omenological effects beyond those of four dimensional non-
map. We consider théT/(3) gauge Higgs unification model commutative theories. The st_ud_y of the phgnom(_anologlcal
of the electroweak interactions of Refs. 14 and 9, compacticonsequences and more realistic models, including matter
fied to 4D on an orbifold™2/Zy for N = 3,4,6. We analyze ~fields, is in progress.

noncommutativity among all the 6-dimensional coordinates.

As a consequence of the orbifold symmetries, it turns out thacknowledgments
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