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Inflation scenario from canonical quantum cosmology
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Using the canonical quantization for the flat FRW cosmological model with scalar fieldφ and scalar potentialV(φ), we obtain a differential
equation for this potential. Also we present the quantum solution for this model, and under the WKB approximation to get the semiclassical
formulation, we give a family of potentials. Finally, the classical evolution of the system is given in the inflation scenary.
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Usando la cuantización cańonica para el modelo cosmológico del FRW plano, con campo escalarφ y potencial escalarV(φ), obtenemos una
ecuacíon diferencial paráeste potencial. También presentamos la solución cúantica para este modelo, y bajo la aproximación semi-cĺasica
WKB, damos una familia de potenciales. Finalmente, la evolución cĺasica del sistema es dada en el escenario de inflación.
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1. Introduction

It is a common issue in Cosmology nowadays to make use of
scalar fieldsφ as the responsible agents of some of the most
intriguing aspects of our universe. Just to mention a few, we
find that scalar fields are used as the inflaton, which seeds
the primordial perturbations for structure formation during
an early inflationary epoch; as the cold dark matter candi-
date responsible for the formation of the actual cosmologi-
cal structure, and as the dark energy component which seems
to be driving the current accelerated expansion of the uni-
verse [1–16].

The key feature for such flexibility of the concept of
scalar fields (spin-0 bosons) is the freedom one has to pro-
pose ascalar potentialV (φ), which encodes in itself the (non
gravitational) self-interactions among the scalar particles.
The literature on scalar potentials is enourmosly vast, and
most of the recent papers are aimed to explain the SnIa results
that suggest the existence of dark energy [1–3,5,12–14,17].

Recently, scalar fields coupled to gravity (in an FRW
background) have also appeared in connection to the so called
string theory landscape [18–20], where the scalar potential
V(φ) is usually thought as having many valleys, which repre-
sent the different vacua solutions. The hope is that the statis-
tics of these vacua could explain, for example, the smallness
the cosmological constant (the simplest candidate for dark
energy).

Scalar fields also appear in the study of tachyon dynam-
ics. For instance, in the unstable D-brane scenario, the scalar
potential in the tachyon effective action around the minimum
of the potential is of the formV(φ) = e−αφ/2 [21, 22]. Cur-
rently, there has been a lot of interest in the study of tachyon
driven cosmology [23, 24].On the other hand, scalar fields
have also been used within the so called (canonical) Quan-

tum Cosmology (QC) formalism, which deals with a very
early quantum epoch of the cosmos. Again, scalar fields act
as matter sources, and then play an important role in deter-
mining the evolution of such an early universe.

Quantum cosmology means the quantization of minisu-
perspace models, in which the gravitational and matter vari-
ables have been reduced to a finite number of degrees of free-
dom. These models were extensively studied by means of
Hamiltonian methods in the 1970s (for reviews see Refs. 25
and 26). It was first remarked by Kodama [27, 28], that
solutions to the Wheeler-DeWitt equation (WDW) in the
formulation of Arnowitt, Deser and Misner (ADM) and
Ashtekar (in the connection representation) are related by
ΨADM = ΨAe±iΦA , where ΦAis the homogeneous spe-
cialization of the generating functional [29] of the canonical
transformation from the ADM variables to Ashtekar’s. This
function was calculated explicitly for the diagonal Bianchi
type IX model by Kodama, who also foundΨA = constant
as solution. SinceΦA is pure imaginary, for a certain factor
ordering, one expects a solution of the formΨ = We±Φ.

Our aim in this paper is to determine which scalar po-
tentials can arise as exact solutions to the WDW equation of
QC, as well as which can be valid at the semiclassical level.
For this we will use some of the ideas presented in the pre-
vious paragraphs to find the WDW equation and find exact
solutions to the quantum cosmological model. Though there
are many solutions in principle, we will focus only on the
relevant solutions for the early universe.

2. Obtaining the potentials and the quantum
model I

We begin by writing down the line element for a homo-
geneous and isotropic universe, the so called Friedmann-
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Robertson-Walker (FRW) metric, for the flat case

ds2 = −N2(t)dt2 + e2α(t)
[
dr2 + r2dΩ2

]
, (1)

wherea(t) = eα is the scale factor,N(t) is the lapse func-
tion. The effective action we are going to work oni

Stot=Sg+Sφ=
∫

dx4√−g

[
R−2Λ− φ̇2

2
+V(φ)

]
, (2)

where φ is a scalar field endowed with a scalar potential
V(φ), andΛ is a cosmological constantii. The Lagrangian
become

L = e3α

[
3
α̇2

N
− φ̇2

2N
+ N (V − 2Λ)

]
, (3)

and then the canonical momenta are found to be

Πα =
∂L
∂α̇

= 6e3α α̇

N
, α̇ =

NΠα

6
e−3α ,

Πφ =
∂L
∂φ̇

= −e3α φ̇

N
, φ̇ = −Ne−3αΠφ . (4)

We are now in position to write the corresponding Hamilto-
nian

H = e−3α

[
1
12

Π2
α −

1
2
Π2

φ − e6αV(φ, Λ)
]

, (5)

where we have writtenV(φ, Λ) = V(φ)− 2Λ.
The WDW equation for this model is achieved by replac-

ing Πqµ by−i∂qµ in Eq. (5); hereqµ = (a, φ)

H = e−3α

[
− 1

12
∂2

∂α2
+

1
2

∂2

∂φ2
− e6αV(φ, Λ)

]
= 0 . (6)

Following the suggestion by Hartle and Hawking [30] we
do asemi-general factor ordering, so that we can factor order
e−3α with Πα, with this in mind we use

−e−(3−Q)α ∂αe−Qα∂α = −e−3α ∂2
α + Qe−3α∂α , (7)

whereQ is any real constant. With this factor ordering the
WDW reads

¤ Ψ + Q
∂Ψ
∂α

− e6αV(φ, Λ)Ψ = 0 , (8)

Ψ is called the wave function of the universe,

¤ ≡ − 1
12

∂2

∂α2
+

1
2

∂2

∂φ2

is a (modified) two dimensional d’Alambertian operator in
theqµ coordinates. Taking the following ansatz for the wave
function [31,32]

Ψ(qµ) = W(qµ)e−S(qµ), (9)

whereS(qµ) is known as thesuperpotential function, Eq. (8)
is transformed into

¤ W −W¤S − 2∇W · ∇S + Q
∂W
∂α

−QW
∂S
∂α

+ W[(∇S)2 −U] = 0, (10)

with

∇W · ∇ S ≡ − 1
12

(∂αW ) (∂αS) +
1
2

(∂φW ) (∂φS) ,

(∇)2 ≡ − 1
12

(∂α)2 +
1
2

(∂φ)2 ,

andU(φ, Λ) = e6αV(φ, Λ).
Equation (10) can be easily solved if splitted in the fol-

lowing equations,

(∇S)2 −U = 0, (11)

W
(

¤ S +
Q
12

∂S
∂α

)
+ 2∇W · ∇ S = 0, (12)

¤ W +
Q
12

∂W
∂α

= 0. (13)

We will choose to solve Eqs. (11) and (12), and these
solutions have to comply with Eq. (13), which will be our
constraintequation.

Our next step is to find exact solutions of the WDW equa-
tion and determine the corresponding potential termV(φ, Λ).
For this, let us start with Eq. (11), which is an equation for
the superpotential function only. IfS(qµ) = f(α)g(φ), then

− 1
12f2

(
df
dα

)2

+
1

2g2

(
dg
dφ

)2

= e6α V(φ, Λ)
f2g2

. (14)

For simplicity, we assume thatf(α) = e3α/µ, with µ an arbi-
trary constant. Hence, Eq. (14) becomes a differential equa-
tion for g(φ) in terms of the scalar potential as

1
2

(
dg
dφ

)2

− 3
4
g2 = µ2V(φ, Λ) . (15)

This last equation has several exact solutions, which can
be generated in the following way. Let us consider that
V(φ, Λ) = g2F(g), whereF(g) is an arbitrary function of
its argument. Thus, eq. (15) can be in quadratures as

∆φ = ± 1√
2

∫
d ln g√

3
4 + µ2F(g)

. (16)

This last equation can be solved forg as a function ofφ, and
from it we can find the corresponding scalar potential of the
model. Some solutions for the scalar potential are shown in
Table I.

It turns out that, for this particular solution, Eqs. (12)
and (13) become linear differential equations forW, whose
solution can be given in the form

W(α, φ) = eu(α)+v(φ) (17)
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TABLE I. Some exact solutions of Eq. (16). Here,n is any real
number. There is indeed a solution of Eq. (16) forF(g) = (ln g)n

in terms of the hypergeometric functions. However, the form of the
scalar potential in this case cannot be given in closed form.

F(g) V(φ, Λ)

V0 V0 exp (−λ∆φ) ; 2
√

2λ =
√

3
4

+ µ2V0

g−n, n 6= 2
{

(4µ2/3)
[
cosh2

(√
6n
4

∆φ
)
− 1

]}(2−n)/n

ln g u(φ)e2u(φ) , u = (µ∆φ/2)2 − 3
4µ2

(ln g)2 u2e2u , u =
√

3
4µ2 sinh

(
µ
√

2∆φ
)

after a bit of algebra, we obtain

W(α, φ) = exp
[
k

(
2α +

∫
dφ

∂φ(lng)

)]

× exp
[
Q
2

α− µ2

2

∫
d[V(φ, Λ)]

(∂φg)2

]
, (18)

where k is an arbitrary constant. One only needs to verify un-
der which conditions solutions in Eqs. (15) and (18) comply
with the constraint equation (13), which takes the following
form

∂2
φv + (∂φv)2 − 16k2 −Q2

24
= 0

∂φv − k
∂φ(lng)

+
µ2

2
∂φ[V(φ, Λ)]

(∂φg)2
= 0, (19)

It is interesting to note that the functions S and W can be eas-
ily generated once a particularg(φ) is found from Eq. (19).

3. The quantum model II

Using the potentialV(φ) = V0e−λφ and Making the follow-
ing transformation between the coordinates

x = −6α + λφ, y = −α +
1
λ

φ, (20)

the resulting WDW equation (8) is

∂2Ψ
∂x2

− 1
12λ2

∂2Ψ
∂y2

− 2V0

λ2 − 6
e−xΨ = 0 (21)

and by separation variables, andΨ=X(x)Y(ỹ) with
ỹ = 12λy, we obtain the set of differential equation for the
functions X and Y

d2X
dx2

+
((η

2

)2

− βe−x

)
X = 0,

d2Y
dỹ2

+
(η

2

)2

Y = 0, (22)

whereβ = 2V0/(λ2 − 6) andη is a separation constant. The
solutions for these equations are given in term of complex
order Bessel functions

X(x) = I±iη

(
±2

√
βe−x/2

)
+ K±iη

(
±2

√
βe−x/2

)

Y(y) = A0ei6ηλy + A1e−i6ηλy, (23)

for |λ| < √
6, and for other values ofλ,

X(x) = Jiη

(
±2

√
βe−x/2

)
+ J−iη

(
±2

√
βe−x/2

)

Y(y) = A0ei6ηλy + A1e−i6ηλy, (24)

with I±iη andK±iη are modified Bessel Functions. In this
way, the wave function is written as

Ψ(x, y) =
[
I±iη

(
±2

√
βe−x/2

)
+ K±iη

(
±2

√
βe−x/2

)]

× [
A0ei6ηλy + A1e−i6ηλy

]
for |λ| <

√
6

Ψ(x, y) =
[
Jiη

(
±2

√
βe−x/2

)
+ J−iη

(
±2

√
βe−x/2

)]

× [
A0ei6ηλy + A1e−i6ηλy

]
for |λ| >

√
6. (25)

To extract a normalazible wave function we need to construct
wave packets (see for example Ref. 34 and 35) to form a
Gaussian state.

4. Semiclassical approximation

We shall make use of a semiclassical approximation to ex-
tract the dynamics of the WDW equation. Such approxima-
tion hides the problem of time, and thus the dynamical evo-
lution of the minisuperspace variable can be obtained, and
checked against the solutions of classical General Relativity.
The semiclassical limit of the WDW equation is achieved by
taking

Ψ(α, φ) = e−S (26)

and imposing the usual conditions on the superpotential func-
tion S, namely

(
∂S
∂a

)2

À
∣∣∣∣
∂2S
∂a2

∣∣∣∣ ,

(
∂S
∂φ

)2

À
∣∣∣∣
∂2S
∂φ2

∣∣∣∣ . (27)

Hence, the WDW equation, under a particular factor order-
ing (Q = 0), becomes exactly the aforementioned EHJ equa-
tion (11) (this approximation is equivalent to a zero quantum
potential in the Bohmian interpretation of quantum cosmol-
ogy) [33]. This same equation is recovered directly, when we
introduce the transformation on the canonical momentas

Πqµ → ∂S
∂qµ

, (28)

in Eq. (6), with particular factor ordering andH = 0. Using
the same procedure used in the quantum case, we get again
Eq. (15).
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In this way, we get the classical behavior solving the re-
lations between (28) and eqs. (4,4).

For example, an exponential scalar field potential
V(φ) = e−λφ, the exact solution of the WDW equation reads

Ψ = exp
[
2k

(
α− φ

λ

)]

× exp
[
Q
2

α +
2µ2V0

λ
φ− 1

µ
e3α−λ

2 φ

]
, (29)

k = −3
4

[
1± λ

2
√

2

√
4
3

+
Q2

9µ2V0

]
, (30)

where the last equation is the solution to the constraint equa-
tion (13) and the classical trayectories are given by

α− φ

λ
= const., (31)

φ(τ) =
2
λ

ln
(

λ2

4µ
∆τ

)
, (32)

a(τ) =
(

λ2

4µ
∆τ

)2/λ2

, (33)

using (33), for obtain an increasing behaviour in the scale
factor, i.e., an inflationary solution is achieved ifλ <

√
2

(power law), which is the well known inflationary attractor
solution of an exponential potential [1, 2]. However, there
exist the following constraint for the existence of the classi-
cal solution (31),λ ≤ √

6, see Ref. 2. Such a restriction
does not appear explicitly in the QC formalism, but we can
to show that forλ =

√
6, we recover exactly the free case,

whenV(φ, Λ) = 0 andQ = 0. Recall that the latter is ex-
actly the extreme case of stiff matter, because the scale factor
of the universe evolves asa(τ) ∼ τ1/3.
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i. This action appear sin connection to the string theory land-
scape, see for example arXiv:hep-th/0311111 and arXiv:hep-
th/0410213.

ii. We are taking units such that c=G=1.

1. B. Ratra and P.J.E. Peebles,Phys. Rev. D37 (1988) 3406.

2. L.P. Chimento and A.S. Jakubi,Int. J. Mod. Phys. D5 (1996)
71, gr-qc/9506015.

3. E.J. Copeland, A.R. Liddle, and D. Wands,Phys. Rev. D57
(1998) 4686, gr-qc/9711068.

4. D. Lyth and A. Liddle,Cosmological Inflation and Large Scale
Structure(Cambridge University Press, 2000).

5. V. Sahni and L. Wang,Phys. Rev. D62 (2000) 103517.
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