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Inflation scenario from canonical quantum cosmology
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Using the canonical quantization for the flat FRW cosmological model with scalarfiatdl scalar potentidl (¢), we obtain a differential
equation for this potential. Also we present the quantum solution for this model, and under the WKB approximation to get the semiclassical
formulation, we give a family of potentials. Finally, the classical evolution of the system is given in the inflation scenary.
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Usando la cuantizagn cardnica para el modelo cosn@glico del FRW plano, con campo escaley potencial escalay (¢), obtenemos una
ecuacbn diferencial par&ste potencial. Taméh presentamos la sol@ci cltantica para este modelo, y bajo la aproxindbacsemi-chsica
WKB, damos una familia de potenciales. Finalmente, la evotuclasica del sistema es dada en el escenario de inflaci
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1. Introduction tum Cosmology (QC) formalism, which deals with a very
early quantum epoch of the cosmos. Again, scalar fields act
Itis a common issue in Cosmology nowadays to make use afs matter sources, and then play an important role in deter-
scalar fieldsp as the responsible agents of some of the mosmining the evolution of such an early universe.
intriguing aspects of our universe. Just to mention a few, we Quantum cosmology means the quantization of minisu-
find that scalar fields are used as the inflaton, which seedserspace models, in which the gravitational and matter vari-
the primordial perturbations for structure formation duringables have been reduced to a finite number of degrees of free-
an early inflationary epoch; as the cold dark matter candidom. These models were extensively studied by means of
date responsible for the formation of the actual cosmologiHamiltonian methods in the 1970s (for reviews see Refs. 25
cal structure, and as the dark energy component which seemasid 26). It was first remarked by Kodama [27, 28], that
to be driving the current accelerated expansion of the unisolutions to the Wheeler-DeWitt equation (WDW) in the
verse [1-16]. formulation of Arnowitt, Deser and Misner (ADM) and
The key feature for such flexibility of the concept of Ashtekar (in the connection representation) are related by
scalar fields (spirt- bosons) is the freedom one has to pro-¥apm = ¥ae™®4, where & 4is the homogeneous spe-
pose ascalar potentiall’ (¢), which encodes in itself the (non cialization of the generating functional [29] of the canonical
gravitational) self-interactions among the scalar particlestransformation from the ADM variables to Ashtekar's. This
The literature on scalar potentials is enourmosly vast, anénction was calculated explicitly for the diagonal Bianchi
most of the recent papers are aimed to explain the Snla resufégPe IX model by Kodama, who also founidy = constant
that suggest the existence of dark energy [1-3,5, 12—14, 17]S solution. Sinc@, is pure imaginary, for a certain factor

Recently, scalar fields coupled to gravity (in an FRWorderlng,_ong expects asollutlon of the _foxIm: Weﬂ'
background) have also appeared in connection to the so called OUr @m in this paper is to determine which scalar po-
string theory landscape [18-20], where the scalar potentidENtials can arise as exact solutions to the WDW equation of
V(4) is usually thought as having many valleys, which repre-QC' as well as which can be vallq at the sem|c|as_5|ca| level.
sent the different vacua solutions. The hope is that the statid-0" this we will use some of the ideas presented in the pre-

tics of these vacua could explain, for example, the smallnes$CUS Paragraphs to find the WDW equation and find exact

the cosmological constant (the simplest candidate for darﬁomt'Ons to the'quan.tum.co.smolog|calimodel. Though there
energy). are many solutions in principle, we will focus only on the

. . relevant solutions for the early universe.
Scalar fields also appear in the study of tachyon dynam- y

ics. For instance, in the unstable D-brane scenario, the scalar

potential in the tachyon effective action around the minimum2.  Obtaining the potentials and the quantum

of the potential is of the fornv(¢) = e~*¢/2[21,22]. Cur- model |

rently, there has been a lot of interest in the study of tachyon

driven cosmology [23, 24].0n the other hand, scalar fielddMe begin by writing down the line element for a homo-
have also been used within the so called (canonical) Quargeneous and isotropic universe, the so called Friedmann-
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Robertson-Walker (FRW) metric, for the flat case whereS(g*) is known as thesuperpotential functiorgg. (8)
is transformed into
2 2 2 2a(t) 2 2 102 A 95
ds® = —N*(t)dt* + e [dr® + r?dQ?] | (1) OwW-wgds - 2VW-VS+Q8—Q—QW8—Q
wherea(t) = e is the scale factorV (¢) is the lapse func- + W[(VS)? - U] =0, (10)
tion. The effective action we are going to work‘on h
wit
12
1 1
Stot=Sg+S¢=/dX“\/—g R-2A--+V(¢)|, (2 VW-VS = =2 (0aW) (0a5) + 5 (95 W) (95) ,
1 1
where ¢ is a scalar field endowed with a scalar potential (V)* = T (0a)® + 3 (9s)°,
V(¢), andA is a cosmological constéht The Lagrangian
become andU(¢, A) = eV (g, A).
) Equation (10) can be easily solved if splitted in the fol-
<2 2 . .
T N _ lowing equations,
L=¢ 3N 2N+N(V 2M) |, 3)

(VS)2-U=0, (11)

and then the canonical momenta are found to be Q S
. W{iOS+ —=— | +2VW.-VS=0, (12)
0 = 9L _ gesal oo Mo s, 12 da
“ da N’ G ’ Q oW
. OW+ —-—=0. (13)
oL 30 9 : —3a 12 da
Iy = — = —e*—, ¢ =—Ne "Ily. 4) .
0¢ N We will choose to solve Egs. (11) and (12), and these

solutions have to comply with Eq. (13), which will be our

We are now in position to write the corresponding Hamilto- constraintequation,

nian Our next step is to find exact solutions of the WDW equa-
a0 | 1 1 o tion and determine the corresponding potential t®¥ifw, A).
H=e"’ [mﬂi - §H?¢ — e V(@A)} ’ (5) For this, let us start with Eq. (11), which is an e(;(uatio)n for
the superpotential function only. $(q*) = f(«)g(¢), then
where we have writteW (¢, A) = V(¢) — 2A. ) )
The WDW equation for this model is achieved by replac- 1 <df) RS (dg> _ 6aV(9,A) (14)
ing Iy« by —id,. in Eq. (5); hereg” = (a, @) 122 \ da 2¢2 \dop ) f2g2

1 H2 1 52 oo For simplicity, we assume théto) = 3/, with 1 an arbi-
12902 + 2942 e *V(¢, A)] =0. (6) trary constant. Hence, Eq. (14) becomes a differential equa-
tion for g(¢) in terms of the scalar potential as
Following the suggestion by Hartle and Hawking [30] we

H=e 3" [

2
do asemi-general factor orderingo that we can factor order 1/dg\™ 3,5 5
. DA = V(g A). (15)
e ™3 with I, with this in mind we use 2 \ d¢ 4
e (3-Qa g ~Qag _ _g=3a g2 —Bag 7 This last equation has several exact solutions, which can
¢ ¢ ¢ ot Qe Y be generated in the following way. Let us consider that
whereQ is any real constant. With this factor ordering the V(¢ A) = g°F(g), whereF(g) is an arbitrary function of
WDW reads its argument. Thus, eq. (15) can be in quadratures as
ov 1 dlng
004+ Q= —e%V(p, A)T =0, (8) Ap = if/%- (16)
Oa V2 4+ wF ()

U is called the wave function of the universe, . . .
This last equation can be solved #pas a function ofp, and

1 62 1 62 from it we can find the corresponding scalar potential of the
= T 12 9a2 + 55752 model. Some solutions for the scalar potential are shown in
Table I.

is a (modified) two dimensional d’Alambertian operator in |t turns out that, for this particular solution, Egs. (12)
theqff coordinates. Taking the following ansatz for the waveand (13) become linear differential equations Y&t whose
function [31,32] solution can be given in the form

U(q") = W(g")e 5@, 9) W(a, ¢) = et(@+v(9) (17)
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where = 2V, /(A\? — 6) andn is a separation constant. The
TABLE |. Some exact solutions of Eq. (16). Herejis any real  solutions for these equations are given in term of complex

number. There is indeed a solution of Eq. (16)fgg) = (Ing)” order Bessel functions
in terms of the hypergeometric functions. However, the form of the

scalar potential in this case cannot be given in closed form. X(x) = Ly (i2\/ﬁe_x/2) + K4y (:t2\/Be_x/2)
F(g) V(g,A) Y(y) = Agel®Y 4 A e~ 00, (23)
Vo Voexp (—AA¢);  2V2X = /2 + 112V for |\| < /6, and for other values of,
g n#£2 {(4,u2/3) [cosh2 <@A¢>> - 1} }(2—n)/n X(x) = Jiy (:EQ\/Be*X/Q) +J_iy (:l:2\/§€7x/2>
Ing u(@)e®™ @ u = (uAg/2)? — i Y(y) = Age®Y + Aje 01, (24)
) ) o with Ly, andK4;, are modified Bessel Functions. In this
(Ing) w’e”, u= /3% sinh (uv/2A¢) way, the wave function is written as
after a bit of algebra, we obtain U(x,y) = {Iiin (ig\/ge—x/z) + Koy (iQ\/Be_X/Qﬂ
W(a, ¢) = exp [ (Qa - / 3l lng )] x [Apel®™N 4 A1e7WY] or [A| < V6
¢
U(x,y) = {Ji,, (ﬂ\/ﬁe—x/?) I (:I:Q\/Be_x/z)}
Xexp{ a——/ }7 (18) ) _
3¢g x [Agel®™ 4 A1e N for [A| > V6. (25)

where Kk is an arbitrary constant. One only needs to verify un-
der which conditions solutions in Egs. (15) and (18) comply
with the constraint equation (13), which takes the following

To extract a normalazible wave function we need to construct
Ywave packets (see for example Ref. 34 and 35) to form a
Gaussian state.

form
2 ,  16k* —Q? iclassical , ,
D5V + (04v)* — o = 4. Semiclassical approximation
k 112 94V (6, A))] We shall make use of a semiclassical approximation to ex-
Opv — d(Ing) Y (052)? =0, (19)  tract the dynamics of the WDW equation. Such approxima-

tion hides the problem of time, and thus the dynamical evo-
Itis interesting to note that the functions S and W can be eadution of the minisuperspace variable can be obtained, and
ily generated once a particulgto) is found from Eq. (19). checked against the solutions of classical General Relativity.

The semiclassical limit of the WDW equation is achieved by

taking
3. The quantum model I B, §) = o (26)
Using the potentiaV’(¢) = Voe~*¢ and Making the follow-  an4 imposing the usual conditions on the superpotential func-
ing transformation between the coordinates tion S, namely
_ _ l 2 2 2
x = —6a + Ao, y=-—a+ )\cb, (20) ) 0°8 7 @ S %S 27)
Oa, Oa? 0o 092 |

the resulting WDW equation (8) is . .
Hence, the WDW equation, under a particular factor order-

ing (Q = 0), becomes exactly the aforementioned EHJ equa-
tion (11) (this approximation is equivalent to a zero quantum
, ) _ , potential in the Bohmian interpretation of quantum cosmol-
and by separation variables, and=X(x)Y(y) with  4vy133] This same equation is recovered directly, when we

y = 12)y, we obtain the set of differential equation for the jnroqyce the transformation on the canonical momentas
functions X and Y

AV 1 0%w 2V

_ — XU =0 21
2 12229y A2_6" (21)

oS
dz2x n 2 . Hqu — m, (28)
& " <<2> pe ) x=0 d
in Eq. (6), with particular factor ordering artd = 0. Using
d?Y 2 th d din th t t agai
¢ Ny =o, (22) e same procedure used in the quantum case, we get again
dy? (2) Eq. (15).
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In this way, we get the classical behavior solving the re-using (33), for obtain an increasing behaviour in the scale
lations between (28) and egs. (4,4).
For example, an exponential scalar field potential(power law), which is the well known inflationary attractor
V(¢) = e~*?, the exact solution of the WDW equation reads solution of an exponential potential [1,2]. However, there

omonfale-)

202 1
X exp 9a+ﬂ¢——03a*%¢ , (29)

2 A I

3 A4 Q?
k=—- |1+ = 30
4 22 3+9u2Vo ' (30)

factor, i.e., an inflationary solution is achieved ¥ < /2

exist the following constraint for the existence of the classi-
cal solution (31),\ < /6, see Ref. 2. Such a restriction
does not appear explicitly in the QC formalism, but we can
to show that for\ = /6, we recover exactly the free case,
whenV (¢, A) = 0 andQ = 0. Recall that the latter is ex-
actly the extreme case of stiff matter, because the scale factor
of the universe evolves agr) ~ 71/5.

where the last equation is the solution to the constraint equaAcknowledgments
tion (13) and the classical trayectories are given by

i

10.

11.

12.

a- = const., (32)
2
o(r) = §1n (Z/l\;LAT> , (32)
22 2/A
a(r) = (MAT) ) (33)
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We are taking units such that c=G=1.
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