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Deformation quantization for fermionic fields
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The deformation quantization of any Grassmann free field, or fermionic free field, in particular, the Dirac free field is discussed. Stratonovi
Weyl quantizer, Moyal product and Wigner functionals are obtained for this field by deforming suitable Fermi oscillator variables. In additic
the propagator of the Dirac field is computed in this context.
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Se discute la cuantizam por deformadin de un campo libre de Grassmann, o campo fenio libre; en particular, el formalismo es
aplicado al campo libre de Dirac. El cuantizador de Stratonovich-Weyl, el producto de Moyal y las funcionales de Wigner son obtenic
para este campo, deformando las variables apropiadas del oscilador de FermasAdepnopagador del campo de Dirac es calculado en
este contexto.

Descriptores:Cuantizadbn por deformadin; formalismo de Weyl-Wigner-Moyal; campo de Dirac.
PACS: 03.70.+k; 11.10.-z

1. Introduction (x,t) € M1 =R? x R,
We deal with fields at the instamt= 0 and we denote

The deformation quantization is an alternative and indepeng(z,0) = ©(z) andzg(z,0) = 7e(z). It is worth to men-
dent formulation to the canonical quantization and the pathion that some of the functional formulas and their manipu-
integral quantization in quantum mechanics. In this formal4ations are formal. It is also important to notice that since
ism, the quantization is understood as a deformation of theve will deal with Grassmann variables all the computations
structure of the algebra of classical observables instead of gnd results obtained are valid under the specified conventions
radical change in the nature of them, said quantization is origand ordering of factors given in this section. In this section
inated from the deformation of the usual product and therewe study the deformation quantization of these Grassmann
fore, as a deformation of the Lie algebra determined by théields, including: Stratonovich-Weyl quantizer, Moyal prod-
Poisson bracket. The product deformed is called star producct and Wigner functional [1-5].
particularly we work with the Moyal product.

Since the mathematical point of view, the deformation2.1. The Stratonovich-Weyl Quantizer
guantization is very well posed, nevertheless its application _
to physical systems presents large difficulties. Let Flre,0] be a functional on the phase space

The deformation quantization has been extensively studc = {(7e,©)}. By analogy to quantum mechanics we
ied for systems with a finite number degrees of freedom, an§a" €stablish the Weyl quantization rule as follows

is natural to be asked if is possible quantizer systems with an F-w (Flre, 0))

infinite number of degrees of freedom, that besides be con-

sistent with the Lorentz invariance and with the gauge invari- _ /D (E DOF[re @]Q[We o] 1)
ance. 2rh 7 T

In this work we present the formalism of Weyl-Wigner-

C o . . . : where() is the Stratonovich-Weyl quantizer (see Refs. [1
Moyal for fermionic fields, and it is applied to Dirac field as yia ( (LD

and it is given by:

an example. .

~ 1
2. Deformation Quantization of Grassmann e, 6] = / D"eXp{ " h / dx"(x)”@(x)}

Scalar Field
<o+ ) e (2)
Consider a real scalar Grassmann field on the Minkowskj . . .
spacetimel/4+1 of signature(+, —, —, ..., —). By a Grass- bqe c-an check that this operator satisfies the following prop-
. ) . __erties:

mann scalar field we will understand an smooth function
© over M4+ and which takes values in tHeeld of (anti- Tr{ﬁ[ﬁ& o]} =1,

commuting) Grassmann numbegs i.e., © is the mapo :
M4+t — G. Canonical variables of this classical Grass- ﬁ{ﬁ[ﬂe7@]§[wé7@/]} =4[ — 0')6[re — 75). ()
mann field will be denoted by (z,t) and mg(x,t) with
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If one multiplies Eq. 1 byﬁ[vr@, O] and takes into account This Poisson bracket is associated to the symplectic struc-
the Eqg. 3 one easily gets ture
Flre,0] = Tr{ﬁ[ﬂ@, @]ﬁ}. 4) wg = /dm&r@(ac) A6O(x),
z

2.2. The Moyal Product ) . . .
which gives toZg the structure of a symplectic manifold.

Now we are in a good position to define the Moyal prod-

uct [5-7] in a theory involving Grassmann scalar fields. Lety 3. The Wigner Functional

F = F[re,0] andG = G[re, ©] be some functionals on

Zg that correspond to the field operatcﬁSandG respec- Letp = |®)(®| be the density operator of a quantum state.
tively, i.e. F[Wo,@l =W YF) = Ir(Q[vro,@] ) and  Then the Wigner functional,, [re, ©] corresponding to this
Glre,0] = W1(G) = Tr(Qfre, 0]G). We want to find  state according to 4, is given by [2—4, 13]

the functional which corresponds to the operator prod?L(Et

will be denoted by(F x G)[reo, ©]. So we have |76, /pn exp { dz n(z)me(x )}

(F x Q)[re,0] := WY (FG) = Tr{@[we), @]ﬁé}. (5) ure

Using Egs. 1 and 5 and performing some simple calculations

one gets 3. Deformation Quantization of the Dirac Free
Field

5]cp[@ + 5}. (10)

(F xG)[re,0 /D )D@ DO" F(rg, 0]

9i The aim of this section is to provide an example of the appli-

X exp { /dm ((@ -0 (e — 74) cation of the deformation quantization of Grassmann fields to
h the Dirac free field. In addition we compute the propagator

" , "o of the Dirac field in this context. We stress the uses of the os-

— (00" (1o — ”®)> }Gh@v ©"]. (6)  (illator variablesb* andb which allowed us to perform the

) ) i construction (for details, see for instance Ref. 14).
For future convenience let's introduce new variables

V'=0'-0, V'=0"-0, II'=1y—rg, I"=1—me. Using
the expansion off'[r,,©'] = Frne + II',© + ¥’] and
G[rg,0"] = Glmre +11",© + ¥"] in Taylor series and after
some manipulations we obtain

3.1. Dirac Free Field

In this section we discuss the Dirac free fialdxz) over

Minkowski spacetimeM = R? x R with signature
(F % G) [0, 6] = Flro, O] exp {1271 Pe }G[m?@]’ @ (+,—,—,—) andz = (Z,t) € M. The action is given by
where Iol) = [ dsdtC(v(@.0).0,0(7.1)
Pg:= —( 1)5F€G/dx 5 ; :/d%dti(f (i @—m)y(d,t), (11)
80(z) ome(z) ’ T

—

E 5 whereg = ~#9,,, v* are the Dirac matriceg«(= 0,...,3),
e (2) 5@(x)> (8) P(x) = ¢i(x)y° andm is the mass parameter. Thus, the

field ¢ (z) fulfills the Dirac equation
is the Poisson operator, which define the Poisson bracket for

H(-1)rce

two functionalsF’ andG given by (i @ —m)p(Z,t) = 0. (12)
FPeG:={FG}p Its conjugate momentum is given by
5F[7T@, @] (5G[7T@, @]
— _(—_1)¢Fec d3x{ . oL
SUSIERE e mo(@1) = o = W@,
_|_ (_1)8 EG 5G[7T97 @] 5F[ﬂ-@? @] (9)
00(z)  dme(z) [’ whered)(Z,t) = 9y(Z,t)/dt. Then the hamiltonian can be

with e = 1,0 depending if the corresponding functionadls written as
and G are even or odd. This is precisely the super-Poisson st o
bracket reported in the literature [8—12]. Hplmy,¢] = /d VHE, )i U(@, 1), (13)
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wherey’ = pa’, v° = 3 and;j runs over the spatial coordi- and the Stratonovich-Weyl quantizer take the follow form
natesj = 1,2, 3.

4
According to the definition of the Poisson bracket for G+ b1 — /D {1 /d3 = bt (5 }
Grassmann fields given by Eq. 9, the Poisson bracket for (b7, bl Sexp h ; pe(py b7 ()

Yo (7, t) andmy, (7,t) is given by:
{'(/)a (fv t)7 77’1/)[3(377 t)}P = _6(5 - g)aaﬁa
{wa(fv t)v 1/%(377 t)}P - 07
Ty (T, 1), my 5(7, 1)} p = 0, (14)  3.3. The Moyal Product

3 3
§><b— 5\» (20)

wherey and¢ are Dirac spinors.

x |b+

wherea = 1,2, 3,4 runs over the components of the Dirac The Moyal product in this case can be defined similarly as
spinor. Egs. 7 and 8. Lef [b*, b] andF,[b*, b] be functionals over

As usual, the field variable,, (Z, t) can be expanded as plane the Dirac phase space defined by:

waves Zp={(my (L), Va(Z))zex}

Z/ o 3/2\/> (D, t, ) wa (D7) ={(b*(5,)), (b(F.7))r=1.... 4}

L and letF; andF, be their corresponding operators. Then by
x exp (ip- ¥), (15)  a similar computation to that done in the second part of the

whereb(7, t,7) = b(7,r) exp{ _ iETEﬁt}, wheres, — 1 previous section, we finally get

forr = 1,2 ande, = —1 for r = 3,4. The functionsw’s

satisfy the following relations, (Fi* F2)[b",b] = Fi[b, blexp (2 Pp >F2 (b, b], (21)

'LUL (ﬁv T)wa/(ﬁ; T/) = %5TT/5(10 5 where
_ — !/ = ! pag 6162 3 5 5
wa(ETpv T)wa’ (ETIL r ) = &r0rr'0aar, Pp:=— d°p sb ﬁ Sb* (ﬁ 7")
4 B ’
> warywl, (7,r) = Lbaar (16) 3 5
= m T L (22)
ob*(p,r) 6b(p,7)

Substituting Eq. 15 (and the corresponding to.
Ty, (Z,t) = i (Z, 1)) into Poisson bracket 14 we find that
the variablesb y b*, must satisfy the following Poisson operatorP determines the Poisson bracket

is the Poisson operator for any functiondls and F». The

brackets {F,G}p=F PD G defined by the symplectic structure
{b(ﬁ’ T)’ ib*(ﬁ/7rl)}P = _5(17—5/)57#” wp = /d3T25¢a(f) AN 57r,(/;(.f)
{b(p,7),b(p",7")}p =0, “
{b*(@,r), b*(p",r")}p = 0. 17) /d%z(swa A Sl ().

H *
Thus the Grassmann variablesndb®, determine precisely This symplectic structure defines the symplectic manifold
the canonical conjugate variables wh|ch we will use to de-, Structure(Zp, wp ) for the phase space.

scribe the Dirac field in the Weyl-Wigner-Moyal formalism.
Now if one substitute the expansions for the field variables of 4 Wigner Functional
Eqg. 15 in the hamiltonian in Eq. 13 one gets
4 The Wigner functional for the Dirac free field is defined in
Hp[b*,b] = Z / dpe, Eb*(5,t,r)b(7,t,r), (18) analogy to the sgalar field case. [pgtvs bg the density oper-
ator corresponding to the quantum physical state of the Dirac
field. Then, the corresponding Wigner functional to this state

3.2. Stratonovich-Weyl Quantizer is given by

Proceeding like in the previous section, we find that the Weyl- . i - 3 .

Wigner-Moyal correspondence for the Dirac field in terms of Pw b7, /D eXp{ “h Z/d pE@p.r
r=1

the canonical field variables take the following form

F=W(F[b",b]) = /D(zlz:h

¢
5 @

* [ — E ys
) DbFb*, bbb, (19) x b <p»f“>}<b+ 51" b —
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In the case whep?"¥* = |®)(®|, the above equation turns After some straightforward calculations we get
out into

— K3 (0]¢a (2)5(17)]0)
pw [b 7b]_/D<27Th) - B (#+m)as ‘
i - /(27r)3 26 exp (ip - (y — @)
3, pl= Nk (o
" p{hE/ et i) | (O (7)) 10)
3 — M)Ba .
x O [b— g]¢[b+g], (24) - —m/ (%3 ( ’ﬁQEﬁ)B exp (ip - (x — y)).

whered®*[b] = (b|®).
For the ground state of the Dirac free field, the Wigner
functional is given by

pWO[b*7b] =N

—2 .
X exp {h /d?’pZETb*(ﬁ, r)b(p, r)} (25)
r=1

zation.

4. Final Remarks

3.5. Dirac Propagator

(29)

Substituting this results in Eq. 26 reproduces exactly the
propagator of the Dirac field obtained by canonical quanti-

We did the deformation quantization for fermionic systems
with an number infinite of degrees of freedoire, fermionic
fields as an extension of the formalism for Fermi classical

To compute the propagator of the Dirac field we need to findSystems [15]. As an example, we applied this theory for the
quantization of the Dirac free field. Besides we compute the

iSp(E = §) = (0 (D) ()]0) - Ot — ) propagator of the Dirac field [16].

_ (OWﬁ(gj)l/)a(a?NO) O — 1), (26) Once we have the quantization of the Dirac field, we will cou-
_ ple the Dirac field to the Maxwell field in this context as a de-
Thus we first compute the quantitiesj. ()¢ 5(%)|0) and  formation of the algebraic structure. In order to perform the
(0[¢5(7)a (2)]0). These expectation values, in terms of de-deformation quantization of electrodynamics [17]. We will
formation quantization are: be able to show that many well known results of deformation
(01t (Z)5(7)|0) quantization in quantum mechanics could be extended to the

. case of quantum field theory.
_ be*Db wa(f) *1/)5(?7) PWo [b*7b] (27)

J Db*Db py, [b*, b] 7 Acknowledgements
wherepy, [b*, b] is the Wigner functional of the ground state

[see Eq. (25)]. | am indebted with G. Dito, H. Gara-Compén, C.
Using the following equation: Maldonado-Mercado, M. Przanowski and F. Turrubiantes for
intensive discussions and useful suggestions. This review
/D@*D@ exp (— /dxdy@*(x)M(a:,y)@(y)) was partially supported by the CONACyYT graduate fellow-
ship and the CONACyT grant 45713-F. | want to thank the

=det(M)- (M~ *(z,y)), (28) CINVESTAV-Monterrey for their warm hospitality.

where® and®* are Grassmann fields, and the relations

2
Lo (P m)ap
Zwa(par)wﬁ(pa r) = — om
r=1
4
. L v (h—m)ag
w(x(par)wﬂ(pvr) - 2m .
r=3
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