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Effect of noise on the identification of digitized Bragg Curves
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Recently, pulse shape analysis, PSA, assisted by artificial neural networks, ANN, used as pattern identifiers has received attention by several
groups interested in analyzing different kind of signals. In this, as well as in many experimental fields, noise is a ubiquitous known undesirable
problem when dealing with experimental signals, requiring a considerable effort to restrain it as much as possible in order to improve the
reliability of the measurements. Nonetheless, the remaining noise demands a careful analysis in order to be able to asses its effect. In this
paper we present results of the effect of noise on the performance of an ANN used to assist PSA of synthetic Bragg curves.
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Recientemente, el análisis de forma de pulsos, AFP, auxiliado por redes neuronales artificiales, RNA, usadas como identificadores de pa-
trones, ha despertado la atención de varios grupos interesados en le análisis de diferentes tipos de señales. Eńeste, como en muchos otros
campos, el ruido es un conocido e indeseable problema muy común cuando se manejan señales experimentales; requiriéndose de un con-
siderable esfuerzo para disminuirlo lo más posible con objeto de mejorar la confiabilidad de las mediciones. Sin embargo, el ruido residual
demanda un ańalisis cuidadoso para poder estimar su efecto. En este trabajo, se presentan resultados de los efectos del ruido sobre el
desempẽno de una RNA usada como auxiliar para el AFP de curvas de Bragg sintéticas.

Descriptores:Redes neuronales; espectroscopia de curva de Bragg; análisis digital de forma de pulsos; identificación de patrones.

PACS: 07.05.Kf; 07.05.Mh; 29.40.Cs

1. Introduction

Isotope separation of light ions using Bragg curve spec-
troscopy [1–5], BCS, is an interesting field where digital
pulse shape analysis, DPSA, may be applied [6,7]. Based
on computer simulations of the signal generated by a Bragg
curve spectrometer, [7], it has been demonstrated that as a
result of the distortion induced on the original Bragg curve,
BC, due to the integration of the current across the Bragg
curve spectrometer’s Frisch grid to anode gap plus the one
caused by the amplifier response, the Bragg peak height, BP,
besides being a function of the ion atomic number, Z, it is
also a function of its mass. Later on, using flash-ADCs, [8],
they were able to resolve isotopes of light nuclei like Li and
Be, etc. This is, when different isotopes are involved, they
measured and recorded BC pulse-shapes, and if they were
able to assign a Z value to that event, then a most probably
generated reference shape was selected by theχ2 criterion
allowing specifying the range and the mass number.

In a previous paper [9], we presented a novel way to ex-
tract relevant parameters associated with the outgoing ions
from nuclear reactions. It was based on digitizing the signals
provided by a Bragg curve spectrometer, allowing the imple-
mentation of more thorough DPSA. Due to the complexity
of this task, it was required to take advantage of new and
more powerful computational paradigms. This was fulfilled
using a back-propagation artificial neural network as a pattern
identifier of synthetic BCs. We used the common technique
of early stopping [10] in order to take care of over-training,
which is a known problem during the training stage of an
ANN [10–24]. The patterns analyzed in Ref. 9 were syn-
thetic noisy BCs. A synthetic noise component was added

to simulate any possible source of noise that normally goes
with the experimental signal of interest. As it was expected,
over-training,i.e., over-fitting the data by the ANN during
training, was observed. In this paper, we try to determine the
effect of the size of the noise component on the appearance
of over-fitting during the training stage.

2. DPSA and Bragg curve spectroscopy

Traditionally, BCS has been a two-parameter, (ETot, BP),
analytical technique [1-5] making it easy to use, whereETot

represents the total initial kinetic energy of the detected ion
andBP its Bragg peak amplitude or maximum value of the
specific stopping power of the ion (S(E) = dE/dx ≡ Bragg
curve) when it is stopped in a gas medium. These two sig-
nals are obtained by feeding the output signal from a Bragg
curve spectrometer to two different electronic amplification
branches; one with a large integration time (ETot signal) and
the other with a short integration time (BP signal). In Ref. 9, a
more powerful multi-parametric measurement approach was
put forward, based on recording and analyzing the complete
BC pulse-shape into 81 bins or parameters.

The new powerful DPSA approach pursued in this paper
is described in Ref. 9. It is essentially based on analyzing
synthetic BCs and saving them as 81-tuples of bins, discrete
values or parameters{S(i)}i=1,81. In Fig. 1, it is shown ex-
amples of the used ideal BCs (solid line) together with a sim-
ulated synthetic experimental BC (dots) that includes a fast
changing component taking into account any possible origin
of experimental noise of sizes equal to 2, 6 and 10% (size of
standard deviation).
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FIGURE 1. Plot of an ideal synthetic BC (solid line) together with
a simulated synthetic experimental BC (dots) which includes a fast
changing component that takes into account any possible origin of
experimental noise. The training and validation data sets were built
using BCs of a length consisting of at least 41 bins. a) size equal to
2%; b) size equal to 6%; c) size equal to 10%.

3. Artificial neural networks

Before one can use an ANN to solve any problem it has to be
train in order to learn how to solve it,i.e., by means of an al-
gorithm, the learning law, it has to be determined the link ar-
ray, ~w, containing all the values of the links among the differ-

ent interconnected neurons. In general terms, when following
a supervised learning law, as the learning paradigm, the prob-
lem is to construct a functionf (~x; ~w), an ANN, based on a
data set of input-output pairs,(~x, ~yt), where~x is an input pat-
tern and~yt its corresponding classification, tutorial or target
value, so thatf (~x; ~w) approximates~yt. During the training
stage, the ANN is presented the patterns from the training
data set many times, and it will learn by adapting itself to the
data through a slow modification of its link array,~w, guided
by a learning algorithm. A training epoch consists in present-
ing the ANN one time each one of the BCs that belong to the
training data set in an arbitrary order. A way to measure how
well an ANN is learning its task is by observing, as a function
of the number of training epochs, the reduction in the train-
ing and validation sum of squares error functions calculated
over the entire training and validation data sets,DT andDV ,
respectively,i.e.:

ET (ρ) =
1
K

|~yt−f [~xp;~w(ρ)]|2∑

p∈DT

or (1)

EV (ρ) =
1
K

|~yt−f [~xp;~w(ρ)]|2∑

p∈DV

where~w(ρ) represents the link array after training the ANN
for ρ epochs, K represents the number of patterns inDT or
DV andf [~xp; ~w(ρ)] is the ANN output for pattern p afterρ
training epochs. Summarizing, in an error-correction learn-
ing algorithm, the goal of the learning process is to adjust
the free parameters, the link array~w, so as to minimize the
training sum of squares error function,ET (ρ), considered it
as a cost functional over the number of training epochsρ.
The initial values of the link array components are chosen
according to a uniform random distribution over the interval
[−0.5, 0.5]. In order that the ANN keeps its generalization
capability (the ability to identify patterns from the validation
data set rather than the training data set), during the train-
ing stage, over-training has to be prevented, this means, one
should impose an early stopping of the training process, this
is, onesEV (ρ) reaches a minimum value, say atρmin, even
thoughET (ρ) keeps on decreasing. In Ref. 9, it was shown
that this is not exactly correct, in some cases it is required to
keep on training the ANN a little bit more overρmin.

For the problem of BCs identification using a feed-
forward ANN, we chose the error back-propagation learning
law including a momentum term [25], since it has proved to
be efficient for pattern identification tasks [26–31].

4. Pattern representation and ANN architec-
ture

The used data sets,DT or DV , consist of discrete noisy syn-
thetic BCs,{S(i)}i=1,n, simulating experimental BCs be-
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longing to 11 different BP values, all of them correspond-
ing to 11 ideal noiseless (smooth) BCs,{S0(i)}i=1,81, with
an ideal tutorial valueBP t located at the 17th bin, i.e.,
BP t = S0(17). The ANN output layer consists of two neu-
rons with outputs corresponding to the predicted value of the
total energy,Eo

Tot, and of the BP amplitude,BP o, of the
incoming ion. The number and the size of the hidden lay-
ers were determined on a trial and error basis, trying to find
the simplest architecture capable of performing an acceptable
identification of BCs. In this way, it was determined that
5 hidden layers of 9 neurons each were appropriate for the
task. Rather than building the data sets using synthetic BCs
spanning the whole range of 81 bins corresponding to the
different possible discrete values ofETot, we used BCs cor-
responding to the 41 largest total energies only,i.e., 41 ≤ n,
this range is indicated in cyan in Fig. 1. In this way, one war-
rants that all the analyzed BCs achieve their BP, which, for all
our ideal synthetic BCs, corresponds to the 17th bin, consid-
erably simplifying, in this way, the ANN task. Summarizing,
the training and validation sets are defined as:

DT ≡ {[{Sp(i; Et
Tot(n), BP t)]i=1,81}p=1,K

and (2)

DV ≡ {[{Sp(i;Et
Tot(n), BP t)]i=1,81}p=1,K ,

where, for a given p,[{Sp(i; Et
Tot(n), BP t)]i=1,81 models

an experimental synthetic noisy BC corresponding to a to-
tal ideal energy target value equal to and to an ideal Bragg
peak target value equal toBP t, where: 41 ≤ n ≤ 81 and
Sp(i;Et

Tot(n), BP t) = 0 if n < i. K is the number of pat-
terns in each one of the data sets, and it is equal to 45,100,
corresponding to 100 BCs for each one of the 451=11x41 dif-
ferent classes of BCs, 11 differentBP t values times the 41
differentEt

Tot(n) values. The experimental noisy BCs were

defined as:

Sp(i; Et
Tot(n), BP t) = Sp

0 (i;Et
Tot(n), BP t)

+Sp
G(i;Et

Tot(n), BP t) (3)

where represents a smooth ideal BC (solid lines in Fig. 1),
and a fast noise component that follows a Gaussian dis-
tribution with a mean value equal to 0 (dashed lines in
Fig. 1) and an energy dependent standard deviation equal to
e× Sp

0 (i; Et
Tot(n), BP t), where e is equal to 0.02, 0.06 and

0.1 corresponding to error sizes of 2, 6 and 10%. The ar-
chitecture of the employed ANN is a fully connected feed-
forward network with: an input layer of 81 neurons, 5 hidden
layers of 9 neurons each, and an output layer of 2 neurons.
For all neurons, a sigmoidal nonlinear activation function was
defined in terms of a logistic function,i.e.:

g(~x) =
1

1 + exp[−(~w · ~x− θ)]
, (4)

where~x is the neuron input array with information coming
from all neurons from the previous layer which is pondered
by the weight array,~w, associated with the links that carry
each one of the inputs, andθ is the bias value of the neuron.
In Table I, it is presented a summary of all the parameters of
the ANN and of the training and validation data sets.

5. Results

In order to appreciate the magnitude of the pattern recogni-
tion task to be performed by the ANN, in Fig. 2, it is shown
BP vs. ETot scatter plots of the ANNs input synthetic raw
data; the crosses indicate the target values for each one of the
11 × 41 different pattern classes used to train the ANN. The
three illustrated cases correspond to noise sizes equal to 2%,

TABLE I. ANN architecture and training parameters.

PARAMETER VALUE

Learning law Back-propagation with momentum term

ANN size Input layer: 81 units

par 5 hidden layers: 9 units each

par Output layer: 2 units

par Fully connected

α = learning rate 0.3

µ = momentum term 0.15

w initialization range [−0.5, 0.5]

Order of pattern presentation Shuffle

Activation function Sigmoidal

Neurons update order Serial order

DT andDV data sets 100 samples of each one of the 451 classes:

par (11BP values) x (41ETot values)

CPU time (SUSE LINUX) Intel Pentium 4, 1.7 GHz 30 days of execution time for a training of 1,000,000 epochs
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FIGURE 2. BP vs. ETot scatter plot of the ANNs input synthetic
raw data. The crosses indicate the target values for each one of the
11 × 41 different pattern classes used to train the ANN. The error
size of the synthetic BC data are a) 2%; b) 6%; c) 10%. The defi-
nitions of the two plotted quantities,BPandETot, are explained in
the text.

6% and 10%. The two plotted quantities were obtained in
a very simple fashion. Since each one of the ideal BCs
reaches its BP at the 17th bin, then a simple way to define
the BP value for the simulated synthetic BCs is to define it
asBP = Sp(17; Et

Tot(n), BP t). In relation to the value of
ETot, it was defined asETot =

∑n
i=1 Sp(i; Et

Tot(n), BP t),
which is a very simple way to estimate the area under the
specific stopping power curve. It is reminded that only BCs,

FIGURE 3. Scatter plot corresponding to the minimum error values
of theEV (ρ) error curve corresponding to and error size equal to a)
2%; b) 6%; c) 10%. The minimum was reached after a) 2,600,000;
b) 7500,000; c) 196,000 training epochs.

with 41 ≤ n ≤ 81are analyzed. The task for the ANN is to
learn from the training data setDT , and from this to gener-
alize, i.e., to provide output values(BP o, Eo

Tot) that cluster
near the corresponding target values (crosses in Fig. 2) when
the ANN is presented new data. For comparison, in Fig. 3,
the predictions of well-trained ANNs for this task are shown.

In Ref. 9, in order to see how the number of training
epochs depends on the initialization of the ANN, this is, on
the starting values of the link array,~w0, it was decided to
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train 16 times an ANN using in all cases the error back-
propagation learning law with a noise size of 10%. It was ob-
served that the minimum of the validation sum of the square
error functionEV (ρ) is reached at quiet different values of
ρs from ρmin= 136,000 epochs, the fastest learning one, up
to ρmin = 847,000 epochs; but, in all cases, the minimumρ
values are approximately equal. In addition, it was observed
that it is a little bit overρmin when over-fitting to the noise
onsets and that was confirmed by watching at the correspond-
ing BP vs. ETot scatter plots. From this behavior, it was
concluded that the error surface landscape is quite complex.
This means that the random initialization value of the link
array, ~w0, sometimes picks values that fall in regions of the
error surface with a large slope and some other times fall in
regions with a small one. In the first case, the learning or
weight adaptation will be faster than in the second one. Now,
in this paper, we are interested in studying the effect of the
size of the noise component [size of standard deviation of ,
see Eq. (3)] on the onset of over-fitting. For that purpose, it
is quite illustrating to look at the training and validation sum
of squares error functionsET (ρ) andEV (ρ) corresponding
to the error sizes we are interested in, 2, 6 and 10%, Fig. 4.
Perhaps the most obvious feature observable from these fig-
ures is that over-fitting is present for error sizes equal to 6
and 10% but it is not present for a small error size as 2%.
This means that, as expected, the amount of noise present
in the data strongly determines the generalization capability
of an ANN. In all three cases, the ANN learns in a step-like
fashion,i.e., its learning capability, as measured by the error-
decreasing rate, speeds up at certain number of epochs and
then slows down for a while until it reaches the next step.
This behavior ought to be a consequence of the shape of the
error surface in link space with many ridges; this is, when
the link array w gets close to one ridge, and falls through it, it
causes a fast learning rate, which explains the observed steps.
Since the error surface is quite complex, it is not possible to
conclude anything from the number of epochs it takes, in the
different cases, to reach their corresponding minimum value.
This is, as was shown in Ref. 9, the number of epoch required
to get to the minimum depends a lot on the initialization value
of the ANN link array~w0. Nonetheless, one can compare the
scatter plots for different error sizes corresponding to a spe-
cific error values. For example, at 600,000 epochs, the error
values of theEV (ρ)curves corresponding to 2% and 6% are
both approximately equal, the first one is 0.0476 and the sec-
ond one is 0.0487. Fig. 5 display the two scatter plots corre-
sponding to 600,000 training epochs. It can be seen in these
figures that in the 6% error case, the ANN has been able to
learn all the groups reasonably well but, definitively, there are
patterns with a bad identification. In the 2% error case, the
ANN is able of a better classification of all the groups (one
could say a perfect classification), but it has not learnt all the
groups with the same accuracy. The groups with BP tutorial
values equal to 0.5, 0.475 and 0.45 have been learnt better
than the rest of the groups. In the 2% case, it is only after
2,600,000 epochs that the ANN learns all the groups with a

FIGURE 4. Training and validation sum of squares error functions
ET (ρ) andEV (ρ) corresponding to the error sizes equal to: 2%,
6% and 10%.

FIGURE 5. Scatter plot corresponding to 600,000 training epochs
for a noise sizes equal to a) 2% and b) 6%. In figure a) can be
seen that the ANN has been able of a good classification of all the
groups (one could say a perfect classification), but it has not learnt
all the groups with the same accuracy. In figure b) can be seen that
the ANN has been able to learn all the groups reasonably well but,
definitively, there are patterns with a bad identification.
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similar accuracy; reaching a minimum error equal to 0.00287,
which is much smaller than the minimum corresponding to
the 6% error case, after 750,000 training epochs, and equal to
0.0435. In Fig. 3, for the three error sizes of interest, it is dis-
played the scatter plots corresponding to the minimum error
values of theEV (ρ) error curves. In the 10% error case, this
value was reached after 196,000 training epochs.

The effect of noise is to hide part of the information
present in the patterns to be identified. During the learning
process, the ANN has to build an architecture capable of rep-
resenting, at least in principle, all the relevant information
present in the patterns. Since the patterns are contaminated
with noise, there is some point at which the remaining not so
conspicuous relevant information starts being concealed by
the noise. This concealing noise effect starts the sooner the
larger the size of noise. In other words, in the 2% case in
comparison to the 6% case, there is much retrievable relevant
information that will take more epochs to the ANN to self
adapt to it.

6. Conclusions

Perhaps the effect of the noise size on limiting the minimum
value ofEV (ρ)is due to those patterns more severely affected
by the noise component present in all patterns, which, conse-
quently, are harder to classify correctly by the ANN. This
cannot be solved by simply using a more complex ANN. It
may happen, that any additional ANN architecture complex-
ity be used to learn the noise present in the training patterns
rather than in increasing the ANN generalization capability,
that is what we ought to pursue. In principle, one way to en-
hance the generalization capability of the used ANNs without

modifying their architecture is by increasing the training data
set size. The problem with this option is that it would be very
time consuming to train an AAN using a larger training data
set. At this point, it is good to remind that noise learning
implies a more complex model, and that, in turns, is related
to larger values of the link array components. So, if one im-
plements a way to penalize large link array components, the
ANN generalization capability would improve by inhibiting
noise learning. One way to implement this idea is achieved
by modifying the cost functionalET (ρ) by adding a penalty
or regularization termΩoρp to it, i.e.:

ẼT (ρ) = ET (ρ) + αΩ(ρ), (5)

where a simple form of the regularization termΩoρp called
weight decay is:

Ω(ρ) =
1
2

W∑

i=1

[wi(ρ)]2. (6)

This term encourages a smoother network mapping,i.e.,
reducing its effective complexity or the shape of the error sur-
face landscape. In this expression W is the dimension of the
weight array~w.The parameterα controls the extent to which
the penaltyΩ influences the form of the solution. In other
words, the idea is to penalize the unnecessary ANN com-
plexity. The use of this weight decay procedure [32, 33] for
model selection is one popular way to achieve the regulariza-
tion goal, and, in some way, its effect, is equivalent to that of
the early stopping procedure that we followed in this paper,
and it will be worth trying it, in the future, for BC identifica-
tion using ANNs.
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