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Noncommutative field theory approach to the fractional quantum Hall effect
with the filling factor one-half
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The fractional quantum Hall effect is studied in the context of the noncommutative quantum field theory in (2+1) dimensions. For the filling
factorν = 1/2, the noncommutative effective field theory incorporates a Chern-Simons gauge field (in the temporal gauge) coupled to the
matter in the presence of a suitable quenched external magnetic field. After providing the Feynman rules for this system, the noncommutative
corrections to the self-energy of quasiparticles are computed, showing that it is zero at Hartree-Fock approximation. Finally, in this approach
it is proved that the densityρ satisfies a noncommutative deformation of thew∞-algebra.
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El efecto Hall cúantico fraccionario se estudia en el contexto de la teorı́a cúantica de campos no conmutativa en (2+1)-dimensiones. Para el
factor de llenadoν = 1/2, la teoŕıa de campos efectiva incorpora un campo de norma de Chern-Simons (en la norma temporal) acoplado a la
materia en la presencia de un campo magnético externo apropiadamente cancelado. Después de dar las reglas de Feynman para este sistema,
las correcciones no conmutativas de la autoenegı́a de las cuasipartı́culas son calculadas y se muestra que son cero en la aproximación de
Hartree-Fock. Finalmente, en este enfoque se prueba que la densidadρ satisface una deformación no conmutativa deĺalgebraw∞.

Descriptores: Teoŕıa de campos no conmutativa; efecto Hall cuántico fraccionario; teorı́a de Chern-Simons.
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1. Introduction

Recently noncommutative field theory has attracted a great
deal of interest. This renewed attention was motivated mainly
by the developments of D-branes in the presence of a con-
stant Neveu-Schwarz backgroundB-field and in M-theory
(for some in recent reviews see, for instance, [1,2].)

However, in the context of the effective low energy field
theory description of condensed matter phenomena, there are
also a number of works [3–6]. For instance, an electric charge
moving in a plane with a strong perpendicular external mag-
netic field at the lowest Landau level, can be regarded as liv-
ing in a noncommutative space [7, 8]. Consequently, there is
a strong relation between the quantum Hall systems and the
systems of noncommutative field theory.

In condensed matter physics, particles are usually re-
garded as effective particles (or quasiparticles); that is, the
particles can be provided with some interactions that, for the
moment, we are not interested in describing explicitly. This
is very similar to effective field theories in quantum field the-
ory [9]. Thus, these quasiparticles are assumed to have a kind
of non-local interaction of the original particles due to their
dressing, which is also a characteristic of the interacting non-
commutative field theory. In addition, when we have a sys-
tem in the presence of a strong external magnetic field, the
system behaves as a noncommutative system [7,10]. Then it
is natural to describe some condensed matter systems in the
context of the noncommutativity of the space.

In this study, we shall take a particular case, which is
the fractional quantum Hall effect (FQHE) with filling fac-

tor ν = 1/2. This is because, for this particular value ofν,
the presence of a Fermi surface was noticed and the external
magnetic field can be suppressed by attaching a magnetic flux
to each particle. This also allows us to compute the effective
mass of the quasiparticles. Following these ideas, a number
of works have been worked out in different gauges [11–13].
The aim of the present study is to look for a noncommuta-
tive correction to this effective mass and then to establish an
upper limit for the noncommutative parameterΘ.

A fruitful approach to the description of the quantum Hall
systems is the introduction of a Chern-Simons gauge field
that interacts with the electrons. This interaction causes to
attach to each electron a magnetic flux tube [14]. For the
case of a filling factorν = 1/2, there will be two fluxes
attached to each electron. If there is an external magnetic
field B, then the fictitious magnetic field that arises from the
flux tubes exactly cancels this external magnetic field. Ignor-
ing the fluctuation in the gauge field, we now have a residual
model which consists of spinless fermions in a zero magnetic
field.

The organization of our paper is as follows: In Sec. 2 we
construct our model. In Sec. 3 we explicitly calculate the
correction to the first order for the mass of the quasiparticles.
Finally, Sec. 4 discusses our results and gives our conclu-
sions.

2. FQHE Through Noncommutative Chern-
Simons Theory

The starting point is to consider a two-dimensional system
placed in a uniform magnetic fieldB = ∇ × A, which is
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perpendicular to the plane. We assume that all electrons are
polarized, so we can ignore the spin state of the electrons.

The FQHE can be studied from the point of view of field
theory in which a number̃φ of fluxes of the magnetic field
coming from a Chern-Simons gauge field are included. These
new particles are known as composite fermions ifφ̃ is even.
In order to construct our model, we will consider only the
bulk states; that is, we must have a gauge invariant theory.
In this context, we will assume the temporal gauge for the
Chern-Simons gauge field,i.e. a0 = 0. The explicit transfor-
mation from Coulomb gauge to this gauge has been worked
out in Ref. 15.

We are considering the fluctuation of the Chern-Simons
gauge field around the mean fieldamf = A, whereA is
defined in the symmetric gauge:A = (B/2)z × x. This
fluctuationδa = A− a we will denote hereafter asa.

In this work, we use the path integral formulation of
field theory. We are considering a fermion field coupled to
a Chern-Simons gauge field theory, and an external electro-
magnetic field, which is quenched exactly at filling factor
ν = 1/2. We also consider an interaction between fermions.
The total action describing the system is given by

S = SCS + Smat + Sint. (1)

In order to construct the Feynman rules for the noncommu-
tative model, we need to write each term of the action and
make some observations:

SCS = − 1

2πφ̃

∫
dxaiε

ij∂0aj , (2)

Smat =
∫

dx

[
ψ†(x) ? D0 ? ψ(x)

− 1
2m

(Diψ
†(x)) ? (Diψ(x))

]
(3)

and
Sint =

∫
dxdyδρ(x) ? V (x, y) ? δρ(y), (4)

where the Chern-Simons term was written in the temporal
gauge. In the above equations? is the Moyal product defined
by

(f ? g)(x) = e
i
2Θµν∂y

µ∂z
νf(y)g(z)|y=z=x , (5)

whereΘµν is an anti-symmetric matrix representing the non-
commutativity parameter defined by[xµ, xν ] = iΘµν , with
µ, ν = 0, 1, 2. For applications to our system, we are
considering only spatial noncommutativity, which means:
Θ01 = Θ02 = 0, where the temporal coordinate is in the
usual commutative form.

This total action is invariant under the following gauge
transformations:

ψ → ψ + iλ ? ψ,

ψ† → ψ† − iψ† ? λ,

aµ → aµ − ∂µλ− i[aµ, λ]?. (6)

Notice that the ordering in the Moyal product is important.
With this we can now define acovariantderivative as

Dµ = ∂µψ + iaµ ? ψ,

D†
µ = ∂µψ† − iψ† ? aµ. (7)

Finally, note that in the interaction term of the action,
δρ = ρ− ρ0, but in the noncommutative case it is necessary
to redefine the density now with the star product:

ρ = ψ† ? ψ. (8)

Following Shankar and Murthy is approach [15], we shall use
the physical constraint

δρ =
1

2πφ̃
∇× a. (9)

In noncommutative field theory, it is always more convenient
to work in momentum space, so that this action becomes

S =
∫

k

ψ†
(

iω − 1
2m

k2 + µ

)
ψ − 1

2πφ̃

∫

k

εijai(k)ωaj(k)

− 1
2m

{ ∫

k

ψ†(k1)k1 · a(k2)ψ(k3)e
i
2 k3∧k2δ(k3 + k2 − k1)

+
∫

k

ψ†(k1)a(k2) · k3ψ(k3)e
i
2 k3∧k2δ(k3 + k2 − k1)

+
∫

k

ψ†(k1)a(k2) · a(k3)ψ(k4)e
i
2 k4∧k3e

i
2 (k4+k3)∧k2

×δ(k4 + k3 + k2 − k1)
}

+
∫

q

δρ(q)V (q)δρ(−q), (10)

where in the last row, we used the following definition for the
Fourier transform of the density:

ρ(q) =
∫

x

eiqx ? ψ†(x) ? ψ(x)

=
∫

k

e
i
2 q∧kψ†(k+q)ψ(k), (11)

wherek ∧ q = kµΘµνqν . With this redefinition we note that
the deformation of the space is absorbed into the definition of
density, so that we can replaceψ†ψ with (1/2πφ̃)∇×a+ρ0.
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Let us reorder the action terms as

Smat =
∫

k

ψ†
(

iω − k2

2m
+ µ

)
ψ,

SCS = − 1

2πφ̃

∫
εijaiajω +

1

(2πφ̃)2

∫

q

(q× a)2V (q)

− 1
2m

ρ0

∫

q

a · a,

Si =
1

2m

∫
ψ†(k1)(k1 + k3) · a(k2)ψ(k3)e

i
2 k3∧k2

× δ(k3 − k2 − k1),

Sia =
1

4πmφ̃

∫
((k1 × a(k1))a(k2) · a(k3)e

i
2 k3∧k2

× δ(k3 + k2 − k1). (12)

The parts of the action that have modifications due to non-
commutativity are the interaction part and the self-interaction
of the gauge field.

The next task is to find the Feynman rules. As the prop-
agators comes from quadratic terms of the action, then they
do not undergo any modification from the noncommutativity
of the space. The free propagator for the composite fermions
is given by

G0(k, ω) =
1

iω − (ϕ(k)− µ)
, (13)

whereε(k)−µ is the energy of the particles around the Fermi
surface. The gauge fluctuation propagates according to the
equation

D0(q, ω) = U, (14)

with

U−1 =

( − ρ0
2m − iω

2πφ̃

iω

2πφ̃
− ρ0

2m

[
1− 2mq2

(2πφ̃)2ρ0
V (q)

]
)

. (15)

As we have pointed out above, the only modification due
to noncommutativity comes from the interaction vertices, so
that the Feynman rule for the componentl of the fermion-
gauge field vertex is given by

1
2m

e
i
2 k3∧k2(k1 + k3)l. (16)

The other vertex that corresponds to the self-interacting sta-
tistical gauge field is not written explicitly because we shall
not compute corrections involving it.

3. Calculation of Self-Energy

We have now all the necessary for the computation of the
first order correction of the self-energy. As mentioned above,

in the one-loop correction we have two vertices with a non-
commutative contribution in principle non-zero, so we need
to check in this context what the self-energy is. The vertex
that we are considering is such that this has two internal lines
(one loop), one that corresponds to the fermion internal line,
and the other one is a gauge field. The vertex to analyze takes
on the following explicit form:

∫
dkdq(k1 + q)le

−k1∧kG(q)Dlm(k)(k2 + q)m

×eq∧kδ(k1 − k − q)δ(q − k2 + k), (17)

wherek1 andk2 are the external momenta, andk andq are
the internal momenta for the gauge propagator and fermion
propagator respectively.

When we evaluate the integration ink, this vertex be-
comes
∫

dq(k1 +q)lG(q)Dlm(k1−q)(k2 +q)mδ(k1 +k2). (18)

From this equation, we see that the phase factor coming
from the noncommutative vertex vanishes exactly; thus we
recover the standard commutative result for the value of the
self-energy obtained in the Hartree-Fock approximation for
the self-energy of the fermion field. This result with an ex-
plicit Coulomb potential of interaction,V (q) = π/εq, was
reported before [13], and the Hartree-Fock self-energy that
results is in agreement whit the results reported in Ref. 15.

4. Final Remarks

We have computed noncommutative corrections for the
FQHE for the filling factorν = 1/2. In particular we
calculated the correction for the self-energy diagram at the
Hartree-Fock approximation. Because the procedure we have
used to construct the theory, we absorbed the noncommuta-
tive deformation of the space in the density functionρ de-
fined in Eq. (8). Consequently, the noncommutative correc-
tion for the self-energy of the quasiparticles vanishes, giving
the usual correction [13,15].

However this redefinition of the density function incorpo-
rating the noncommutativity parameterΘ leads to the defini-
tion of a new function such that it satisfies a generalization of
thew∞-algebra, given by

[ρ(q), ρ(q′)] = 2iρ(q + q′) sin
(

q ∧ q′

2

)
. (19)

This algebra was reported in the context of the quantum me-
chanics approach to the description of the FQHE [16,17] with
a cross product rather the wedge that we use here. In the limit
that Θ → 1, the wedge product leads to the cross product.
This coincidence with thew∞- algebra shows the intrinsic
noncommutative nature of the FQHE.

Also it is worth noting that we only compute the self-
energy to the leading order; however it is possible that the
computation to a higher order in perturbation theory gives a
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correction for the self-energy depending on the noncommu-
tative parameterΘ. Some results along these lines will be
reported elsewhere.
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