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Noncommutative field theory approach to the fractional quantum Hall effect
with the filling factor one-half
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The fractional quantum Hall effect is studied in the context of the noncommutative quantum field theory in (2+1) dimensions. For the filling
factorv = 1/2, the noncommutative effective field theory incorporates a Chern-Simons gauge field (in the temporal gauge) coupled to the
matter in the presence of a suitable quenched external magnetic field. After providing the Feynman rules for this system, the noncommutative
corrections to the self-energy of quasiparticles are computed, showing that it is zero at Hartree-Fock approximation. Finally, in this approach
itis proved that the density satisfies a noncommutative deformation of thg -algebra.
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El efecto Hall céantico fraccionario se estudia en el contexto de laiégetuantica de campos no conmutativa en (2+1)-dimensiones. Para el
factor de llenade = 1/2, la teofa de campos efectiva incorpora un campo de norma de Chern-Simons (en la norma temporal) acoplado a la
materia en la presencia de un campo né&igo externo apropiadamente cancelado. Desple dar las reglas de Feynman para este sistema,

las correcciones no conmutativas de la autoendg las cuasipddulas son calculadas y se muestra que son cero en la apro&imntei
Hartree-Fock. Finalmente, en este enfoque se prueba que la depsigtisface una deformagi no conmutativa dellgebraw. .

Descriptores: Teolia de campos no conmutativa; efecto Hakatico fraccionario; teda de Chern-Simons.
PACS: 11.10.Nx; 73.43.Lp; 11.10.Gh

1. Introduction tor v = 1/2. This is because, for this particular valuergf
the presence of a Fermi surface was noticed and the external
Recently noncommutative field theory has attracted a greanagnetic field can be suppressed by attaching a magnetic flux
deal of interest. This renewed attention was motivated mainlyo each particle. This also allows us to compute the effective
by the developments of D-branes in the presence of a cortmass of the quasiparticles. Following these ideas, a number
stant Neveu-Schwarz backgrourHield and in M-theory  of works have been worked out in different gauges [11-13].
(for some in recent reviews see, for instance, [1,2].) The aim of the present study is to look for a noncommuta-
However, in the context of the effective low energy field tive correction to this effective mass and then to establish an

theory description of condensed matter phenomena, there a#@Per limit for the noncommutative parameéer

also a number of works [3-6]. For instance, an electric charge A fruitful approach to the description of the quantum Hall
moving in a plane with a strong perpendicular external magSySteéms is the introduction of a Chern-Simons gauge field
netic field at the lowest Landau level, can be regarded as [ivthat interacts with the electrons. This interaction causes to

a strong relation between the quantum Hall systems and tHe&se of a filling facton = 1/2, there will be two fluxes
systems of noncommutative field theory. attached to each electron. If there is an external magnetic

In condensed matter physics, particles are usually refield B, then the fictitious magnetic field that arises from the

garded as effective particles (or quasiparticles): that is, thélux tubes exactly cancels this external magnetic field. Ignor-

particles can be provided with some interactions that, for thd"9 the fluctuation in the gauge field, we now have a residual

moment, we are not interested in describing explicitly. Thisr.nOdeI which consists of spinless fermions in a zero magnetic
is very similar to effective field theories in quantum field the- f|elc_i|;h izt f : foll “In Sec. 2

ory [9]. Thus, these quasiparticles are assumed to have a kind ¢ € cirgamza Ic?nl 0 IouSr pap(;r IS as OI.O}?I/S' nl elc.t t\a/e

of non-local interaction of the original particles due to thejr CONStrUct our modet. In sec. s we explicitly calcuiate the

dressing, which is also a characteristic of the interacting non(_:orrection to the first order for the mass of the quasiparticles.

commutative field theory. In addition, when we have a Sys_F_inaIIy, Sec. 4 discusses our results and gives our conclu-
tem in the presence of a strong external magnetic field, thg'ons-:

system behaves as a noncommutative system [7,10]. Theng FQHE Through Noncommutative Chern-

is natural to describe some condensed matter systems in the Simons Theory

context of the noncommutativity of the space.

In this study, we shall take a particular case, which isThe starting point is to consider a two-dimensional system
the fractional quantum Hall effect (FQHE) with filling fac- placed in a uniform magnetic fiel = V x A, which is
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perpendicular to the plane. We assume that all electrons afgotice that the ordering in the Moyal product is important.
polarized, so we can ignore the spin state of the electrons. With this we can now define @ovariantderivative as
The FQHE can be studied from the point of view of field

theory in which a numbeg of fluxes of the magnetic field D, = 0,0 + ia, x
. . . . 14 12 M )
coming from a Chern-Simons gauge field are included. These .
new particles are known as composite fermions i§ even. Dl = 0,4" — it xay. (7)

In order to construct our model, we will consider only the
bulk states; that is, we must have a gauge invariant theorfinally, note that in the interaction term of the action,
In this context, we will assume the temporal gauge for thesy, = p — po, but in the noncommutative case it is necessary
Chern-Simons gauge fielde. ag = 0. The explicit transfor-  to redefine the density now with the star product:
mation from Coulomb gauge to this gauge has been worked
out in Ref. 15. o _ _ p =1l %, (8)

We are considering the fluctuation of the Chern-Simons
gauge field around the mean fiedgl,; = A, whereA is
defined in the symmetric gaugeA\ = (B/2)z x x. This
fluctuationda = A — a we will denote hereafter as

In this work, we use the path integral formulation of 1
field theory. We are considering a fermion field coupled to dp=—=V xa. 9)
a Chern-Simons gauge field theory, and an external electro- 2w
magnetic field, which is quenched exactly at filling factor
v = 1/2. We also consider an interaction between fermions!n noncommutative field theory, it is always more convenient

Following Shankar and Murthy is approach [15], we shall use
the physical constraint

The total action describing the system is given by to work in momentum space, so that this action becomes
S =S5 Smat + Sint- 1 ) 1 1 y
O T Smat + Sint @ S:/wf (zw—2k2+u>w—~/e”ai(k)waj(k)
m
In order to construct the Feynman rules for the noncommu- 2m &

tative model, we need to write each term of the action and
make some observations:

1 :

3 - Pk - a(ke ) (ks)ez 3 25 (ks + ko — k

Scs = —215/d33a¢€”80aj, 2) 2m{k/7’[} (k1)ky - a(kz)i(ks)e (k3 + k2 — k1)
vy

Sma = d t D i
t / x[¢ (l’)* O*w(l‘) +/¢T(k1)a(k2)'k3¢(k3)€5k3Ak25(k3+k2 7]431)

k

o (D @) * Dw@)| @

and +/1/)T(k1)a(k2) 'a(kg)d)(kz;)e%k‘mks’e%(k4+k3)/\k2
S = [ dodybpla) « Vo) wipls) @ /

where the Chern-Simons term was written in the temporal

gauge. In the above equationss the Moyal product defined
by <8k + ks + ks~ ) b+ [ Spla)V(@dp(-a), (00
q

(£ xg)(a) = eH& UL (5)

where©"” is an anti-symmetric matrix representing the non-where in the last row, we used the following definition for the
commutativity parameter defined ", z”] = i©"”, with  Fourier transform of the density:

uw,v = 0,1,2. For applications to our system, we are

considering only spatial noncommutativity, which means: )

©% = @2 = (0, where the temporal coordinate is in the plq) = /elqw*l/ﬁ(iv)*w(x)

usual commutative form. z

This total action is invariant under the following gauge L gl

transformations: = /eiq/\ viktaye(k), (11)
b — Pt iAxy, ’
N S S wherek A g = k,©#q,. With _this redefini@ion we note Fhat

the deformation of the space is absorbed into the definition of

a, —  a,— O\ —ifay, N (6) density, so that we can replagéy) with (1/27¢)V x a+ po.
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Let us reorder the action terms as in the one-loop correction we have two vertices with a non-
12 commutative contribution in principle non-zero, so we need
Somat = /W (iw -4 M) W, to check in this context what the self-energy is. The vertex
. 2m that we are considering is such that this has two internal lines
(one loop), one that corresponds to the fermion internal line,
Scg = ,; / e aiajw + 1~ /(q x a)%V (q) and the other one is a gauge field. The vertex to analyze takes
2w (2m¢h)2 ; on the following explicit form:
_ i . / dkdq(kl + q)leikl/\kG(q)Dlm(k)(kQ + q)rn
oo [ ara,
q
. x el §(ky — k — q)d(q — ka + k), (17)
S = 5 /W(lﬁ)(kl +ks) - a(ka)t(ks)e? > wherek; andk, are the external momenta, ahdandq are
the internal momenta for the gauge propagator and fermion
X 0(k3 — k2 — k1), propagator respectively.
1 Skais When we evaluate the integration iy this vertex be-
Sia = 4ﬂm$/((k1 x a(k1))a(ks) - a(ks)e>™ comes
X (ks + ks — k). (12) / da(k: +a)iG(q) Dum (k1 — 4) (kz + Q)0 (k1 +k2). (18)

The parts of the action that have modifications due to non-  From this equation, we see that the phase factor coming
commutativity are the interaction part and the self-interactiorfrom the noncommutative vertex vanishes exactly; thus we
of the gauge field. recover the standard commutative result for the value of the

The next task is to find the Feynman rules. As the propself-energy obtained in the Hartree-Fock approximation for
agators comes from quadratic terms of the action, then thejhe self-energy of the fermion field. This result with an ex-
do not undergo any modification from the noncommutativity plicit Coulomb potential of interactiony (q) = 7 /zq, was
of the space. The free propagator for the composite fermiongported before [13], and the Hartree-Fock self-energy that
is given by results is in agreement whit the results reported in Ref. 15.

1
iw — (p(k) = p)’
where= (k) — 1 is the energy of the particles around the FermiWe have computed noncommutative corrections for the
surface. The gauge fluctuation propagates according to tHeQHE for the filling factory = 1/2. In particular we

Go(k,w) = (13)

4. Final Remarks

equation calculated the correction for the self-energy diagram at the
Do(q,w) =T, (14)  Hartree-Fock approximation. Because the procedure we have
_ used to construct the theory, we absorbed the noncommuta-
with tive deformation of the space in the density functjpile-
_ po _iw fined in Eq. (8). Consequently, the noncommutative correc-
U-1— ( 2m 2;% ) ) . (15) tion for the self-energy of the quasiparticles vanishes, giving
Py — e [1 - (27:5)(]2#0 ( )} the usual correction [13, 15].

However this redefinition of the density function incorpo-
As we have pointed out above, the only modification duerating the noncommutativity parameterieads to the defini-
to noncommutativity comes from the interaction vertices, saion of a new function such that it satisfies a generalization of
that the Feynman rule for the componénif the fermion-  thew,,-algebra, given by
gauge field vertex is given by N
1 o, [0(a), p(¢)] = 2ip(q + ¢') sin <q2q) - (9
—ez2 (k1 + kg)l. (16)
2m . .
. . This algebra was reported in the context of the quantum me-
Th(.e other vertgx th_at corresponds to_ t_he self-interacting S%hanics approach to the description of the FQHE [16,17] with
tistical gauge field 'S not .wntte.n e>pr|C|tIy because we Sha”a cross product rather the wedge that we use here. In the limit
hot compute corrections involving it. that® — 1, the wedge product leads to the cross product.
This coincidence with thev,.- algebra shows the intrinsic
3. Calculation of Self-Energy noncommutative nature of the FQHE.
Also it is worth noting that we only compute the self-
We have now all the necessary for the computation of theenergy to the leading order; however it is possible that the
first order correction of the self-energy. As mentioned abovecomputation to a higher order in perturbation theory gives a
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