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The dynamical evolution of the scale factor of FRW cosmological model is presented, when the equation of state of the material con
takes the formp = ~p, v = constant, including the cosmological term. We use the WKB approximation and the relation with the
Einstein-Hamilton-Jacobi equation to obtain the exact solutions.
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Se presenta la evolum diramica del factor de escala de los modelos coégiobs, cuando la ecudri de estado toma la forma= ~p,
~ = constante, incluyendo el termino cosidgico. Usamos la aproximam WKB y la relacon con la ecuaéin de Einstein-Hamilton-Jacobi
para obtener soluciones exactas
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1. Introduction time symmetry was originally studied by Friedmann, Robert-
son, and Walker (FRW). The symmmetry is encoded in the

The behaviour of the cosmological scale facidit) in so-  gpecial form of the following line element:
lutions of Einstein’s field equations with the Friedmann-

Robertson-Walker line element has been the subject of nu- 2 2 9 9 dr? 2 12
. . ds® = —=N=(t)dt” + A=(t dQ 3
merous studies, where the presentations tend to focus on ° (£)de” + AT(Y) 1 — kr2 tr S
models in whichp = 0 and there is no cosmological con- ) o

stant \ = 0). Some treatments include the cosmologicalWhereA(t) is the scale factor, N(t) the lapse functionjs
constant [1-5] and the pressure p is given in terms of densit}’® constant curvature, taking on the valdes-1, —1 (flat,

p by an equation of state = p(p) andA # 0, for particular ~ ¢l0sed and open space, respectively). _
values in they parameter [6-9]. The FRW solutions to the Einstein field equation (2) rep-

The standart model of cosmology is based on Einstein’éesent a cornerstone in the development of modern cosmol-

General Relativity theory, which can be derived from the ge°9Y: since with them it is posible to understand the expansion

ometric Einstein-Hilbert Lagrangian of the universe. . ,
Recently, Faraoni [10] introduced a procedure based on

1 e (1) the Riccati differential equation, obtained by the combination
6rG Y 8" of the Einstein field equation, resulting in the same solutions

where R is the Ricci scalar, G the Newton constant, and btaingd by the standard pro_cedure [1—5,1_1],withogtthe cos-
g = |g,.,| the determinant of the metric tensor. By perform- mhologlcal term. Thlshgltﬁrnatlve app_roahchfls more d'|rect than
ing the metric variation of this equation, one obtains the wellt € st.andard one, which was used in the actorlzgtlon proce-
known Einstein’s field equations _dure in the supersymmetrlc Iev_el [1_2, 13] f[o obtain bo?h the
iso-spectral potential and function in particular one dimen-
sional systems.
The set of differential equations for the FRW cosmologi-

. _ %al model, including the cosmological term, become
whereT,,, is the energy-momentum stress tensor, associate

with a matter lagrangian, which is the source of gravitation,

assigning the corresponding equation of state, which varies

during different epochs of the history of the universe. ]
Introducing a symmetry through the metric tensor, in cos- (A) 8rG Ak

£geo =

1
R — §R guy = —81GT,,, (2)

4G

A
=-—3 (p+3p) -3 4

|

3]

mology one assumes a simple one according to the cosmo- Al T3P 3T a2 )
logical principle that states that the universe is both homoge-
neous and isotropic. This homogeneous and isotropic spacetere the overdot meangdt.
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In the literature, one can find the well-known classicalwhere
behaviour of the scale factor far= 0 [11] 1
i H = —— [II% + 144rA” + 48A A"
A= [awGMW (v + 1)2} T () TET. (6) 244
. — 384T GM, AT*H] (12)
Taking different values for the constant,we have the fol-

lowing subcases: Performing the variation of (11) with respect to N,

i - OL/ON = 0 implies the well-known result{ = 0.
[QTFGM1:| t2 for ~y =21 radiation R . . o
3 3 3 At this point we can do two things: i) the quantization
A= [6mG M]3 t3 for =0 dust @) procedure, imposing the quantization condition’én— H,
[247TGM1]% ts  for =1 stiff fluid where™H is an operator, and by applying this hamiltonian op-
_ erator to the wave functiowr, we obtain the Wheeler-DeWitt
However, for the case = —1, the solution becomes expo-

; (WDW) equation in the minisuperspace
nential:

/ HY =0, 13
A= Aoth, with H=2 %’TFGI\/I,M (8) ( )

here, we consider the sign (+) in the exponential function, begndt.") the WKB-like method, if one performs the transfor-
cause we consider the inflationary behaviour. These solutiond!o" 4%
will be compared with the solutions found by our method. Iy = TN (14)

The main purpose of this work is the introduction of the . . . . . .
WKB-like procedure for calculating the functio(t), in- in (12), becomes the Einstein-Hamilton-Jacobi equation,

cluding the function®(A), which plays an important role in When@ Is the §uperpotential_funct!on that s related to the
the supersymmetric fashion [14, 15], called the superpoten[-)hySICaI potential und-(.ar conS|derat|on.. )
tial function, in the Hamiltonian formalism for solving the Ve shall use partii) as an alternative method for obtain-
Einsten-Hamilton-Jacobi equation. Also, we include the cos!"d the classical solutions to the FRW cosmological model.
mological term in the formalism. Introducing the ansatz (14) into Eq. (12) we get

The remainder of the paper is organized as follows. The
procedure that includes the Einstein-Hamilton-Jacobi equaﬁ(

2
tion and the master equation is described in Sec. 2. In Sec. dq)) + 144kA% + 48AA* — 3847TGM7A_37+1 =0,
we present the exact solutions for the master equation foun
for this model, including their corresponding analysis. Fi-

nally, Sec. 4 is devoted to comments.

;Li - il2A\/ ngMwA*(MH) - %AQ —x  (15)
2. Einstein-Hamilton-Jacobi equation: the
WKB-like method Relating the Egs. (10), (14) and (15), we obtain the clas-

sical evolution for the scale factor in term of the “cosmic

We will use the total Lagrangian for a homogeneous andime” + defined bydr = N(t)dt, through the following mas-
isotropic universe (FRW cosmological model), and perfecter equation

fluid like ordinary matter with pressuggand energy density

p, and barotropic state equatipn= ~p, including the cos- dr — dA
. ) T= , (16)
mological termA [16, 17]: \/ngMWA—(?W“) _ %AQ iy
6A (dA\? f
L= N <dt> ~6KNA — 2NAA? which corresponds to Eg. (5) in the gauge N=1.
This equation is not easy to solve in general way for all
+16mGN M, AT (9 values in they parameter. However, we can solve this for

We define the canonical momentum conjugate of the geneRarticular values in two sectors in theparameter:

alized coordinaté\ (scale factor) as 1. 4 < 0, say(—1/3,—2/3, 1), andA # 0. This is the

[y = ai = %% (10) phenomenon commonly known as inflation-like.
OA N dt
The canonical hamiltonian function has the following form: 2. y=1/3,A#0, anyx.
L=TI4A - NH=T,4A 3.v>0,A=0.

2
- N I +68A+2A4% —167GM, A~ | (a1) In the following section, we describe its behaviour for the

244 scale factor.
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3. Solution of the master equation

Here, we obtain analytic solutions for the scale factor, via

the master equation rewritten in terms of a “conformal time”
coordinate T. In some cases, it will be necessary to drop th
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with A < 0. For inflation, the following conditions are
necessaryM,% > 3k/87G > 0, implyingx = 1 and
|A| > 3M_%

e = —2/3. Eq. (16), read as

cosmological term, in order to of obtain the corresponding

exact solution.

3.1. v <0, inflation-like phenomenon

Considering some negative values for theparameter,
namely,y = —1,—1/3,—-2/3, we have

1. v = —1, the equation (16) is the following (for sim-

plicity we choose the changés — x, a, = %wGMW,
b= —A/3):
dr = dx (17)
(a_1 + b) x2 —
Integrating (17) and inverting, we obtain
3K
A =\ A —sreis
X sinh [ % — %T (18)

The character of this solution is related to the cosmo-

logical term A and the curvature parameteras fol-
lows:

(a) Fork = 1, the behaviour is inflationary.

(b) Fork = —1, the behaviour will be inflationary if
M_; > (A+3)/8rG > 0.

(c) For x = 0, we will solve the original equation
(16), obtaining

A(7) =mjexp |?\ / 271'GM_1 - ér
3 3
+mg exp [—2\/ %WGM,l — 1;7'1 . (19)

Herem; andm, are integration constants. For
inflation, the following conditions are necessary:
my > me andM_q, > (A + 3)/87G > 0. This
last result generalize that found in [11], and is the
same ifmy, = 0 andA = 0 in the gaugeN = 1.

2. v = —1/3, the equation (16) is written in the following

form: dx
dr = (20)
with solution
A(r) = —87TGM7% o0 sinh[ MT] (21)
A 3]

dx

dr =
Vbx2 +a_q3x — K

(22)

with the solution forx = —1 andA < 0, is

having an inflationary behaviour.

32, y=1/3,A#0,anyx
In this subcase, (16) is written as

AdA

dr = .
V/3TOM, — JAAS — kA2

(24)

With the change of variablas= A2, (24) is

(25)

S et
\/ TGM, — FAu? — 7
whose solutions are, depending on the sign pf

1.A>0
A /i i
A arcsin

— arcsin

2A A%
3tk

K2+ %WGAM;
3

K

JR2 43 ﬂ'GAMl

(26)

2.A<0
/3 A
2. 5 8
——AA—k| —Ln |24/ —=7GAM:1—~K
3 9 3

8 1
° CIAAA_ A2
(37TGM; 3AA KA >

} . (27)
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33. ¥v>0,A=0 At this point, we can calculate the behaviour of the scale fac-
] o tor for some positive values to the parameteand compare
For this subcase, (16) is given by them with those found in the standard literature:
dA
dr = — , (28) 1. Dust era;y = 0, the scale factor becomes, in the gauge
V3TGM, A=+ — No1
and introducing the following conformal transfor- )
mation dr=x3"*t2dT, and the change of variable A 3 -3 —3}5
' ) t) = S [(67GMg|2 t + u %€ . 35

u=a,x 1+ _x the scale factor becomes, in the “con- (®) {[( o Ho (33)

formal time” T,

2 ~ 57T 2. Radiation eray = 1, in the gaugeN = 1
A(T)= {WT2\/7(37+ nT i ., (29) =3 gats
which is valid fors < 0. 32 2 oL
When we know the functiom\(T), we can obtain the At) = {[3WGM§} bpye } - (39
transformation rule between the timds and dT, for in-
stance
dr = A®+24T,. (30) 3. Stiff matter,y = 1, in the gaugeN = 1
thus 5 1
2 _% 1 —-3 313
dr = [p,T? — v, T] ¥ dT, (31) Alt) = {[2471'GM1]2 t oy te } . @37
where
ay (37 +1)? Choosing appropriately the parameter- oo, we ob-
Py = =" tain the usual results for the scale factor for the FRW,

andv, = VR (37 + 1). with k = 0 andA = 0 [11].
Now, considering the flat universe & 0), we can inte-
grate (31), but for consistency between Egs. (29) and (30),

we introduce the parametefin the sense that when=0, 4. Comments
e=Tandr =71,€ — o0
e The inflationary scenarios foy < 0 and matter epochs

/dr S / () 5y (32)  Were considered in the FRW cosmological model. Also, our
method is more general than that employed by Faraoni, be-
) 0 T . cause when the cosmological constant is included in the for-
After a tedious calculation, we arrive at malism, Eq.(3.1) in Ref. 10 does not reduce to the Riccati
— g i he procedure fails.
423 1 50 STy equation and the p
T= {MI ?27711)7 e mi’} . (33
Introducing (33) into (29), we found the scale factor in a gen-
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