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The Einstein-Hamilton-Jacobi equation:
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The dynamical evolution of the scale factor of FRW cosmological model is presented, when the equation of state of the material content
takes the formp = γρ, γ = constant, including the cosmological term. We use the WKB approximation and the relation with the
Einstein-Hamilton-Jacobi equation to obtain the exact solutions.
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Se presenta la evolución dińamica del factor de escala de los modelos cosmológicos, cuando la ecuación de estado toma la formap = γρ,
γ = constante, incluyendo el termino cosmológico. Usamos la aproximación WKB y la relacíon con la ecuación de Einstein-Hamilton-Jacobi
para obtener soluciones exactas
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1. Introduction

The behaviour of the cosmological scale factorA(t) in so-
lutions of Einstein’s field equations with the Friedmann-
Robertson-Walker line element has been the subject of nu-
merous studies, where the presentations tend to focus on
models in whichp = 0 and there is no cosmological con-
stant (Λ = 0). Some treatments include the cosmological
constant [1–5] and the pressure p is given in terms of density
ρ by an equation of statep = p(ρ) andΛ 6= 0, for particular
values in theγ parameter [6–9].

The standart model of cosmology is based on Einstein’s
General Relativity theory, which can be derived from the ge-
ometric Einstein-Hilbert Lagrangian

Lgeo =
1

16πG
√−g R, (1)

where R is the Ricci scalar, G the Newton constant, and
g = |gµν | the determinant of the metric tensor. By perform-
ing the metric variation of this equation, one obtains the well
known Einstein’s field equations

Rµν − 1
2
Rgµν = −8πGTµν , (2)

whereTµν is the energy-momentum stress tensor, associated
with a matter lagrangian, which is the source of gravitation,
assigning the corresponding equation of state, which varies
during different epochs of the history of the universe.

Introducing a symmetry through the metric tensor, in cos-
mology one assumes a simple one according to the cosmo-
logical principle that states that the universe is both homoge-
neous and isotropic. This homogeneous and isotropic space-

time symmetry was originally studied by Friedmann, Robert-
son, and Walker (FRW). The symmmetry is encoded in the
special form of the following line element:

ds2 = −N2(t)dt2 + A2(t)
[

dr2

1− κr2
+ r2dΩ2

]
, (3)

whereA(t) is the scale factor, N(t) the lapse function,κ is
the constant curvature, taking on the values0, +1,−1 (flat,
closed and open space, respectively).

The FRW solutions to the Einstein field equation (2) rep-
resent a cornerstone in the development of modern cosmol-
ogy, since with them it is posible to understand the expansion
of the universe.

Recently, Faraoni [10] introduced a procedure based on
the Riccati differential equation, obtained by the combination
of the Einstein field equation, resulting in the same solutions
obtained by the standard procedure [1–5,11], without the cos-
mological term. This alternative approach is more direct than
the standard one, which was used in the factorization proce-
dure in the supersymmetric level [12, 13] to obtain both the
iso-spectral potential and function in particular one dimen-
sional systems.

The set of differential equations for the FRW cosmologi-
cal model, including the cosmological term, become

Ä
A

= −4πG
3

(ρ + 3p)− Λ
3

(4)

(
Ȧ
A

)2

=
8πG

3
ρ− Λ

3
− κ

A2
, (5)

where the overdot meansd/dt.
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In the literature, one can find the well-known classical
behaviour of the scale factor forκ = 0 [11]

A =
[
6πGMγ (γ + 1)2

] 1
3(γ+1)

(t− t0)
2

3(γ+1) . (6)

Taking different values for the constant,γ we have the fol-
lowing subcases:

A=





[
32
3 πGM 1

3

] 1
4

t
1
2 for γ = 1

3 radiation

[6πGM0]
1
3 t

2
3 for γ = 0 dust

[24πGM1]
1
6 t

1
3 for γ = 1 stiff fluid

(7)

However, for the caseγ = −1, the solution becomes expo-
nential:

A = A0eHt, with H = 2

√
2
3
πGM−1, (8)

here, we consider the sign (+) in the exponential function, be-
cause we consider the inflationary behaviour. These solutions
will be compared with the solutions found by our method.

The main purpose of this work is the introduction of the
WKB-like procedure for calculating the functionA(t), in-
cluding the functionΦ(A), which plays an important role in
the supersymmetric fashion [14, 15], called the superpoten-
tial function, in the Hamiltonian formalism for solving the
Einsten-Hamilton-Jacobi equation. Also, we include the cos-
mological term in the formalism.

The remainder of the paper is organized as follows. The
procedure that includes the Einstein-Hamilton-Jacobi equa-
tion and the master equation is described in Sec. 2. In Sec. 3
we present the exact solutions for the master equation found
for this model, including their corresponding analysis. Fi-
nally, Sec. 4 is devoted to comments.

2. Einstein-Hamilton-Jacobi equation: the
WKB-like method

We will use the total Lagrangian for a homogeneous and
isotropic universe (FRW cosmological model), and perfect-
fluid like ordinary matter with pressurep and energy density
ρ, and barotropic state equationp = γρ, including the cos-
mological termΛ [16,17]:

L =
6A
N

(
dA
dt

)2

−6κNA− 2NΛA3

+ 16πGNMγA−3γ . (9)

We define the canonical momentum conjugate of the gener-
alized coordinateA (scale factor) as

ΠA ≡ ∂L
∂Ȧ

=
12A
N

dA
dt

. (10)

The canonical hamiltonian function has the following form:

L = ΠAȦ−NH = ΠAȦ

−N

[
Π2

A

24A
+ 6κA + 2ΛA3 − 16πGMγA−3γ ,

]
(11)

where

H =
1

24A

[
Π2

A + 144κA2 + 48ΛA4

− 384πGMγA−3γ+1
]
. (12)

Performing the variation of (11) with respect to N,
∂L/∂N = 0 implies the well-known resultH = 0.

At this point we can do two things: i) the quantization
procedure, imposing the quantization condition onH → Ĥ,
whereĤ is an operator, and by applying this hamiltonian op-
erator to the wave functionΨ, we obtain the Wheeler-DeWitt
(WDW) equation in the minisuperspace

ĤΨ = 0, (13)

and ii) the WKB-like method, if one performs the transfor-
mation

ΠA =
dΦ
dA

(14)

in (12), becomes the Einstein-Hamilton-Jacobi equation,
whenΦ is the superpotential function that is related to the
physical potential under consideration.

We shall use part ii) as an alternative method for obtain-
ing the classical solutions to the FRW cosmological model.

Introducing the ansatz (14) into Eq. (12) we get

[(
dΦ
dA

)2

+ 144κA2 + 48ΛA4 − 384πGMγA−3γ+1

]
= 0,

dΦ
dA

= ±12A

√
8
3
πGMγA−(3γ+1) − Λ

3
A2 − κ (15)

Relating the Eqs. (10), (14) and (15), we obtain the clas-
sical evolution for the scale factor in term of the “cosmic
time” τ defined bydτ = N(t)dt, through the following mas-
ter equation

dτ =
dA√

8
3πGMγA−(3γ+1) − Λ

3 A2 − κ
, (16)

which corresponds to Eq. (5) in the gauge N=1.
This equation is not easy to solve in general way for all

values in theγ parameter. However, we can solve this for
particular values in two sectors in theγ parameter:

1. γ < 0, say(−1/3,−2/3,−1), andΛ 6= 0. This is the
phenomenon commonly known as inflation-like.

2. γ = 1/3, Λ 6= 0, anyκ.

3. γ > 0, Λ = 0.

In the following section, we describe its behaviour for the
scale factor.
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3. Solution of the master equation

Here, we obtain analytic solutions for the scale factor, via
the master equation rewritten in terms of a “conformal time”
coordinate T. In some cases, it will be necessary to drop the
cosmological term, in order to of obtain the corresponding
exact solution.

3.1. γ < 0, inflation-like phenomenon

Considering some negative values for theγ parameter,
namely,γ = −1,−1/3,−2/3, we have

1. γ = −1, the equation (16) is the following (for sim-
plicity we choose the changesA → x, aγ = 8

3πGMγ ,
b = −Λ/3):

dτ =
dx√

(a−1 + b) x2 − κ
. (17)

Integrating (17) and inverting, we obtain

A(τ) =

√
3κ

Λ− 8πGM−1

× sinh

[√
8πGM−1

3
− Λ

3
τ

]
. (18)

The character of this solution is related to the cosmo-
logical termΛ and the curvature parameterκ as fol-
lows:

(a) Forκ = 1, the behaviour is inflationary.

(b) Forκ = −1, the behaviour will be inflationary if
M−1 > (Λ + 3)/8πG > 0.

(c) For κ = 0, we will solve the original equation
(16), obtaining

A(τ) = m1 exp

[
2

√
2
3
πGM−1 − Λ

3
τ

]

+m2 exp

[
−2

√
2
3
πGM−1 − Λ

3
τ

]
. (19)

Herem1 andm2 are integration constants. For
inflation, the following conditions are necessary:
m1 > m2 andM−1, > (Λ + 3)/8πG > 0. This
last result generalize that found in [11], and is the
same ifm2 = 0 andΛ = 0 in the gaugeN = 1.

2. γ = −1/3, the equation (16) is written in the following
form:

dτ =
dx√

bx2 + a−1/3 − κ
(20)

with solution

A(τ) =

√
8πGM− 1

3
− 3κ

|Λ| sinh

[√
|Λ|
3

τ

]
, (21)

with Λ < 0. For inflation, the following conditions are
necessary:M− 1

3
> 3κ/8πG > 0, implying κ = 1 and

|Λ| > 3M− 1
3
.

3. γ = −2/3. Eq. (16), read as

dτ =
dx√

bx2 + a−1/3x− κ
(22)

with the solution forκ = −1 andΛ < 0, is

A(τ)=
3

2|Λ|

{(√
|Λ|
3
− 4

3
πGM− 2

3

)
e
√
|Λ|
3 τ

−
(√

|Λ|
3

+
4
3
πGM− 2

3

)
e−

√
|Λ|
3 τ

−8
3
πGM− 2

3

}
, (23)

having an inflationary behaviour.

3.2. γ = 1/3, Λ 6= 0, any κ

In this subcase, (16) is written as

dτ =
AdA√

8
3πGM 1

3
− 1

3ΛA4 − κA2
. (24)

With the change of variablesu = A2, (24) is

τ =
1
2

∫ A2

0

du√
8
3πGM 1

3
− 1

3Λu2 − κu
, (25)

whose solutions are, depending on the sign ofΛ,

1. Λ > 0

√
3

4Λ



arcsin




2ΛA2

3 + κ√
κ2 + 32

9 πGΛM 1
3




− arcsin


 κ√

κ2 + 32
9 πGΛM 1

3






 (26)

2. Λ < 0

√
3

4Λ

{
Ln

[
2

√
−Λ

3

(
8
3
πGM 1

3
−1

3
ΛA4−κA2

)

−2
3
ΛA2−κ

]
−Ln

[
2

√
−8

9
πGΛM 1

3
−κ

]}
. (27)
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3.3. γ > 0, Λ = 0

For this subcase, (16) is given by

dτ =
dA√

8
3πGMγA−(3γ+1) − κ

, (28)

and introducing the following conformal transfor-
mation dτ=x3γ+2dT, and the change of variable
u = aγx−(3γ+1)−κ, the scale factor becomes, in the “con-
formal time” T,

A(T)=
[
aγ(3γ + 1)2

4
T2−√−κ(3γ + 1)T

]− 1
3γ+1

, (29)

which is valid forκ ≤ 0.
When we know the functionA(T), we can obtain the

transformation rule between the timesdτ and dT, for in-
stance

dτ = A3γ+2dT, . (30)

thus
dτ =

[
µγT2 − νγT

]− 3γ+2
3γ+1 dT, (31)

where

µγ =
aγ(3γ + 1)2

4
andνγ =

√−κ(3γ + 1).
Now, considering the flat universe (κ = 0), we can inte-

grate (31), but for consistency between Eqs. (29) and (30),
we introduce the parameterε in the sense that whenτ = 0,
ε = T andτ = τ , ε →∞:

τ∫

0

dτ = µ−
3γ+2
3γ+1

ε∫

T

(x)−
2(3γ+1)
3γ+1 dx. (32)

After a tedious calculation, we arrive at

T =
[
µ

3γ+2
3γ+1

3(γ + 1)
3γ + 1

τ + ε−
3(γ+1)
3γ+1

]− 3γ+1
3(γ+1)

. (33)

Introducing (33) into (29), we found the scale factor in a gen-
eral way:

A(τ)=
[√

µγ
3(γ+1)
3γ+1

τ+µ−
3(γ+1)
2(3γ+1) ε−

3(γ+1)
3γ+1

] 2
3(γ+1)

. (34)

At this point, we can calculate the behaviour of the scale fac-
tor for some positive values to the parameterγ, and compare
them with those found in the standard literature:

1. Dust era,γ = 0, the scale factor becomes, in the gauge
N = 1

A(t) =
{

[(6πGM0]
1
2 t + µ

− 3
2

0 ε−3
} 2

3
. (35)

2. Radiation era,γ = 1
3 , in the gaugeN = 1

A(t) =

{[
32
3

πGM 1
3

] 1
2

t + µ−1
1
3

ε−2

} 1
2

. (36)

3. Stiff matter,γ = 1, in the gaugeN = 1

A(t) =
{

[24πGM1]
1
2 t + µ

− 3
4

1 ε−
3
2

} 1
3

. (37)

Choosing appropriately the parameterε → ∞, we ob-
tain the usual results for the scale factor for the FRW,
with κ = 0 andΛ = 0 [11].

4. Comments

The inflationary scenarios forγ < 0 and matter epochs
were considered in the FRW cosmological model. Also, our
method is more general than that employed by Faraoni, be-
cause when the cosmological constant is included in the for-
malism, Eq.(3.1) in Ref. 10 does not reduce to the Riccati
equation and the procedure fails.
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