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On recovering the parametric model of the Chua system via a gradient algorithm
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The Chua circuit parameter estimation problem is addressed in this paper. This circuit is algebraically observable and identifiable with respect
to its two measurable voltages. This fact allows us to straightforwardly propose two linear estimators for recovering the unknown parameters,
where the estimator gains are continuously adjusted by means of a gradient algorithm, until the estimated parameters converge to the actual
values. The convergence of this method is demonstrated by using the Lyapunov method.
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En este trabajo se trata el problema de estimación de los paŕametros del circuito de Chua. Este circuito es algebraicamente observable e
identificable con respecto a sus dos voltajes disponibles. Este hecho nos permite proponer directamente dos estimadores lineales para la
recuperacíon de los paŕametros desconocidos, donde las ganancias de los estimadores son ajustadas continuamente mediante un algoritmo de
gradiente, hasta que los parámetros estimados convergen con los valores reales. La convergencia de este método es demostrada empleando
el método de Lyapunov.

Descriptores: Circuito de Chua; caos; reconstrucción y observadores; enfoque de Lyapunov.
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1. Introduction

The reconstruction of a chaotic system from one or more
measurable variables has attracted the attention of many re-
searchers, because these kinds of systems have an enormous
potential for applications. For example, they can be used in
communication engineering to encode and decode informa-
tion [1, 2]. Roughly speaking, the reconstruction problem
consists in recovering the underlying variables and the un-
known parameters from a partial knowledge of a chaotic sys-
tem that we desire to reconstruct [3]. That is, we want to
extract some physical parameters and to estimate some non-
available states from the available system outputs. In gen-
eral, there are two ways of identifying and reconstructing a
chaotic system. The first one relies on the embedding ap-
proach and the second one is based on control theory. The
embedding approach, supported by Taken’s theorem [4], al-
lows us to estimate the attractor characteristics of a chaotic
system by unfolding its time series into a higher dimensional
phase space, which facilitates the reconstruction of the at-
tractor [4–7]. Topologically, the embedding problem con-
sists in finding a one-to-one map between points of both the
original system and the attractor in the reconstructed phase
space. Then, embedding consists in finding the optimal map-
ping which, when applied to the observed time series, will
map it to a higher dimensional space, revealing information
about the original attractor (see Prasadet al. [6–8]). The sec-
ond approach exploits some control theoretical ideas, such

as inverse system design [9] and system identification [10].
The system inversion design consists in seeing the vector of
unknown parameters as an external input and the available
measurable signal as the output of the system. Then, the ob-
jective is to find an asymptotic inverse of this mapping. In
addition, the problem can be solved by means of standard
identification methods, mainly supported by the traditional
least square methods and gradient algorithms (for a detailed
treatment of these topics see [2,3,11–13]).

In this work, we recover the unknown set of parameters of
the Chua system (CS) using the adaptative control approach
and assuming that the voltages of the capacitors are available.
To do so, we show that the system is algebraically observ-
able and identifiable with respect to the well chosen outputs.
Afterwards, the selected parameter estimation method is car-
ried out by proposing two linear estimators, where their gains
are adjusted according to a gradient algorithm [10, 14]. It is
worth mentioning that this problem has been solved by other
authors. In [15], the authors present an estimation strategy
based on the embedding approach using time delayed out-
puts. They firstly have to build a map and, secondly, the pa-
rameters are obtained by computing the inverse of the pro-
posed map, which is nearly singular. A similar work with
similar tools was presented in [16]. In that work, the authors
experimentally compute some of the unknown parameters by
monitoring two variables of theCS. In [17], the authors solve
the problem by using the traditional least squares method, as-
suming that all the states of theCS are available. In [18],
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a non-asymptotic linear estimator is presented based on the
construction of a parameter-linear system. To justify it, the
authors had to assume that theCS displays a chaotic behav-
ior in order to apply the Poincaré-Bendixon theorem. Our
identification strategy has the advantage of being very easy
to implement numerically. We do not need to find the inverse
maps, nor do we need to compute the inverse of a matrix
(thus avoiding dealing with numerical singularities), as must
be done when using the works mentioned above.

This paper is organized as follows. Section 2 briefly in-
troduces some algebraic properties that theCSsatisfied. Sec-
tion 3 is devoted to establishing the framework of the pro-
posed identification schema, which is based on a gradient al-
gorithm. In the same section, we show how the robustness of
the estimates with respect to zero-mean high frequency mea-
surements of noisy outputs was enhanced using aninvariant-
filter. Finally, the conclusions are given in Sec. 4.

2. The Chua system

The Chua system, shown in Fig. 1, consists of three energy-
store elements (an inductor and two capacitors), a linear re-
sistor and a single nonlinear resistor, called Chua’s diode. A
simplified nonlinear model of this system, which can be de-
rived from Kirchoff’s laws (see [8] and [19] for details), is
given by:

C1
dvc1

dt
=

1
R

(vc2 − vc1)− φ(vc1),

C2
dvc2

dt
=

1
R

(vc1 − vc2) + il, (1)

L
dil
dt

= −vc2 ,

whereR is a linear resistance,vc1 andvc2 are the voltages
across capacitorsC1 andC2, respectively,il is the current
through the inductorL, and φ(vc1) is the current through
the non-linear resistor as a function of the voltage across ca-
pacitorC1. This non-linear function is described by an odd-
symmetric piecewise-linear function made of three straight-
line segments and which has the following explicit represen-
tation:

φ(x) = −
(

m1vc1vc1

+
m0 −m1

2
(|vc1 + Bp| − |vc1 −Bp|)

)
, (2)

wherem0, m1 andBp are three fixed constants of the diode.

The three equations in (1) can be rewritten in the dimen-
sionless form (see [20]), as:

FIGURE 1. The Chua System.

ẋ1 = β (−x1 + x2 − f (x1)) ,

ẋ2 = x1 − x2 + x3, (3)

ẋ3 = −γx2,

with

f (x) = ax + b (|x + 1| − |x− 1|) , (4)

where

β =
C2

C1
, γ =

C2R
2

L
, a = m1R, b =

m0R−m1R

2
,

x1 =
vc1

Bp
, x2 =

vc2

Bp
, x3 =

iLR

Bp
.

(5)

For the fixed values of parameters in a neighborhood of
γ = 27, β = 15.6, a = −5/7, b = −3/14, we know that the
CS has the so-called double scroll chaotic attractors.
Remark 1: Note that in other versions of theCSa resistor is
added in the inductance, by adding to the right hand side of
the third equation of (1) the voltage absorbed by the resistor
−R0iL, whereR0 is the resistant of the inductance element
of the circuit. For simplicity, we assumed thatR0 = 0.
Comment 1: The CS is considered to be the standard
paradigm of chaos and has been studied and applied by many
researchers as a challenging benchmark to test advanced
identification methods. On the other hand, theCS has the
advantage of being one of the easiest chaotic systems to im-
plement.

3. Problem statement

The main aim of this paper is to recover the set of unknown
parametersβ, γ, a andb, under the assumption that the two
variablesx1(t) andx2(t)are available for allt > 0. That is,
the two voltages of the circuit are monitored continuously.
Algebraic properties of the CSConsider a smooth nonlin-
ear system, described by a state vectorx = {xi}i=n

1 ∈ Rn

and by the vector outputy = {yi}i=m
1 ∈ Rm, of the form,

ẋ = f(x,p), y = h(x), (6)

whereh(·) is a smooth vector andpT ∈ Rl is a constant
parameter vector, withl < n. We say that vector statex is
algebraically observable if it can be uniquely expressed as

x = s(y, ..,y(m),p), (7)
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for some smooth functions. Moreover, if the vector of param-
etersp satisfies the following linealr relation

s1(y, ..,y(m)) = s2(y, ..,y(m))p, (8)

wheres1(·) ands2(·) are respectively n×1 andn×n smooth
matrices, thenp is said to be algebraically linearly identifi-
able with respect to the outputy (see [21] for details).

Evidently, system (3) is algebraically observable with re-
spect to the outputsy1 = x1 andy2 = x2, since all the system
variables can be rewritten as

x1 = y1, x2 = y2, x3 = ẏ2 + y2 − y1. (9)

Besides, from the first equation of (3), we easily havei

ẏ1 = ΛT (y)q (10)

where

qT =
[ −β(1 + a) β βb

]
,

ΛT (y) =
[

y1 y2 |1− y1| − |y1 + 1| ]
.

(11)

In similarly form, the third equation of (3), leads to

ÿ2 = −ẏ2 − γy2 + ẏ1. (12)

From the two differential relations given in (11) and (12),
we claim that the nonlinear system (3) is linearly identifiable
with respect to the outputsy1 andy2.

4. Model parameter estimation

We establish the framework for recovering the unknown pa-
rameters of theCS.Firstly, we analyze the hypothetical case
where the signalṡy1, ẏ2 andÿ2 are available and noise free.

First of all, we need to introduce the following two as-
sumptions:

A1 The set of parametersq andγ belongs in some neigh-
borhood, in such a way that all the states ofCSremain
oscillating around the origin, for allt > 0.

A2 The statesy1, ẏ2 and ÿ2 are available or can be esti-
mated with great accuracy.

Remark 1: Evidently signalṡy1, ẏ2andÿ2 must be estimated,
to a high degree of accuracy. To compute these deriva-
tives, we use the spline interpolant method proposed in [13].
This method consists in approximating a window of data (set
of recorded data) by means of an interpolating polynomial,
where the coefficients of the desired polynomial are computed
according to the least square method. For instance, using a
window of data set{yt, yt−τ , yt−2τ}, whereτ is the sam-
pling time, it is easy to show that the first and second time
derivative ofy can be estimated by

˙̂y =
0.5yt−2τ − 2yt−τ + 1.5yt

τ
,

¨̂y =
yt−2τ − 2yt−τ + yt

τ2
.

(13)

4.1. Parameter estimations

Based on the two differential parametrization of the outputs
(see (12 and (11)), we propose the following estimators

˙̂y1 = ΛT (y)q̂,

¨̂y2 = γ̂y2 − ẏ2 + ẏ1,
(14)

whereq̂ andγ̂ are the estimates ofq andγ, respectively, and
these are computed continuously according to

d

dt
q̂ =

kp1Λ(y)e1

k
k1

+ ΛT (y)Λ(y)
,

d

dt
γ̂ =

k
p2

y2e2

kd2 + y2
2

,

(15)

e1 ande2 being the measurable errors given by

e1 = ẏ1 − ΛT (y)q̂ = ΛT (Y )(q− q̂) = ΛT (y)q̃;

e2 = ÿ2 − ¨̂y2 = (γ − γ̂)y2 = γ̃y2.
(16)

Herekp1 , kp2 , kd1 andkd2 are strictly positive gains. Now, to
show that the previous estimators converge to zero, we pro-
pose the following candidate Lyapunov function:

V (q̃, γ̃) =
1
2
q̃T q̃ +

1
2
γ̃2. (17)

Differentiating the proposedV now with respect to time
along the trajectories of (15), this yields

V̇ (q̃, γ̃) = −kp1

q̃T Λ(y)e1

k
d1

+ ΛT (y)Λ(y)
− kp2

γ̃y2e2

k
d2

+ y2
2

. (18)

Applying the definitions ofe1 ande2, given in (16), it is easy
to show that

V̇ (q̃, γ̃) =
−kp1e

2
1

k
d1

+ ΛT (y)Λ(y)
− kp2e

2
2

k
d2

+ y2
2

. (19)

As V̇ is semi-definite negative we guarantee thate1 ande2

are bounded. Now, to show thate1 ande2 converge to zero,
as long ast →∞, we apply Barbalat’s Lemmaii. Integrating
both sides of (19) we obtain

k̄1

∫
e2
1ds + k̄2

∫
e2
2ds

≤
∫ t

0

(
kp1e

2
1

kd1 + ΛT (y)Λ(y)
+

kp2e
2
2

kd2 + y2
2

) ≤ V (0),
(20)

wherek̄1 andk̄2 are defined as

k̄1 =
kp1

kd1 + max
0<s≤t

ΛT ȳ(s)Λ(ȳ(s))
,

k̄2 =
kp2

kd2 + max
0<s≤t

y2
2(s)

(21)
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Notice thatk̄1 and k̄2 are well defined because statesy1

andy2 are bounded. Therefore,e1 ande2 belong toL2 space.
Now, from Eq. (19) we conclude that˙̂q and ˙̂γ are bounded.
Thus, from the Barbalat Lemma it follows thate1 ande2 con-
verge to zero as long, ast →∞. We should recall that asy2

is almost always different to zero, then clearlyγ̃ converge to
zero. Following similar arguments it is possible to show that
limt→∞ ΛT (ȳ)q̂ = 0.

However, we cannot guarantee thatq̂ converges to zero.
If we want to guarantee it, we need to impose a persistency
of excitation condition on signalsy1 andy2. And we did not
do so because it is beyond the scope of this work.

To finish this section we establish the following proposi-
tion:
Proposition 1: Consider the CS, given in (3), under assump-
tions A1 and A2. Then, the two proposed estimators (14)
assure that

‖q̂− q‖ < ε and lim
t→∞

γ̂(t) = γ (22)

for the entire set of strictly positive constantskp1 , kp2 , kd1

andkd2 , whereε is a very small positive estimation constant
(it depends on how persistent the available signals are).¥
Note: for a profound treatment on the topics of Persistency of
Excitation and Barbalat’s Lemma, we recommend books [12]
and [14].

5. Numerical Simulations

To test the performance of the proposed method a digital sim-
ulation was carried out. In this simulation the step size inte-
gration and the sampling time were chosen equal to0.001
and 0.005, respectively. The initial conditions were fixed
as x10 = −0.9, x20 = −0.15, x30 = 1.47, q̂10 = −4,
q̂20(0) = −4, q̂30 = −2 and γ̂0 = 25iii. Finally, the de-
sign gains of the two estimators were given by

kp1 = 10; kd1 = 1; kp2 = 2.5; kd1 = 0.5. (23)

Figures 2 and 3 show comparison between the estimated and
the actual values of the parameters. From these simulations,
it is concluded that the proposed method reconstructs all the
parameters aftert > 50 [seconds] with the errors|q̃| and|γ̃|
close to10−2 and10−3, respectively. We would expect it to
be possible to obtain better parameter estimation for longer
times. Besides, the estimation is improved by selecting a
smaller step size integration and a smaller sampling time than
the ones used in the previous simulation. Recall that from
(11) we haveq1 = −β(1 + a), q2 = β andq3 = βb.

FIGURE 2. Estimates for parametersq1 andq2.

FIGURE 3. Estimates for parametersq3 andγ.

6. Conclusions

We have proposed an estimation scheme for revealing the pa-
rameters of theCS on the basis of our knowledge of vari-
ablesx1 andx2, which are the available voltages of the Chua
circuit. The fact that the original system is algebraically ob-
servable and identifiable with respect to the defined outputs
allows us to obtain two differential parameterizations of the
outputs. Based on these parameterizations, two linear para-
metric estimators can be introduced to recover the desired
parameters, where the gains of the estimators are continually
adjusted by means of a gradient algorithm. The convergence
analysis of the proposed identification method is tested by the
Lyapunov method in conjunction with the Barbalat Lemma.
The performance of the identification process has been illus-
trated with numerical simulations, where the unknown pa-
rameters were obtained with very low error.
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i. Herey = [y1, y2, y
′
1, y

′
2].

ii. Lemma (Barbalat): If the differential functionf(t) has a finite

limit as t → ∞, and ifdf/dt → 0 ast → ∞. A consequence
of this Lemma is that iff ∈ L2 anddf/dt is bounded then
f → 0 ast →∞.

iii. The symbolx0 denotesx(0).
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