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Recibido el 22 de noviembre de 2006; aceptado el 10 de agosto de 2007

A new approach is suggested to explain the Peltier effect. This approach is based on the idea of the occurrence of induced thermal diffusion
fluxes in any non-uniform medium through which a d.c. electric current flows, in particular in a structure composed of two different uniform
semiconductors. These induced thermal diffusion fluxes arise to compensate for the change in thermal fluxes carried out by an electric current
(drift thermal fluxes) during their driving through the junction in accordance with the general Le Châtelier-Braun principle. The occurrence
of these thermal diffusion fluxes leads to temperature non-uniformity in the structure and, as a result, to the junction’s cooling or heating.
The general heat balance equations are obtained. It is shown that only two sources of heat exist: the Joule source of heat, and the Thomson
source of heat. They have commensurable magnitudes in the problem considered. There is no Peltier’s source of heating or cooling present.
The new equation for the Thomson heat is obtained and its physical interpretation is made. New boundary conditions for the heat balance
equation are derived. The analysis of these boundary conditions shows that the Peltier sources of heat are also absent at the junctions. It is
shown that, in the general case, the thermoelectric cooling represents the superposition of two effects, the isothermal Peltier effect and the
adiabatic Peltier effect. Both essentially depend on the junction surface thermal conductivity. The isothermal Peltier effect disappears in the
limiting case of a very small surface thermal conductivity while the adiabatic Peltier effect disappears in the limiting case of a very large
surface thermal conductivity. The dependence of thermoelectric cooling on the geometrical dimensions of the structure is discussed. It is
shown that the thermoelectric cooling (heating) is a thermodynamically reversible process in the linear approximation of the electric current
applied.
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Un nuevo enfoque es sugerido para explicar el efecto Peltier. Este enfoque está basado en la idea de la aparición de flujos de difusión
térmicos inducidos en cualquier medio no uniforme a través del cual circula una corriente de d.c., en particular en una estructura compuesta
de dos semiconductores uniformemente diferentes. Estos flujos de difusión t́ermicos inducidos aparecen para compensar el cambio de los
flujos t́ermicos llevados por una corriente eléctrica (flujos t́ermicos de deriva) durante su conducción a trav́es de la uníon de acuerdo con el
principio general de Le Chatelier-Braun. La aparición de estos flujos de difusión t́ermicos resulta en la no uniformidad de temperatura en la
estructura y, por consiguiente, el enfriamiento o calentamiento de la unión. La ecuacíon general de balance de energı́a es obtenida. Se muestra
que solamente existen dos fuentes de calor. Existe la fuente de calor de Joule y la fuente de calor de Thompson. Ambos son proporcionales al
valor de sus magnitudes en el problema considerado. Cualquier fuente de calentamiento o enfriamiento de Peltier está ausente. Es obtenida
la nueva ecuación para el calor de Thompson y es llevada fuera de sus interpretaciones fı́sicas de esta. Las nuevas condiciones de frontera
para la ecuación de balance de calor son obtenidas. El análisis de estas condiciones frontera muestra que las fuentes de calor de Peltier están
tambíen ausentes en la unión. Es mostrado que, en el caso general, el enfriamiento termoeléctrico representa la superposición de dos efectos,
el efecto Peltier isotérmico y el efecto Peltier adiabático. Ambos son esencialmente dependientes de la conductividad térmica superficial
de la uníon. El efecto Peltier isotérmico desaparece en el limitante caso de una muy pequeña conductividad t́ermica superficial mientras
que el efecto Peltier adiabático desaparece en el limitado caso de una muy grande conductividad térmica superficial. La dependencia del
enfriamiento termoeléctrico sobre las dimensiones geométricas de la estructura es discutida. Se muestra que el enfriamiento termoeléctrico
(calentamiento) es un proceso termodinámico reversible en aproximación lineal con la corriente eléctrica aplicada.

Descriptores: Termoelectricidad; enfriamiento termoeléctrico; efecto Peltier.

PACS: 72.15.Jf; 72.20.Pa

1. Introduction

Nowadays thermoelectric cooling is associated exclusively
with the Peltier effect, which was discovered in 1834 by
Peltier [1]. From the earliest papers on thermoelectrics right
up to the latest publications, this effect has been defined as
an absorption of heat or its evolution (in addition to the Joule
heat) on the junction of two conductors through which a d.c.
electric current runs (see, for example, Refs. 2 to 8). The ab-
sorption of this heat or its evolution depends on the direction
of the electric current, and per unit time it is equal to

QΠ = (Π1 −Π2) J , (1)

whereΠ1,2 are the Peltier coefficients of the conducting ma-
terials, andJ is the electric current.

In some papers (see, for example, Refs. 2 and 6) it
is emphasized that the Peltier effect manifests itself in the
thermally-uniform systems,i.e. when the temperature gradi-
ent is absent.

Thus, authors of [6] describing the Peltier effect write the
followin:, “ If an electric current is driven in a bimetallic cir-
cuit maintained at uniform temperature, heat is produced at
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one junction and absorbed at the other (Fig. 1). This is be-
cause an isothermal electric current in a metal is accompa-
nied by a thermal current~jq = Π~j , where~j is the electric
current density. Because the electric current is constant in the
closed circuit and the Peltier coefficients differ from metal to
metal, the thermal currents in the two metals are not equal,
and the difference must be produced at one junction and sup-
plied to the other to keep the temperature uniform”.

As a rule, the physical discussion of the Peltier effect
is concluded thus, and the main attention is concentrated
on the applications of this effect. Actually there are many
of them, for several reasons. Semiconductor thermoelectric
coolers (also known as Peltier coolers) offer several advan-
tages over conventional systems. They are entirely solid-
state devices, with no moving parts. Thermoelectric coolers
do not produce noise or vibrations. They have a small size
and weight. Parameters of thermoelectric coolers do not de-
pend on their space orientation. Thermoelectric coolers are
highly reliable; their lifetimes are more than 20 years. At the
same time they do not need technical servicing. Electrons
and holes are the coolants in these devices, so these kinds
of refrigerators do not use ozone-depleting chlorofluorocar-
bons, potentially offering a more environmentally responsi-
ble alternative to conventional refrigeration. They can be ex-
tremely compact, much more so than compressor-based sys-
tems. Thermoelectric devices consume d.c. electric current,
and a change int he direction of the electric current switches
this device from the cooling mode to the heating mode or
vice-versa. Precise temperature control (< ± 0.1◦C) can be
achieved with Peltier coolers. Having such advantages, ther-
moelectric coolers find a lot of applications in such areas as
consumer products (recreational vehicle refrigerators, auto-
mobile seat coolers, portable picnic coolers, motorcycle hel-
met refrigerators, residential water coolers/purifiers); labora-
tory and scientific equipment (coolers of infrared detectors,
laser diode coolers, integrated circuit coolers, heat density
measuring); industrial (PC computer microprocessors, fine
temperature control); medical instruments (pharmaceutical
refrigerators-portable and stationary, blood analysis, insulin
coolers); restaurants, hotels, bars (hotel room refrigerators,
noiseless air-conditioners, ice-makers). This list is not com-
plete and can go on and on.

At the same time it is necessary to point out disadvan-
tages of thermoelectric coolers. First of all they have a low
efficiency compared to conventional refrigerators. Present
thermoelectric devices operate at about 10% of Carnot effi-
ciency, whereas the efficiency of a compressor-based refrig-
erator is about 30% of Carnot efficiency. Thus, nowadays
the thermoelectric coolers are put expediently to use in ap-
plications where their unique advantages outweigh their low
efficiency. Although some large-scale applications have been
considered, Peltier coolers are generally used in applications
where small size is needed and the cooling demands are not
too great, such as for cooling electronic components (see, for
example, Refs. 9 and 10).

FIGURE 1. Effect Peltier [6].

Summing up, one could say that the traditional explana-
tion of the Peltier effect presupposes the following:

1. An isothermal state of the structure (bimetallic circuit),
through which an electric current flows, and conse-
quently the absence of thermal fluxes, which are pro-
portional toκ∇T (κ is the thermal conductivity,T is
the temperature). The onlythermal fluxes are those ac-
companying the electric current.

2. If need for the thermal interaction between this struc-
ture and the external heat reservoirs to maintain this
isothermal state (the presence of the Peltier heat source
and the Peltier heat sink). To keep up the isothermal
state, in this case, it is necessary to take into account
the external sources of heat.

An important question arises regarding these considera-
tions: What do authors imply by the concepts of thermoelec-
tric “cooling” or “heating” in the traditional theories? Pres-
ence of the heat fluxes from the external reservoirs into the
structure and vice versa from the structure to the external
reservoirs do not describe heating or cooling processes un-
der the condition of the structure’s isothermality.

Another question is: can the Peltier effect occur in the
thermoelectric circuit without a thermal interaction with the
surroundings at the junctions,i.e. can the Peltier effect occur
as a physical phenomenon in a structure adiabatically insu-
lated?

The answer given by cited works’ to the second question
is negative. At the same time we consider the Peltier effect
in the adiabatic structure possible if we refuse the traditional
interpretation of the Peltier effect.

From our point of view the origin of the Peltier effect is
not associated with the external Peltier heat sources or the
Peltier heat sinks. This effect can also exist in the adiabati-
cally insulated thermoelectric structure. It is necessary to un-
derstand the concepts of “cooling” or “heating” of the junc-
tions as the decrease or increase in the junction’s temperature
compared to the equilibrium temperature when the electric
current is absent. Of course, this statement contradicts the
isothermal conditions, whence the natural question immedi-
ately arises: Why does the temperature distribution appear in
the structure in the absence of external heat sources when the
electric current runs through the structure of two media? The
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answer to this question and the calculation of the mentioned
temperature distribution is the main goal of this paper.

2. The Le Châtelier-Braun Principle and the
induced thermal diffusion fluxes

Let us consider the simplest structure composed of two uni-
form semiconductors through which the electric current flows
in the directionox (Fig. 2). We suppose that the electric con-
tactsx = −d1 andx = d2 are kept at the equilibrium temper-
atureT0, the lateral surfaces are insulated adiabatically, and
the structure’s cross-sectional area is equal to the unit mea-
surement everywhere. For simplicity, we shall assume from
the beginning that a heat resistance of the junction located
at x = 0 can be neglected (this assumption will be removed
later on). This assumption implies temperature continuity at
the interfacex = 0,

T1(x = 0) = T2(x = 0), (2)

whereT1,2(x) are the temperature distributions in the first
and second samples of the structure.

Usually the thermal fluxΠ~j is named the Peltier heat
flux [3]. For the theory stated, it is more convenient to name
this heat flux a “drift heat flux” since it is associated with the
charge drift transport in the external electric field.

According to the Le Cĥatelier-Braun principle in the ir-
reversible thermodynamics [11] “some internal fluxes appear
in the system in the stationary state when an external influ-
ence affects this system, and these internal fluxes weaken the
results of this influence”. Applying this principle to our prob-
lem, one can say that the discontinuity in the drift fluxes at the
junctionx = 0 that appears due to the different Peltier coef-
ficients (Π1 6= Π2) must lead to other thermal fluxes tending
to decrease this discontinuity [12]. These thermal fluxes can
only be thermal diffusion fluxes, since the other drift heat
fluxes are absent. Thus, the temperature heterogeneity arises
inevitably in the structure in the presence of an electric cur-
rent. Due to this temperature distribution, the temperature of
the junction can be lower (thermoelectric cooling) or higher
(thermoelectric heating) than the equilibrium temperature.

FIGURE 2. Sketch of the semiconductor structure through which a
d.c. electric current passes.

FIGURE 3. Drift and induced thermal fluxes when|Π2| < |Π1|.

We do not take an interest in the magnitude of the Peltier
effect in this paper. For this reason we consider the sim-
plest structure presented in Fig. 2, assuming that it is com-
posed of twon−type semiconductors. The drift heat fluxes
~q1,2
dr = Π1,2

~j flow in this structure in the direction opposite
to the electric current direction, as it is pointed in Figs.3, 5
sinceΠ1,2 < 0 in the n- type materials [5].

Let us suppose that|Π2| < |Π1|for definiteness. In
this case the drift thermal flux increases when coming
from sample 2 into sample 1 (Fig. 3). According to the
Le Cĥatelier-Braun principle, some thermal diffusion flux
q
(1)
dif = −κ1dT1/dx(κ1 is the thermal conductivity of the

first sample) should arise in the first sample, tending to com-
pensate for this increase. It is clear that the direction of
this flux should be opposite to the direction of the drift flux
~q
(1)
dr = Π1

~j. We name these arising thermal diffusion fluxes
the “induced thermal diffusion fluxes”.

In turn, this means that the temperature of the junction
from the side of the first sample decreases in comparison
with the temperature on the surfacex = −d1. The condi-
tion of the temperature continuity (2) requires the decrease
in temperature in the junction from the side of the second
sample too, as compared with the temperature on the sur-
facex = d2. As a result, the induced thermal diffusion flux
q
(2)
dif = −κ2(dT2/x) arises in the second sample too, where

κ2 is the thermal conductivity of the second sample. Let us
notice that this thermal flux direction coincides now with the
direction of a drift heat flux~q(2)

dr = Π2
~j in this sample (Fig.3),

tending to decrease the discontinuity in drift heat fluxes.

The corresponding temperature distributions in the struc-
ture are qualitatively represented in Fig. 4. It is obvious that
at |Π2| < |Π1| and the chosen electric current direction, the
junction temperatureT (x = 0) decreases as compared with
the equilibrium temperatureT0. The lowering of the tem-
perature caused by the appearance of the induced thermal
diffusion fluxes is the essence of the Peltier thermoelectric
cooling.
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FIGURE 4. Temperature distributions in the structure when
|Π2| < |Π1|

FIGURE 5. Drift and induced thermal fluxes when|Π2| > |Π1|.

If the condition|Π2| > |Π1| takes place, and the electric
current has the same direction, the drift heat flux decreases
when passing through the junction. In this case the induced
thermal diffusion flux arises in the first sample again, but its
direction changes to the opposite, compared with the previ-
ous case (Fig. 5). Now this flux tends to increase the drift
thermal fluxq(1)

dr = Π1j, which has decreased compared with
q
(2)
dr = Π2j.

Further reasoning is similar to that used in the analysis of
the previous situation, and it leads to the temperature distri-
butions in the structure presented in Fig.6. In this case the
junction temperature increases in comparison with the equi-
librium temperatureT0, and this situation corresponds to the
Peltier thermoelectric heating.

FIGURE 6. Temperature distributions in the structure when
|Π2| > |Π1|.

Thus, we have to understand the Peltier effect as the low-
ering or raising of the junction temperature (depending on the
current direction) due to the appearance of the induced ther-
mal diffusion fluxes in the structure, but not as an evolution
or absorption of the additional heat on the junction.

The quantitative calculation of the thermoelectric cooling
or thermoelectric heating requires a solution to the heat trans-
fer equation with corresponding boundary conditions. The
following section is devoted to this calculation.

3. Energy and heat balance equations

Let us now reject the assumption about the absence of the
thermal resistance on the junctionx = 0. Instead, we shall
describe this junction by the coefficient of the surface ther-
mal conductivityη [13-15], which can take arbitrary values.
Later we shall show that the junction is described not only by
the surface thermal conductivity but by some other surface
parameters.

The required temperature distribution in the structure can
be obtained from the energy balance equation. In a steady
state, it is given by [3]:

∇ · ~w = 0, (3)

where~w = ~q + ϕ̃~j is the energy flux of charge carriers (elec-
trons or holes),~q = −κ∇T + Π~j is a total heat flux of these
carriers,ϕ̃ = ϕ − µ/e is the electrochemical potential,ϕ is
the electric potential,µ is the chemical potential, and−e is
the electron charge.

Now Eq. (3) can be rewritten in the form

∇ · ~q +~j∇ϕ̃ = 0. (4)

Here we have made the assumption that nonequilibrium
carriers are absent in the structure [16],i.e.∇ ·~j = 0. Let us
note that it is necessary to take into account the nonequilib-
rium carriers in thep− n structures [17-18].

Using the equation for the electric current
~j = −σ(∇ϕ̃ + α∇T ) [19] to eliminate the electrochemi-
cal potentialϕ̃ (σ is electric conductivity,α is the Seebeck
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coefficient), we arrive at the heat balance equation

∇ · ~q =
j2

σ
+ α~j∇T. (5)

It is easy to see, from the shape of this equation, that there
are only two sources of heat: one of them is the Joule heat,
and the other source of heat can be named the Thomson heat
due to its proportionality to the product of~j and∇T [20].

Since the temperature gradient has appeared due to the
Peltier effect we can say that the Thomson effect occurs as a
consequence of the Peltier effect in the thermoelectric cool-
ing (heating) phenomenon.

Let us note that according to our definition following
from the heat balance equation (5), the Thomson coefficient
is equal to the Seebeck coefficientα. From this definition
it follows that the Thomson heat occurs even in the case
when the Seebeck coefficient does not depend on tempera-
ture. Moreover, it is possible to claim that thermoelectrics
contains only one fundamental parameter, which is the See-
beck coefficient.

Thus, there is only one thermoelectric relationship
which was named the second thermoelectric relationship,
Π=αT [2,3]. As was shown in Ref. 3, it follows from the On-
sager’s principle of kinetic coefficients symmetry. The first
thermoelectric relationship actually determines the Thomson
coefficientτ . As follows from (5), it can be reduced to the
trivial equalityτ = α.

The Thomson coefficient was determined by the equation
τ=∂Π/∂T − α in the previous publications. The authors of
these works formed the term~j ∂Π

∂T |~r ∇T by joinig∇ · ~q with
the termα~j∇T presented on the right side of Eq. (5).

This is wrong, becauseα~j∇T is the source of heat while
~j(∂Π/∂T ) |~r ∇T is part of the thermal flux change. It is
wrong from the formal point of view. We cannot state that
the left hand side of Eq.(5) is still the complete divergence
of the thermal flux vector~q = −κ∇T + Π~j when the term
~j(∂Π/∂T ) |~r ∇T is transported to the right hand side of
Eq.(5), or that it is the divergence of another vector in this
case.

Now the sense of the Thomson heat is very transparent.
It is the charge carriers heating or cooling in the thermoelec-
tric field ~Ete = α∇T . In a certain sense, it can be named
the Joule effect associated with the thermoelectric field. The
Joule heating takes place in the electric field. It is important
to note that the Joule effect leads to heating in any case, while
the Thomson effect may lead to either heating or cooling de-
pending on the relative directions of the electric current and
the temperature gradient. The further development of these
ideas can be found in Ref. 20.

Equation (5) demonstrates that the Peltier source of heat
is absent everywhere in the structure volume, which was
noted before in this paper. For this reason, the statement
about the Peltier’s heat absorption or generation loses its
physical sense in the bulk of the structure (the analysis of
this situation at the junction is presented below).

FIGURE 7. Boundary between two samples composing the struc-
ture.

4. Boundary conditions for the heat balance
equation

Let us obtain the boundary conditions for Eq. (5). Since
Eq. (5) is an equation of the second order in relation to un-
known temperaturesT1(x) andT2(x) for two-structure sam-
ples, it is necessary to obtain four boundary conditions. Two
of them correspond to the assumptions that were made in
Sec. 2:

T1(x = −d1) = T0, (6)

T2(x = d2) = T0. (7)

To obtain the two remaining boundary conditions, let us
rewrite Eq. (5) for the one-dimensional case (ρ = σ−1):

dq

dx
= ρj2 + αj

dT

dx
(8)

or

− d

dx

(
κ

dT

dx

)
+

dΠ
dx

~j = ρj2 + αj
dT

dx
. (9)

Actually, the boundary between two media of the struc-
ture is the transition layer (medium 3) of the thickness2δ
(Fig.7), where the parameters of sample 1 continuously turn
into the parameters of sample 2 [13]. One can consider the
thickness of this layer to be zero if one is not interested in the
microscopic processes in the layer. In this case, the scattering
mechanisms in this layer become surface scattering mecha-
nisms. The experimental proofs of these surface scattering
mechanisms [21, 22] make it possible to suggest the occur-
rence of the surface kinetic coefficients, which are different
from the bulk ones. It is necessary to take into account that
these surface kinetic coefficients can change under a change
in surface thickness change, and can take on singularities in
the limiting caseδ → 0 [13].

Since our purpose is to obtain the boundary conditions
and not to obtain their microscopic values (a microscopic the-
ory of the surface relaxation processes does not exist), we
shall obtain the average surface kinetic coefficients instead of
the surface kinetic coefficients depending on the coordinates
of the transition layer2δ. At the same time, we shall take
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into account that they can change under the charge in surface
thickness.

To obtain the boundary conditions at the interfacex = 0,
let us use the approach developed in Refs. 23 and 15. The
main idea of this approach is to find a correlation between
heat fluxes at the boundary between media 1 and 3 in the
planex = −δ and at the boundary between media 3 and 2 in
the planex = δ. The further limiting transitionδ → 0 leads
to the model of the plane junction and to the concept of the
surface heat flux.

First of all let us integrate Eq. (9) by the coordinatex in
the limits from−δ to ξ, whereξ is an arbitrary point from the
region−δ < ξ < δ:

−
(

κ (ξ)
dT

dx

∣∣∣∣
x=ξ

− κ (−δ)
dT

dx

∣∣∣∣
x=−δ

)

+j (Π (ξ)−Π (−δ)) = j2

ξ∫

−δ

ρ (x) dx

+j

ξ∫

−δ

α (x)
dT (x)

dx
dx. (10)

Now let us divide Eq. (10) byκ (ξ) and integrate the ob-
tained result byξ in the limits from−δ toδ:

− (T (δ)− T (−δ)) + κ (−δ)
dT

dx

∣∣∣∣
x=−δ

·
δ∫

−δ

dξ

κ (ξ)

+j




δ∫

−δ

Π(ξ)
κ (ξ)

dξ −Π(−δ)

δ∫

−δ

dξ

κ (ξ)


 = j2

δ∫

−δ

dξ

κ (ξ)

×
ξ∫

−δ

ρ (x) dx + j

δ∫

−δ

dξ

κ (ξ)

ξ∫

−δ

α (x)
dT (x)

dx
dx (11)

Dividing Eq.(11) by

δ∫

−δ

dξ

κ (ξ)

and taking the limitδ → 0 we obtain:

η (T1 (0)−T2 (0))+jxΠs−
[
−(κ1

dT1

dx
)
∣∣∣∣
x=0

+jxΠ1 |x=0

]

= j2ρs1 + jαs1 (T2 (0)−T1 (0)) , (12)

where

η = lim
δ→0

1
δ∫
−δ

dξ
κ(ξ)

, (13)

Πs = lim
δ→0

δ∫
−δ

Π(ξ)
κ(ξ) dξ

δ∫
−δ

dξ
κ(ξ)

, (14)

ρs1 = lim
δ→0




δ∫
−δ

dξ
κ(ξ)

ξ∫
−δ

ρ (x) dx

δ∫
−δ

dξ
κ(ξ)


 , (15)

and

αs1 = lim
δ→0




1
2δ

δ∫
−δ

dξ
κ(ξ)

ξ∫
−δ

α (x) dx

δ∫
−δ

dξ
κ(ξ)


 . (16)

Equation (12) is the third boundary condition. The coef-
ficients (13)-(14) are the surface thermal conductivity and the
surface Peltier coefficients. The coefficients (15) and (16) are
the surface electric resistance and the surface Seebeck coeffi-
cients at the junction sidex = −0.

To understand the physical sense of the boundary condi-
tion (12),let us rewrite it in the following form:

qs − q1(x = 0) = τ1s. (17)

Here qs = η (T1 (0)− T2 (0)) + jxΠ̄ is the heat flux
through the boundaryx = 0,

q1(x = 0) = −(κ1
∂T1

∂x
)
∣∣∣∣
x=0

+ jxΠ1 |x=0

is the heat flux in the first medium in the planex = 0, and
τ1s = j2

xρs1 + jxαs1 (T2 (0)− T1 (0)) are the total surface
heat sources at the boundary between medium 1 and the junc-
tion. These heat sources are the surface Joule heat and the
surface Thomson heat correspondingly.

So, boundary condition (12) or (17) can be formulated in
the following way: the difference between the heat flux in
the surface layer and the heat flux in the first medium at the
boundary of this medium and this layer is equal to the surface
heat sources at this boundary.

The fourth boundary condition at the boundary between
the second medium of the structure and the surface layer can
be obtained by analogy with the procedure used above. It is
necessary to make the same calculation but to integrate at the
beginning fromξ to δ.

As a result, we reach to the following boundary equation:

−(κ2
dT

dx
)
∣∣∣∣
x=0

+ jΠ2 |x=0 − η (T1 (0)− T2 (0))− jΠs

= j2ρs2 + jαs2 (T2 (0)− T1 (0)) . (18)

Rev. Mex. F́ıs. 53 (5) (2007) 337–349



THEORY OF THERMOELECTRIC COOLING IN SEMICONDUCTOR STRUCTURES 343

Here

ρs2 = lim
δ→0

δ∫
−δ

dξ
κ(ξ)

δ∫
ξ

ρ (x) dx

δ∫
−δ

dξ
κ(ξ)

(19)

and

αs2 = lim
δ→0




1
2δ

δ∫
−δ

dξ
κ(ξ)

δ∫
ξ

α (x) dx

δ∫
−δ

dξ
κ(ξ)


 (20)

are the surface electric resistance and the surface Seebeck co-
efficient at the junction’s sidex = +0.

Boundary condition (18) can be written as

q2(x = 0)− qs = τ2s, (21)

where q2(x = 0) = −(κ2
∂T2
∂x )

∣∣
x=0

+ jxΠ2 |x=0 is the
heat flux in the second medium in the planex = 0, and
τ2s = j2

xρs2 + jxαs2 (T2 (0)− T1 (0)) are the surface heat
sources at the boundary between medium 2 and the junction.
These heat sources are also the surface Joule heat and the
surface Thomson heat but in the junction’s planex = +0.

The physical sense of boundary condition (18) or (21) is
the same as the sense of boundary condition (12) or (17): the
difference between the heat flux in the second medium and
the heat flux in the surface layer at the boundary of this layer
and this medium is equal to the surface heat sources at this
boundary.

Thus, boundary conditions (6), (7), (12) and (18) are the
complete set of equations supplementing the heat balance
equation (9).

This set of boundary conditions can be changed by adding
Eq. (12) to Eq. (18). As a result we obtain

− (κ2
∂T2

∂x
)
∣∣∣∣
x=0

+ jxΠ2 |x = 0

−
(
−(κ1

∂T1

∂x
)
∣∣∣∣
x=0

+ jxΠ1 |x=0

)
= ρsj

2
x

+ αsjx (T2 (0)− T1 (0)) , (22)

where

ρs = ρs1 + ρs2 = lim
δ→0

δ∫
−δ

dξ
κ(ξ)

ξ∫
−δ

ρ (x) dx

δ∫
−δ

dξ
κ(ξ)

+ lim
δ→0

δ∫
−δ

dξ
κ(ξ)

δ∫
ξ

ρ (x) dx

δ∫
−δ

dξ
κ(ξ)

= lim
δ→0

δ∫

−δ

ρ (x) dx (23)

and

αs = αs1 + αs2 = lim
δ→0




1
2δ

δ∫
−δ

dξ
κ(ξ)

ξ∫
−δ

α (x) dx

δ∫
−δ

dξ
κ(ξ)




+ lim
δ→0




1
2δ

δ∫
−δ

dξ
κ(ξ)

δ∫
ξ

α (x) dx

δ∫
−δ

dξ
κ(ξ)




= lim
δ→0


 1

2δ

δ∫

−δ

α (x) dx


 (24)

are the surface electric resistance and the surface Thomson
coefficient of the entire surface layerx = 0.

Boundary condition (22) can be rewritten in the following
form:

q2(x = 0)− q1(x = 0) = τs, (25)

where τs = ρsj
2
x + αsjx (T2 (0)− T1 (0)) are the heat

sources in the entire surface layer. They are the surface Joule
and Thomson sources of heat.

Thus, one can use the set of boundary equations (6), (7),
(12) and (22) instead of (6), (7), (12) and (18) or the set (6),
(7), (18) and (22).

Now we can conclude that both the heat balance equa-
tion and the set of boundary conditions contain only the Joule
and Thomson heat sources. So the Peltier’s cooling or heat-
ing origin does not associate with the absorption of heat or
its evolution in the bulk and in the junctions between media
through which a d.c. electric current passes.

5. Thermoelectric cooling and heating

The heat balance equation (5) is a nonlinear equation in the
running electric currentj. This follows from the nonlinear
terms describing the Joule and the Thomson heat. In the case
of the Thomson heat, it is necessary to take into account that
the temperature gradient in the problem considered is not cre-
ated by any external sources. It arises only due to an elec-
tric current flow. Thus, both the Joule and the Thomson heat
sources are nonlinear terms inj. As was shown in [20], these
are the values of the same order. The Thomson heat even ex-
ceeds the Joule heat in the good thermoelectric materials with
a figure-of-meritZT exceeding unit. Besides, both the coef-
ficient of thermal conductivity and the Seebeck coefficient
depend on temperature, which is a function of the electric
current.

At the same time, it is easy to see that the non-equilibrium
temperature distributions occur even in the linear approxima-
tion with respect to the electric current. So, thermoelectric
cooling or heating are linear effects in an electric current and
manifested themselves “in the pure state” only at small val-
ues of current when the Joule and the Thomson heat do not
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play a noticeable role. For this reason, it is convenient to con-
sider the problem of thermoelectric cooling just in the linear
approximation to the electric currentj.

The heat balance equation in this approximation reduces
to

∇ · ~q0 = 0, (26)

where~q0 = −κ0∇T + α0T0
~j, κ0 andα0 are the thermal

conductivity and Seebeck coefficients at the equilibrium tem-
peratureT0

Equation (26) represents the total heat flux conservation
law, which can be formulated as follows: Any change in the
drift component of the heat flux is accompanied by a change
in the thermal diffusion component of the same heat flux in
the absence of heat bulk sources and sinks. This change oc-
curs in such a way that the total heat flux remains invariable.

Let us write Eq. (26) in the form:

∇ · (κ0∇T ) = ~jT0∇α0, (27)

One can conclude from the form of Eq. (27) that any
spatial variation in the Seebeck coefficient (Peltier coeffi-
cient) leads to the appearance of thermal diffusion fluxes and,
therefore, to non-equilibrium temperature distributions. So,
thermoelectric cooling or heating occur in the sample points
where∇α0 6= 0.

The Seebeck coefficient for non-degenerate semiconduc-
tors is equal to [24]:

α0 =
kB

e

(
− µ0

kBT0
+ gn

)
, (28)

wherekB is the Boltzmann constant,µ0 is the chemical po-
tential at the equilibrium temperatureT0, gn is the coefficient
determining the momentum scattering (gn = 2 for the scat-
tering on the acoustic phonons,gn = 4 for the scattering
centers of the on the impurities,gn = 3 for the scattering on
the optic phonons at temperatures higher than the Debye tem-
perature, andgn=2.5 for the scattering on the optic phonons
at temperatures below the Debye temperature).

Assuming that the type of scattering does not change
throughout the sample, one can write that

∇α0 =
∂α0

∂µ0
∇µ0.

So, any spatial change in the chemical potential leads to the
bulk Peltier effect. One of the most important cases of this
spatial change is the non-uniform sample impurity doping.
This case was studied in detail in Ref. 25. However, other
reasons for the chemical potential uniformity can exist, if for
example, there are varied band-gap semiconductors.

Usually, in practice, the non-homogeneity occurs in the
thermoelectric modules composed of two different uniform
semiconductors withn− andp−types of conductivity, joined
by the metal plate (Fig. 8) [8].

FIGURE 8. Sketch of the thermoelectric module (Tc is the temper-
ature of the cooled junction).

The physical processes in these modules are usually
studied within a one-dimensional model (see, for example
Refs. 3, 4, 7, and 8), so that the thermoelectric module can be
simulated by the same structure represented as that in Fig.2.
The metal plate between two branches of the thermoelec-
tric module does not essentially influence the thermoelectric
cooling since the Seebeck coefficient is very small for metals,
and we do not take it into consideration. Nevertheless, as was
mentioned in Sec. 2, we consider the structure composed of
n− type semiconductors for simplicity.

The heat balance equation for each structure’s sample re-
duces in this case to the trivial equation,

d2T1,2(x)
dx2

= 0. (29)

Boundary conditions at the planesx = −d1 andx = d2

remain the same [see Eqs. (6) and (7)],

T1(x = −d1) = T2(x = d2) = T0. (30)

Boundary conditions (22) and (12) reduce to the follow-
ing linear equations in j:

κ1
dT1

dx
|x=0 −Π1j = κ2

dT2

dx
|x=0 −Π2j (31)

and

η [T1(x = 0)− T2(x = 0)] = −κ1
dT1

dx

∣∣∣x=0 + Π̃1j , (32)

whereΠ̃1 = Π1 −Πs.
Here and below, up to Sec. 7, all kinetic coefficients are

assumed to depend on the temperatureT0.
Boundary condition (31) describes the bulk heat

flux continuity at the boundary of two media
[q1(x = 0) = q2(x = 0)] in the absence of heat sources and
sinks at the interfacex = 0. Boundary condition (32) de-
scribes the continuity of the bulk heat flux in medium 1 and
the surface heat flux,q1(x = 0) = qs.
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An equation which is similar to Eq. (32) could also be
written for the second sample of the structure, nevertheless,
it is unnecessary for the correct statement of the problem.

Equations(29) together with the boundary conditions
(30)-(32) result in the following temperature distributions:

T1,2 = T0

{
1±

[
Π̃1,2 ± ηd2,1

κ2,1
(Π1 −Π2)

]

× j (d1,2 ± x)

T0κ1,2

[
1 + η

(
d1
κ1

+ d2
κ2

)]


 ,

( −d1≤x≤0
0≤x≤d2

)
, (33)

hereΠ̃2 = Π2 −Πs.
The second term in the square brackets of Eq. (33) deter-

mines the contribution of the Peltier effect to the temperature
distribution in the structure with a finiteη. It corresponds
to the Peltier thermoelectric heating or cooling considered in
the Introduction. As has been shown in Ref. 26, the value
(Π1 −Π2) j determines the change in kinetic energy flux at
the junction.

Let us note that the temperature distributions (33)
strongly depend on the junction surface thermal conductiv-
ity. In addition, they include two independent parts. The
second term in the square brackets of Eq. (33) corresponds
to the well known Peltier effect atη → ∞ (the first term is
absent for this condition). The contributions of this term to
the total effect of thermoelectric cooling decreases for a de-
crease in surface thermal conductivity, while the contribution
of the first term increases in this case. For the adiabatic junc-
tion (η → 0), the second term vanishes while the first term
manifests itself maximally.

6. Isothermal and adiabatic peltier effects

The first term in the square brackets of Eq. (33) determine
a new effect of cooling or heating which is not reduced to
the known Peltier effect. First of all, it is determined by the
difference in the bulk and surface Peltier coefficients but not
by the difference in the bulk Peltier coefficients. This implies
that this effect can be observed in the structure composed of
two identical materials, and even in the slab in contact with
external heat reservoirs [20]. This radically distinguishes it
from the well-known Peltier effect. We have named this ef-
fect the “adiabatic Peltier effect” since it manifests itself in
the pure form for small values of the surface thermal conduc-
tivity (adiabatic junction). The thermoelectric cooling (heat-
ing) associated with the second term in the square brackets of
Eq. (33) can be named the “isothermal Peltier effect”, since it
manifests itself in its pure form for large values ofη (isother-
mal junction). Actually, this is the Peltier effect discussed in
all previous literature.

In the general case, both the isothermal and adiabatic
Peltier effects occur simultaneously and are inseparable from
each other except for the limiting cases of infinitely large
and infinitely small surface thermal conductivity. The cor-

responding criteria, as is well seen from Eq. (33), are

η À d1

κ1
,
d2

κ2

and

η ¿ d1

κ1
,
d2

κ2
.

These criteria are known as the isothermal and adiabatic con-
ditions of a junction separating two bounded media [27]. Let
us note that the isothermal condition is implemented more
easily for longer samples, while the adiabatic condition is im-
plemented more easily for shorter samples.

Thus, the decrease in surface heat conductivity reduces
the heating or cooling of the junction due to the isothermal
Peltier effect. The disappearance of this effect in the case of
the adiabatic insulation of the junction can be explained by
the fact that the ”drift” heat flux in this case is completely
compensated for the induced thermal diffusion flux in each
sample of the structure. This induced thermal flux takes on
the maximum value due to the maximal action of the adia-
batic Peltier effect atη → 0. This can easily be seen from
boundary condition (32).

It is clear that there is some value ofη at which both ef-
fects may make a comparable contribution to the thermoelec-
tric heating or cooling.

To understand the physical essence of the adiabatic
Peltier effect, we shall consider the structure composed of
two identical materials (Π1 = Π2 = Π andκ1 = κ2 = κ).
Let us suppose for definiteness that the geometrical sizes of
this structure are the same as those shown in Fig. 2.

Now the drift heat fluxes are equal in both samples of the
structure in magnitude and are directed opposite to the elec-
tric current.

Let us first suppose that the junction is isothermal. In this
case, the structure represents a homogeneous semiconductor
from the point of view of heat conductivity. In this semi-
conductor, the induced thermal diffusion fluxes are equal to
zero because the temperatures on the surfacesx = −d1 and
x = d2 are maintained by the external heat reservoirs at tem-
peratureT0.

Induced thermal diffusion fluxes will occur in each sam-
ple of the structure for any non-zero surface thermal resis-
tance. In this case, they have the equal magnitudes and are in
the same direction. The thermal diffusion flux in the left sam-
ple always enters the junction, while the thermal diffusion
flux in the right sample always leaves it. The induced tem-
perature distributions arising in the structure are qualitatively
represented in Fig. 9. It follows from Eq. (33) and this figure
that the temperature gradient is continuous on the interface,
while the temperature undergoes the discontinuity here. This
discontinuity essentially depends on the magnitude of the sur-
face thermal conductivityη, as follows from Eq. (33). The
temperature differenceT1(x = 0)−T2(x = 0) increases with
a reduction inη, which results in an increase in the thermal
fluxes in both the samples. Conversely, this difference de-
creases simultaneously with a decrease in the thermal fluxes
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for an increase inη. In the limiting case of the isothermal
contact (η À d1/κ1, d2/κ2), T1(x = 0) = T2(x = 0) = T0,
and the thermal fluxes disappear in the structure. In this case,
the adiabatic Peltier effect disappears too.

Let us notice that the surface heat conductivity can be rep-
resented simplistically asη = limls→0(κs/ls)[see Ref. 13],
wherels = 2δ is the thickness of the transitive layer,κs is
the thermal conductivity of this transitive layer. Generallyκs

can depend onls in that limiting transition. One can suppose
that the following cases are possible:

a) κs has a finite value atls tending to zero;

b) κs tends to zero at the same speed asls;

c) κs tends to zero at a higher speed thanls.

In the first case, the surface heat conductivity tends to in-
finity, so this situation describes the isothermal junction. The
junction is determined by the finite surface heat conductivity
in the second case, and this case is general. The third case
corresponds to the adiabatic insulation of the junction. Fi-
nally, we can say that the dependence of both thermoelectric
effects onη comes down to the question of the dependence
of the thermal conductivity of the transitive layerκs on the
thickness of this layer. This question, however, requires a
separate study and is not a subject of the present work.

The adiabatic Peltier effect in the case under con-
struction of the structure composed of identical materials
(Π1 = Π2, κ1 = κ2) can occur only at different lengths
of the left and right samples. As it is well seen from Fig. 9,
|T1(x = 0)− T0| = |T2(x = 0)− T0| at d1 = d2, i.e. the
warming up of the right-hand area adjoining the junction is
compensated for completely by the cooling of the left-hand
area adjoining the junction, and the adiabatic Peltier effect is
absent. Either heating of the junction or its cooling prevails
at different sample lengthsd1 6= d2. So, the temperature
T1(x = 0) decreases as compared withT0 for an increase
in the left sample length. On the contrary, the temperature
T2(x = 0) rises as compared withT0 for an increase in the
right sample length.

FIGURE 9. Induced thermal fluxes and the temperature distribu-
tions caused by the adiabatioc Peltier effect in the structure with
the same materials.

FIGURE 10. Induced thermal fluxes and temperature distributions
caused by the adiabatic Peltier effect in the structure with different
materials when|Π1| < |Π2|.

It is possible to explain this fact by noticing that the drift
thermal fluxq=

drΠj does not vary with the change of the sam-
ple lengths. For this reason, the induced thermal diffusion
flux does not vary either, and

q
(1,2)
dif = −κ

dT1,2

dx
∝ T1,2(x = 0)− T0

d1,2
= Const.

It is clear from this equation that an increase ind1,2 results in
an increase the differenceT1,2(x = 0)− T0, i.e. the junction
is cooled more intensively.

The basic reasoning regarding the physical interpretation
of the adiabatic Peltier effect remains the same if the struc-
ture is made from different materials. In this case, the values
of the induced thermal diffusion fluxes on the right-hand side
and on the left-hand side of the junction are different. This
circumstance results in a discontinuity in both the tempera-
ture and the thermal diffusion fluxes on the junction. The
temperature distributions caused by the adiabatic Peltier ef-
fect are represented in Fig. 10 for the case|Π1| < |Π2|.

From Eq. (33) it follows that the junction heating or cool-
ing (depending on the direction of~j) which is associated with
the isothermal Peltier cooling rises with an increase in the
sample lengthsd1 andd2 too.

This fact can be understood from the following reasoning:
Let η be so large that only the isothermal Peltier effect occurs
in the structure. The change in the drift fluxes(Π1 −Π2) j
does not depend on the change in lengths and remains the
same with varying values ofd1 and/ord2. As follows from
the total heat flux conservation law (31), the change of the
induced thermal diffusion fluxes should not vary either, so
κ1(dT1/dx) − κ2(dT2/dx) = Const. The left side of this
equation can be rewritten as

(
κ1

d1
+

κ2

d2

)
[T (x = 0)− T0] = Const, (34)
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if we take into account the condition of the tem-
perature continuity on the junction (2), where
T (x = 0) = T1(x = 0) = T2(x = 0).

From Eq.(34) it follows that any increase in the
lengthsd1 and/or d2 increases the temperature difference
T (x = 0)−T0, i.e., results in a greater heating of the junction
or a deeper cooling of it.

The dependence of the maximal temperature cooling on
the thermoelectric leg lengths in the cooling modules has
been pointed out earlier in the experimental works [28,29].

The average temperature of the junctionx = 0 in the gen-
eral case is determined by the action of both isothermal and
adiabatic Peltier effects,

T̄ =
T1(x = 0) + T2(x = 0)

2

= T0

{
1 +

[
1
2

(
Π̃1d1

κ1
− Π̃2d2

κ2

)

+
ηd1d2

κ1κ2
(Π1 −Π2)

]
j

T0

(
1 + ηd1

κ1
+ ηd2

κ2

)
}

(35)

It follows from Eq.(35) that the average temperature of
the junction due to the isothermal Peltier effect depends on
the difference between the parametersΠ1 andΠ2, as was al-
ready mentioned earlier. The contribution of the adiabatic
Peltier effect to the average temperature is determined by the
difference between other parameters,Π̃1d1/κ1 andΠ̃2d2/κ2.
Since the parameters determining heating or cooling in both
effects are different and independent, the isothermal and adi-
abatic Peltier effects can amplify each other or, on the con-
trary, suppress each other.

In the limiting case of the isothermal contact
(η À κ1/d1, κ2/d2), the adiabatic Peltier effect disappears,
and the average temperature is determined only by the
isothermal Peltier effect,

T̄ (x = 0) = T0

[
1 +

Π1 −Π2

T0 (κ1/d1 + κ2/d2)
j

]
. (36)

In another limiting case, when the junction is adiabati-
cally insulated(η ¿ κ1/d1, κ2/d2), the average temperature
of the junction is only determined by the adiabatic Peltier ef-
fect:

T̄ (x = 0) = T0

[
1 +

1
2T0

(
Π̃1

κ1/d1
− Π̃2

κ2/d2

)
j

]
. (37)

From this equation, the possibility of heating or cooling
in the structure with the same materials is easily seen. When
Π1 = Π2 = Π andκ1 = κ2 = κ, the average temperature is
equal to

T̄ (x = 0) = T0

[
1 +

Π̃j

2T0κ
(d1 − d2)

]
, (38)

and heating or cooling is only determined by ratio of the the
sample lengths. Here,̃Π = Π1 −Πs = Π2 −Πs.

FIGURE 11. Temperature distributions which is caused by the adi-
abatic Peltier effect in the p-n structure.

Let us notice that all the equations obtained above remain
true for the structures composed of semiconductors with the
p− type conductivity. It is only necessary to take into account
thatΠ1,2 > 0 in this case.

The Peltier effect occur at the junction of semiconduc-
tors with the electron and hole conductivities too. However,
the thermoelectric processes in this case essentially depend
on the recombination rates in areas adjoining to the junction
(see Refs. 16 to 18, and 26). In the case of an infinitely strong
recombination, all the equations of this paper are correct. The
essential difference between this case and the previous ones is
that now the material with the n-type conductivity is charac-
terized by the Peltier coefficientΠn < 0, while the material
with the p-type conductivity is characterized by the Peltier
coefficientΠp > 0. In this case both areas adjoining to the
junction will be heated or cooled (depending on the direction
of the electric current) simultaneously (Fig.11), and the effect
of thermoelectric cooling (heating) is more intensive.

In fact, let us assume for simplicity that

a) the structure represented in Fig.2 is composed of
p−andn materials identical in length, and with equal
values of the coefficients of thermal conductivity
(d1=d2=d, κ1=κ2=κ);

b) the recombination rate onp − n junction is infinitely
high;

c) the Peltier coefficients of both materials are equal in
absolute magnitude (Π1 = −Π2).

In this case, it follows from Eqs. (36), (37) that the
isothermal and adiabatic Peltier effects have same result

T̄ (x = 0) = T0

(
1− |Π| d

T0κ
j

)
, (39)

where|Π| = |Π1| = |Π2|. The last equation shows that the
isothermal and adiabatic Peltier effects are commensurable in
the structure considered.
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7. Reversibility of the thermoelectric cooling
process

In this section, let us briefly discuss the question of the re-
versibility of the thermoelectric cooling process. Discussions
about the thermoelectric phenomena reversibility have been
conducted since Thomson [30]. As was mentioned in Ref. 3,
“Thomson has applied the first and second laws of thermo-
dynamics for analysis of the thermoelectric phenomena, con-
sidering the thermoelectric processes to be reversible. The
proportionality of the Peltier and the Thomson heats to the
electric current, and hence the circumstance that absorption
of these heats is changed with the change in direction of the
electric current and vice versa, leads to the natural suppo-
sition that processes in the Peltier effect and the Thomson
effect are reversible from the thermodynamic point of view.

. . . At the same time it is necessary to emphasize that
Thomson himself expressed doubts regarding the correctness
of applying the thermodynamics of reversible processes to
the analysis of thermoelectric phenomena. His argument was
that the electric current running is irreversible and associates
with the irreversible evaluation of the Joule heat which is
quadratically dependent on the current.

The proportionality of the Peltier effect to an electric
current and, hence, the change of the cooling to heating or
vice versa with the change in direction of an electric current,
makes the assumption that the Peltier effect is a reversible
thermodynamic process quite natural. On the other hand, it
is difficult to consider a process reversible if it contains an
irreversible process the heat conductivity.

. . . Thomson’s theory was the object of sharp criticism
from Boltzmann. He pointed out that the irreversibility as-
sociated with the Joel heat can be neglected for small elec-
tric currents, while the irreversibility associated with thermal
conductivity is quite significant. This process, like the Thom-
son effect is proportional to the temperature gradient and can-
not be counted as negligibly small.

We have our own point of view regarding this problem.
It does not coincide with the point of view stated in Refs. 31
and 32.

As was shown in this paper, the Peltier heat sources
are absent and the thermoelectric cooling (heating) effect is
caused by the induced thermal diffusion fluxes. These ther-
mal diffusion fluxes occur already in the linear approximation
by the electric current. The corresponding temperature gradi-
ents are proportional to the electric current. At the same time,
any irreversible source of heat is absent in this approximation.
Under this condition the entropy flux does not change, and
this circumstance points to the reversibility of thermoelectric
cooling.

To be sure of it, let us write the entropy balance equation.
Based on Eq. (5), it is easy to obtain

∇ · ~s =
ρj2

T
+

κ (∇T )2

T 2
, (40)

where~s = ~q/T is the entropy flux.

Let us note that there are only two sources of the entropy
associated with the Joule heat and the irreversible thermal
conductivity process. The Thomson heat does not deposit to
the entropy growth. Formally, it is connected with the mod-
ified definition of the Thomson heat [see Eq.(5)]. Certainly
there is a deeper physical reason for this circumstance requir-
ing its additional study.

In the linear approximation (the condition of the thermo-
electric cooling occurrence in the pure state), Eq.(40) reduces
to

∇ · ~s0 = 0, (41)

where~s0 = (~q0/T0) is the linear entropy flux.
The entropy flux in this approximation does not change,

and that proves the statement about the reversibility of ther-
moelectric cooling (heating).

From our point of view, this entropy constancy is asso-
ciated with the simultaneous presence of two thermal fluxes
in the cooling (heating) process, namely with the drift ther-
mal flux and the thermal diffusion flux. The entropy change
from part of one thermal flux is completely compensated by
the entropy change from part of the other thermal flux. As a
result, the total entropy change in the cooling or heating pro-
cess is equal to zero. This statement can be considered to be a
strict formulation of the Le Cĥatelier-Braun principle for the
thermoelectric processes of cooling or heating.

The process of thermoelectric cooling or heating becomes
irreversible if we take into account the nonlinear sources of
entropy.

8. Conclusions

Two thermoelectric effects, the isothermal and adiabatic
Peltier effects, always occur simultaneously when an electric
current flows through a non-uniform medium such as a non-
uniformly doped semiconductor slab with the boundaries
having finite surface thermal conductivity, varied band-gap
semiconductors, semiconductor structure composed from
two materials and so on. Its total action determines the heat-
ing or cooling of this junction at the finite surface heat con-
ductivity. Heating or cooling due to these effects is explained
by the appearance of induced thermal diffusion fluxes but not
by the evolution or absorption of heat on the junction. These
induced thermal diffusion fluxes appear in accordance with
the general Le Cĥatelier-Braun thermodynamic principle ap-
plied to the electric and heat transfer processes in a heteroge-
neous medium.

The adiabatic Peltier effect is a new thermoelectric ef-
fect in isotropic media and can supplement the set of well-
known thermoelectric effects such as the Seebeck, Peltier,
and Thomson effects.

The Peltier effect is frequently considered to be opposite
to the Seebeck effect, and vice versa. The reason for this is
that an electric current generates a non-uniform spatial tem-
perature distribution in the case of the Peltier effect, while a
given non-uniform temperature distribution creates an elec-
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tric current in a closed thermoelectric circuit in the case of
the Seebeck effect.

From our point of view the physical basis of this corre-
spondence lies in the Le Châtelier-Braun principle. Indeed,
the appearance of the temperature heterogeneity in the Peltier
effect is caused by the appearance of an induced compensat-
ing thermal diffusion flux. A thermal diffusion flux is given
in the Seebeck effecta priori. According to the Le Cĥatelier-
Braun principle, some compensating thermal flux must ap-
pear in a thermoelectric circuit in this case also. Only the

drift thermal flux accompanied by the electric current can ap-
pear to be tending to compensate for the thermal diffusion
flux.
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