Estudio de la conductividad del sistema amorfo Li_2S - Sb_2S_3 - P_2S_5

Z. Nagamedianova y E.M. Sánchez

Laboratorio de Investigación del Vidrio, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León,

e-mail: info_labiv@yahoo.com

Recibido el 5 de enero de 2006; aceptado el 27 de abril de 2007

Existe un gran interés hacia los vidrios sulfuros debido a la alta conductividad inherente del ion litio en estos compuestos, dada la polarizabilidad del ion sulfuro. En el presente trabajo se presenta un estudio sistemático de la conductividad del sistema vítreo Li₂S-Sb₂S₃-P₂S₅ y se discute su posible aplicación en baterías de estado sólido. La síntesis de vidrios fue realizada por el método de fusión-templado y su amorficidad fue confirmada mediante el uso de difracción de rayos X (DRX), microscopía y calorimetría diferencial de barrido (CDB). La conductividad de estos vidrios fue analizada por medio de espectroscopia de impedancia (EI). La conductividad iónica de las muestras alcanzó valores del orden de μ S/cm a temperatura ambiente, que permite ubicarlos como electrolitos sólidos de litio. Además, se reportan los valores de energía de activación y factor preexponencial de acuerdo al modelo de conductividad lineal tipo Arrhenius y por otro lado se ajustaron los datos de impedancia con un modelo de circuito equivalente del tipo R(RQ)(RQ). Los resultados son comparables a otros tiovidrios de litio basados en P₂S₅, SiS₂, GeS₂, As₂S₃ etc. Aunque las conductividades iónicas obtenidas no son suficientes para aplicaciones en baterías tradicionales, estos nuevos vidrios podrían ser utilizados en microbaterías de estado sólido de litio en forma de las películas delgadas.

Descriptores: Baterías de litio; conductores iónicos sólidos; vidrios sulfuros; espectroscopía de impedancia.

There is a great interest in sulfide glasses because of their high lithium ion conductivity. This work presents the study of new glasses based on Li₂S-Sb₂S₃-P₂S₅ system which are ionic lithium conductors with possible application in solid state batteries of lithium. The synthesis of glasses has been performed by classical quenching technique and glassy nature was confirmed by various techniques as X-Ray Diffraction (XRD), Microscopy and Differential Scanning Calorimetry (DSC). Conductivities have been determined by Impedance Spectroscopy (IS). Some compositions of high lithium content have presented ionic conductivities close to 10^{-6} S/cm at room temperature that permits to consider them as solid lithium conductors. In addition, the values of activation energy, E_a, pre-exponential factors,g σ_0 , and circuit equivalent model R(RQ)(RQ) were reported. The results are comparable to those ones of other lithium glasses based on P₂S₅, SiS₂, GeS₂, As₂S₃ etc. Despite ionic conductivities are insufficient for application on common batteries, those new glasses based on Li₂S-Sb₂S₃ and prepared as thin films could be used on solid state microbatteries of lithium.

Keywords: Lithium batteries; solid ionic conductors; sulfide glasses; impedance spectroscopy.

PACS: 82.47.-a; 82.47.Aa

1. Introducción

En los últimos años se presenta un gran interés por el estudio de los sólidos conductores iónicos, cuya aplicación como electrolitos en las baterías de estado sólido es de suma importancia tecnológica. Las baterías de litio tienen una posición importante en el mercado debido a sus características destacables, como alta densidad energética, altos potenciales y bajas descargas, lo que resulta en sus aplicaciones exitosas en telefonía móvil y computadoras portátiles principalmente. Observamos en la Fig. 1 un gráfico de la densidad energética $(W-H-Kg^{-1})$ vs. la densidad específica $(W-H-dm^{-1})$ construida originalmente por Tarascon [1], que nos indica claramente las diferencias en contenido energético entre las principales baterías secundarias (recargables) que existen actualmente y donde observamos cómo el bajo peso equivalente (6.9 g/eq) del litio implica un alto contenido energético por peso y volumen infiriéndole su característica deseable de portabilidad. Hoy en día, continúa la investigación y el desarrollo de nuevos materiales, diseños y métodos de fabricación para las baterías de litio con objeto de mejorar sus características técnicas [2].

Las baterías secundarias de litio están constituidas por un cátodo de intercalación (LiCoO₂, $Li_2Mn_2O_4$, Li_xVO_4), un

ánodo sólido (litio metálico o Li_xC , entre otros) y un electrolito líquido como conductor de iones litio (generalmente una sal orgánica de litio disuelta en un solvente aprótico) con la capacidad de realizar un buen contacto con los electrodos. Sin embargo, también existen desventajas importantes, como la formación de dendritas y capas pasivas en la interfase litio/electrolito, corrosión de electrodos, evaporación y des-

FIGURA 1. Comparación [1] de las densidades energéticas de diferentes baterías recargables.

composición de solventes, los que originan mal funcionamiento de la batería [3]. El uso de electrolitos sólidos es una alternativa viable y podría evitar ese tipo de dificultades.

Existe un gran interés en estudiar la conductividad iónica en materiales vítreos, dado que presentan ventajas significantes ante los conductores sólidos cristalinos, como la conductividad isótropa, ausencia de fronteras de grano y facilidad de obtención en películas delgadas para fabricación de baterías compactas [4]. De tal suerte que los vidrios con litio han sido estudiados intensivamente durante los últimos años [5-6], y se ha demostrado que las mejores conductividades iónicas de ion litio la presentan los vidrios base sulfuro [7-8], alcanzando valores a temperatura ambiente del orden de mS/cm para los sistemas de LiI-Li₂S-P₂S₅ [9] ó LiI-Li₂S-SiS₂ [10] entre otros. El sistema vítreo Li_2S - Sb_2S_3 - P_2S_5 ha sido estudiado recientemente en nuestro laboratorio [11-12] y en esta contribución reportamos la conductividad en función de la cantidad relativa de Li2S y asimismo realizamos un ajuste de datos de impedancia utilizando el modelo de circuito eléctrico R(RQ)(RQ).

2. Condiciones experimentales

2.1. Síntesis y determinación de la naturaleza vítrea

Para preparar los vidrios base sulfuro es necesario utilizar altas velocidades de enfriamiento para evitar la cristalización, y por el otro lado, dada la naturaleza higroscópica del Li₂S, es necesario utilizar una atmósfera inerte y seca para evitar la oxidación e hidrolizado de los reactivos y de los productos. Nosotros utilizamos la técnica tradicional de "fusióntemplado", que consiste en fundir cuidadosamente la mezcla de reactivos y templarla (enfriarla rápidamente). Los reactivos utilizados fueron el sulfuro de litio (Li₂S, 99.9 % de pureza), de antimonio (Sb₂S₃, 98 % de pureza) y de fósforo (P₂S₅, 99% de pureza), yoduro de litio anhídrido (LiI, 99.93 %) y fosfato de litio (Li₃PO₄), todos de Sigma-Aldrich. Por ser sensibles al aire y a la humedad, el manejo de los reactivos se realizó dentro de una caja seca (con atmósfera de argón). Por ser volátiles y oxidables al calentar, su fusión se realizó con la técnica de tubo de cuarzo sellado en vacío. Previamente los tubos se recubrieron con carbono amorfo (por descomposición pirolítica de acetona) para evitar el ataque de Li₂S al dióxido de silicio. Las cantidades estequiométricas correspondientes a las composiciones del sistema xLi_2S -(1-x) [yP_2S_5 -(1-y)Sb $_2S_3$] (donde x, y son porcentajes molares de Li₂S y P₂S₅, respectivamente) se molieron en mortero de ágata y 0.4-1.5 g de la mezcla se sellaron en vacío en un tubo de vidrio de cuarzo. Los tubos sellados con la mezcla de reactivos en el interior se calentaron de 900 a 1100°C durante 30 minutos y se templaron en agua helada o nitrógeno líquido y posteriormente se transfirieron de nuevo a la caja seca para separar el producto.

Se utilizó difracción de rayos X (DRX, CuK α , $\lambda = 1.5418$ Å, Siemens D5000) para verificar la formación de fase amorfa por la ausencia de los picos de cristalización. Pa-

ra evaluar el comportamiento térmico del material, las muestras fueron analizadas por la técnica de CBD (calorimetría de barrido diferencial Shimadzu DSC-50) bajo atmósfera de Ar a una velocidad de calentamiento de 10°C/min. La presencia de la temperatura de transición vítrea (T_g) nos permitió concluir la naturaleza vítrea de la muestra. Las temperaturas y entalpías del equipo fueron calibradas por los metalesestándar de In, Sn, Pb, Zn y Al (todos de 99.999% de pureza) y la precisión de las mediciones de temperaturas fue de $\pm 0.1\%$.

2.2. Determinación de la conductividad

Las muestras adecuadas para medición de conductividad fueron preparadas en forma de pastillas prensadas y recubiertas por ambos lados con oro depositado en vacío (Pelco SC-7) y las dimensiones de las pastillas fueron de 5 mm de diámetro y de grosores alrededor de 0.5 mm, medidas con exactitud con un microscopio estereoscópico (National Instruments Microscope DC3-420T). Las conductividades eléctricas de las muestras fueron determinadas por espectroscopía de impedancia utilizando un potenciostato/galvanostato PCI4/750 (Gamry Instruments), equipado con un analizador de respuesta a la frecuencia (FRA, por sus siglas en inglés). Los espectros se obtuvieron con un barrido de frecuencias desde 100 kHz hasta 0.2 Hz aplicando el voltaje sinosoidal de baja amplitud de 10 mV. Para calcular las conductividades a corriente directa (σ_{CD}) a diferentes temperaturas (en el intervalo $25 - \sim 120^{\circ}$ C) se utilizó la siguiente ecuación:

$$\sigma_{CD} = \frac{t}{A} \cdot \frac{1}{R_{CD}},\tag{1}$$

donde (t/A) es el parámetro de la celda, R_{CD} es la resistencia a corriente directa obtenida de la intersección de la impedancia real (Z') cuando la imaginaria (Z") tiende a cero en el gráfico de Nyquist y $\sigma_{muestra}$ es la conductividad de la muestra. Las mediciones de impedancia se llevaron a cabo a diferentes temperaturas con una máxima variación de ± 0.1 °C.

Debido a la dificultad del manejo de las muestras higroscópicas de todas las composiciones preparadas para la caracterización electroquímica, fueron escogidas las más representativas y de mayor interés:

- a) Sistema binario Li₂S–Sb₂S₃: Sb₂S₃ puro, cristalino y vítreo, que en su forma cristalina se reporta como un semiconductor y 0.10Li₂S–0.90Sb₂S₃, el vidrio más estable del sistema binario.
- b) Sistema ternario Li₂S–P₂S₅–Sb₂S₃: las composiciones marcadas en el diagrama ternario (Fig. 2) correspondientes a xLi₂S–(1-x)[0.4P₂S₅–0.6Sb₂S₃], x=0-0.50, debido a continuidad del aumento del contenido de Li₂S hasta el valor máximo obtenido para 50 % molar.
- c) Dopado con LiI en el sistema yLiI-(1-y) $(Li_2S-P_2S_5-Sb_2S_3)$, donde y = 0.05, 0.10;

FIGURA 2. Definición de las composiciones vítreas [12] en el sistema Li_2S - Sb_2S_3 - P_2S_5 .

d) Dopado con yLi₃PO₄-(1-y)(Li₂S–P₂S₅–Sb₂S₃), donde y = 0.05, 0.10.

3. Resultados y discusión

3.1. Región y naturaleza vítrea del sistema Li_2S - Sb_2S_3 - P_2S_5

Tres factores importantes se tomaron en cuenta para determinar si las muestras preparadas fueron vítreas:

- a) Brillantez y homogeneidad.
- b) Ausencia de los picos de cristalización en el difractograma DRX.
- c) Aparición de la temperatura de transición vítrea en el termograma CBD.

En la Fig. 2a se muestra un difractograma típico de una muestra recién templada, junto con el de la misma muestra sometida a un tratamiento térmico adecuado (3 hr. a una temperatura de 50°C por encima de la transición vítrea) para inducir la cristalización y denotar las diferencias entre los picos agudos por las difracciones del material policristalino a la de una sola banda ancha y difusa de un material no cristalino o amorfo. En la Fig. 2b se muestra, un termograma de la misma muestra donde se indica la pequeña absorción de calor asociado a la transición vítrea y la gran evolución de calor debido al proceso de cristalización. Si a estas dos evidencias le sumamos la apariencia brillante (Fig. 2c) podemos afirmar que hemos logrado una muestra de naturaleza vítrea. Todas las composiciones estudiadas están resumidas en el diagrama ternario (Fig. 2d), donde las composiciones que forman las fases vítreas están anotados como círculos abiertos y donde vemos que la introducción del segundo formador de vidrios P₂S₅ ayuda a vitrificar el sistema y conduce al incremento del contenido de Li₂S en vidrios (de 17 % hasta 60 % molar), que es más conveniente para el uso como electrolitos sólidos

en baterías [13]. Teniendo en cuenta estos factores y utilizando condiciones de síntesis mencionadas previamente, se obtuvieron las siguientes regiones vítreas:

$$xLi2S - (1 - x)Sb2S3 - x = 0 - 0.17$$

vidrios de color gris brillante;

$$yP2S5 - (1 - y)Sb2S3 - y = 0 - 0.40$$

vidrios de color violeta;

$$xLi2S - (1-x)[yP2S5 - (1-y)Sb2S3]$$

vidrios de color anaranjado-rojo;

cuando	y = 0.20,	x = 0-0.30;
cuando	y = 0.40,	x = 0-0.50;
cuando	y =0.60,	x =0.30-0.60;
cuando	y = 80,	x = 0.40-0.60.

Los detalles de las difracciones y mediciones térmicas fueron recientemente publicados [11-12].

3.2. Conductividades en el sistema Li₂S-Sb₂S₃-P₂S₅

3.2.1. Sistema binario Li_2S - Sb_2S_3

El Sb₂S₃ cristalino, el Sb₂S₃ y el $0.1Li_2S-0.9Sb_2S_3$ vítreos son conductores electrónicos con conductividades específicas bajas. En la Fig. 3 se muestra el plano complejo de impedancia tipo Nyquist (-Z"vs. Z'); se muestra para el Sb₂S₃ vítreo a diferentes temperaturas. Esto se determinó por la forma del semicírculo sin espiga que indica que no existe el bloqueo de los portadores de carga (electrones) en la superficie con el electrodo de oro [14]. La conductividad electrónica presente en el Sb₂S₃ vítreo se reduce drásticamente con la adición de 10% de Li₂S (ver inserto en la Fig. 3); es un comportamiento similar a la adición de Li₂O al sistema vítreo TeO₂-V₂O₅ [15] donde la adición inicial del álcali a un conductor

FIGURA 3. Espectro en el plano Nyquist para el conductor electrónico Sb_2S_3 vítreo. En el inserto se indica el efecto de añadir 10% de Li₂S a la conductividad de y a la energía de activación E_a.

Rev. Mex. Fís. 53 (4) (2007) 228-234

TABLA 1. Kesumen de prophedades de transporte electrico de $L_{12}S - P_2S_5$ -S b_2S_3 sistema.										
		х,	у,	σ_{DC} , 25°C	E_a		Tipo de			
N°	Composición		dop	S/cm	eV	$\log \sigma_{ m w}$ Nyquist		conductividad		
	xLi_2S -(1- x) Sb_2S_3									
A0	Sb ₂ S ₃ crist	0	_	$(5.8\pm0.2)\cdot10^{-9}$	$0.66{\pm}0.01$	1.89	\cap			
A1	Sb ₂ S ₃ vítreo	0	_	$(2.7\pm0.1)\cdot10^{-9}$	$0.54{\pm}0.02$	0.74	\cap	electrónica		
A3	$0.10 Li_2 S$ - $0.90 Sb_2 S_3$	0.10	_	$(7.9 \pm 0.2) \cdot 10^{-11}$	$0.73{\pm}0.02$	1.19	\cap			
	$xLi_2S-(1-x)[0.4P_2S_5-0.6Sb_2S_3]$									
D1	$0.1 Li_2 S\text{-}0.9 [0.4 P_2 S_5\text{-}0.6 Sb_2 S_3]$	0.1	_	$(1.3\pm0.1)\cdot10^{-9}$	$0.64{\pm}0.03$	1.37	\cap	electrónica		
D2	$0.2 Li_2 S\text{-}0.8 [0.4 P_2 S_5\text{-}0.6 Sb_2 S_3]$	0.2	_	$(7.6 \pm 0.3) \cdot 10^{-9}$	$0.69{\pm}0.02$	2.75	$\cap \cap$	mixta		
D3	$0.3 Li_2 S\text{-}0.7 [0.4 P_2 S_5\text{-}0.6 Sb_2 S_3]$	0.3	_	$(6.1\pm0.2)\cdot10^{-8}$	$0.61{\pm}0.02$	2.53	\frown			
D4	$0.4 Li_2 S\text{-}0.6 [0.4 P_2 S_5\text{-}0.6 Sb_2 S_3]$	0.4	_	$(1.6 \pm 0.1) \cdot 10^{-7}$	$0.61{\pm}0.03$	2.61	\frown	iónica		
D5	$0.5 Li_2 S\text{-}0.5 [0.4 P_2 S_5\text{-}0.6 Sb_2 S_3]$	0.5	_	$(4.2\pm0.1)\cdot10^{-7}$	$0.58{\pm}0.02$	3.10	\frown			
	$yLiI-(1-y)[0.5Li_2S-0.2P_2S_5-0.3Sb_2S_3]$									
G2	0.05LiI-0.95[D5]	0.475	0.05	$(4.1\pm0.1)\cdot10^{-7}$	$0.59{\pm}0.02$	3.05	\frown	iónica		
G4	0.10LiI-0.90[D5]	0.450	0.10	$(5.2\pm0.3)\cdot10^{-7}$	$0.55{\pm}0.01$	2.10	\frown			
	yLi_3PO_4 -(1-y)[0.5Li_2S-0.2P_2S_5-0.3Sb_2S_3]									
H1	0.05Li ₃ PO ₄ -0.95[D5]	0.475	0.05	$(3.7 \pm 0.2) \cdot 10^{-7}$	$0.58{\pm}0.02$	3.14	\frown	iónica		
H2	0.10Li ₃ PO ₄ -0.90[D5]	0.450	0.10	$(8.0\pm0.4)\cdot10^{-8}$	0.63±0.03	3.06	\sim			

TD

FIGURA 4. Espectro en el plano Nyquist para el vidrio $0.5Li_2S-0.5[0.4P_2S_5-0.6Sb_2S_3]$ (inserto en el plano de Bode).

electrónico (por efecto de cambio en el estado redox del V⁴⁺ a V⁺⁵) reduce la conductividad electrónica y después, a mayores contenidos, presenta un aumento de conductividad debido al incremento substancial de iones litio y por lo tanto cambia el comportamiento de conductor electrónico al de conductor iónico. Los datos de conductividad se encuentran en la Tabla I.

3.2.2. Sistema ternario $Li_2S-P_2S_5-Sb_2S_3$

En la Fig. 4 se puede observar unconductividad iónica para el caso del vidrio $0.5Li_2S-0.5[0.4P_2S_5-0.6Sb_2S_3]$ dado por el semicírculo con aparición de la espiga corresponde al bloqueo de los iones en los electrodos bloqueantes de oro. En el plano Bode (log|Z| vs. frecuencia, Fig. 4, inserto) podemos observar las regiones de valores constantes ("*plateau*") que corresponden a la conductividad *dc* y las regiones de dispersión (conductividad *ac*), además vemos que la impedancia disminuye en proporción con la temperatura, siendo un comportamiento característico de un buen número de conductores iónicos sólidos.

En la Fig. 5 se presentan las conductividades para el sistema vítreo xLi_2S - $(1-x)[0.4P_2S_5-0.6Sb_2S_3]$ (donde x=0-0.50) en función del recíproco de la temperatura. Así es posible obtener los valores de energía de activación y de factor preexponencial en el caso de dependencia lineal (tipo Arrhenius):

$$\log \sigma = \log \sigma_0 - \frac{1}{\ln 10} \cdot \frac{E_a}{RT},\tag{2}$$

donde E_a es la energía de activación para los saltos de iones, R es la constante de gases y T es la temperatura absoluta [16]. La gráfica resultante de log σ contra T^{-1} proporciona el valor de la energía de activación a partir de la pendiente $-E_a/R$ y el factor preexponencial, (σ_w) de la intersección con el eje vertical, que es el valor extrapolado de la conductividad cuando la temperatura tiende al infinito. La dependencia de ambos se encuentra graficadas en los insertos de la Fig., 5 donde se aprecia un decremenmto marcado en la E_a . Para la mayoría de los vidrios electrolitos los valores de los factores preexpo-

Rev. Mex. Fís. 53 (4) (2007) 228-234

FIGURA 5. Gráfica de Arrhenius para las muestras vítreas del sistema xLi_2S -(1-x)[0.4P₂S₅-0.6Sb₂S₃] donde x=0-0.50.

FIGURA 6. Valores de $\log \sigma_{25^{\circ}C}$, E_a y $\log \sigma_0$ en función de x, Li_2S para el sistema vítreo x Li_2S –(1-x)[0.4P₂S₅–0.6Sb₂S₃].

nenciales se encuentran entre $10 \text{ y} 10^3 \text{ S/cm}$, mientras los valores de la energía de activación están entre 0.2 y 1.0 eV [16].

El análisis de las mediciones de impedancias de $xLi_2S-(1-x)[0.4P_2S_5-0.6Sb_2S_3]$ (composiciones D1-D5, Tabla 1) indica que la conductividad específica de las muestras depende en gran medida del contenido de Li_2S :

- a) Aumenta en cuanto el contenido de Li₂S se incrementa, alcanzando el valor máximo a temperatura ambiente $\sigma_{25^{\circ}C} = 4.2 \cdot 10^{-7}$ S/cm para x = 0.50.
- b) Cambia la naturaleza de conductividad de electrónica (región I, Fig. 6), cuando el contenido de Li_2S es 10%-20% molar, a iónica a mayores cantidades de sulfuro de litio en el vidrio, 30%-50% molar (región II, Fig. 6); este cambio se refleja no solamente en las conductividades, sino también en los valores de las energías de activación y en el factor preexponencial.

3.2.3. Dopado del sistema $Li_2S-P_2S_5-Sb_2S_3$ con LiI y Li_3PO_4

En cuanto a los vidrios dopados con LiI y Li_3PO_4 (composiciones G2, G4, H1, H2, Tabla I) las conductividades presentadas son de carácter iónico y obedecen la ley de Arrhenius en función de la temperatura. Sin embargo, el aumento de conductividades no es significante. Las energías de activación y de factores preexponenciales también son muy similares al vidrio de partida 0.5Li₂S–0.5[0.4P₂S₅–0.6Sb₂S₃].

Por otro lado, la comparación de las conductividades máximas obtenidas (~ 10^{-7} – 10^{-6} S/cm para el sistema Li₂S-P₂S₅-Sb₂S₃) no son tan altas como para otros sistemas que son conductores iónicos rápidos. Esto nos permite ubicar los vidrios obtenidos con 40 % y 50 % de Li₂S dentro de la clase de conductores iónicos de litio medianos similares al sistema de Li₂S-As₂S₃ [17]. La energía de activación (E_a) de la conductividad iónica del sistema Li₂S-Sb₂S₃-P₂S₅ es comparable a otros vidrios sulfuros (0.3-0.6 eV), dada la naturaleza desordenada de la estructura vítrea que dispone de numerosos sitios disponibles para el catión litio. Sin embargo, en nuestro sistema la E_a de cualquier modo es un poco mayor, lo que se refleja en conductividades más bajas. Además, podemos ver que la tendencia de la disminución de E_a con el aumento de los iones móviles es similar a los demás sistemas, aunque estos cambios no son muy fuertes, lo que indica que el mecanismo de conducción es independiente de la concentración de los cationes en los intervalos reportados.

3.3. Modelación de circuito equivalente R(RQ)(RQ)

Para la composición $0.5Li_2S-0.5[0.4P_2S_5-0.6Sb_2S_3]$ se realizaron ajustes de los valores de impedancia a un circuito equivalente. Los resultados de la modelación para los datos de diferentes temperaturas (25-137 °C) se presentan en la Fig. 7 (plano Nyquist), donde el ajuste se ha realizado con el circuito equivalente $R(R_1Q_1)(R_2Q_2)$, también reportado para otros conductores iónicos con electrodos bloqueantes [18,19]; donde R_{cables} representa la resistencia de los cables de conexión y del portamuestras utilizado(valor fijo de 26Ω), R_1Q_1 – los procesos de conductividad iónica y polarización dentro del material y R₂Q₂ - los procesos del bloqueo de los iones Li⁺ en los electrodos de oro. La Q establece el valor de la capacitancia dispersa que nos habla en buena medida del grado de rugosidad de la superficie de interface. Matemáticamente [20], la impedancia de la capacitancia dispersa es

$$Z_Q = \frac{1}{Y_Q \left(j\omega\right)^n},\tag{3}$$

donde *n* es el exponente que nos habla del grado de dispersión de un capacitor ideal (en cuyo caso n =1), Y_Q tiene el valor numérico de la admitancia a la frecuencia angular ω de 1 rad/s y en unidades de Siemmens-sⁿ. Los resultados de los ajustes de los valores experimentales respecto al modelo R(QR)(QR) se reportan en la Tabla II.

A partir de los valores de Y_1/n_1 , Y_2/n_2 y las frecuencias correspondientes al máximo de semicírculos ω_{1max} se calcularon los valores de capacitancia correspondientes al electrolito C_1 mediante la fórmula

$$C = Y_Q^{-1} (\omega_{\text{máx}})^{n-1} \tag{4}$$

0 0 D C 0 0 C 0

1 0 51

				Electro	Electrolito sólido Interface electrolito/electrodo					do	
Τ,	R	R_1*	\mathbf{R}_1	$Y_1/n_1 \\$	ω_{1max}	\mathbf{C}_1	R_2	$Y_2/n_2 \\$	ω_{2max}	C_2	Parámetro
°C	Ω	Ω	Ω	S	rad/s	F	Ω	S	rad/s	F	de ajuste
24	26	1715 k	1700 k	815 pS	$2\mathbf{k}\cdot 2\pi$	50.4 pF	60 M	$1.572 \ \mu S$	$< 1m \cdot 2\pi$	-	$12.4 \cdot 10^{-3}$
				0.704				0.538	lim. detec		
37	26	959 k	950 k	655 pS	$5.0 \text{ k} \cdot 2\pi$	37.5 pF	150 M	$1.614 \ \mu S$	$< 1m \cdot 2\pi$	-	$8.63 \cdot 10^{-3}$
				0.722				0.548	lim. detec		
63	26	238 k	238 k	2.090 nS	$15.1 \text{k} \cdot 2\pi$	51.2 pF	10 M	$3.644 \ \mu S$	$<1m{\cdot}2\pi$	-	$3.28 \cdot 10^{-3}$
				0.675				0.590	lim. detec		
93	26	44.3 k	45.47 k	3.311 nS	88.0 k - 2π	44.5 pF	1.460 M	$7.31 \ \mu S$	$4.63m^* \cdot 2\pi$	$23.3 \ \mu F$	$0.786 \cdot 10^{-3}$
				0.674				0.672			
137	26	6.495 k	6.395 k	1.023 nS	640k* $\cdot 2\pi$	37.7 pF	0.069 M	$35.63 \ \mu S$	$34.5m^* \cdot 2\pi$	70.6 μF	$0.126 \cdot 10^{-3}$
				0.783				0.553			

 R_1^* - los valores de resistencia del electrolito obtenidos por la intersección del semicírculo con el eje real Z'

 ω_{max}^{**} - los valores simulados en ZDemo con los parámetros de ajuste en el intervalo teórico de f=1mHz-1MHz

FIGURA 7. Gráficas Nyquist para $0.5Li_2S-0.5[0.4P_2S_5-0.6Sb_2S_3]$ vidrio a distintas temperaturas con ajustes (líneas sólidas) al modelo $R(R_1Q_1)(R_2Q_2)$ (mostrado).

Sin embargo, a la temperatura de 137°C podemos ver que el primer semicírculo no aparece debido al intervalo limitado de frecuencias utilizado en el trabajo, 0.2 Hz-100 kHz. Por otro lado, las espigas inclinadas a frecuencias bajas que aparecen por el bloqueo de los iones también pueden verse como el inicio de semicírculos grandes. Para poder calcular los valores de capacitancia correspondientes a estos semicírculos incompletos se utilizó la simulación de la respuesta del sistema en un intervalo teórico de frecuencias más amplio para completar los semicírculos; esto se obtiene al alimentar los parámetros de ajuste R, R1, R2, Y1/n1 y Y2/n2 al programa de simulación. En el trabajo presente se utilizó el software comercial ZSimpWin con el intervalo de frecuencias permitido de 1mHz - 1MHz. De esta manera se obtuvieron los valores calculados de $\omega^{**}_{{\rm x}max}$ a 137°C, $\omega^{**}_{{\rm y}max}$ a 137 y 93°C, lo que permitió calcular las capacitancias correspondientes a las del electrolito y de la interfase electrodo/muestra a temperaturas altas.

Si analizamos la Tabla II y comparamos los valores de R₁ obtenidos por el ajuste del modelo y R1* (por la intersección del semicírculo con el eje real Z') podemos ver buena concordancia, lo que indica que el primer semicírculo se debe en gran medida a los procesos del transporte iónico dentro del material. Por otro lado, tanto los valores de capacitancia C1 como C2 están en los intervalos esperados [del orden de pF para los granos (C₁), nF para las fronteras de grano y μ F para las interfases bloqueantes de los electrodos (C_2)]. Podemos ver cómo la naturaleza vítrea del electrolito se refleja por la ausencia de los efectos del bloqueo en las fronteras de grano en el material. En cuanto a los parámetros n_1 y n_2 podemos notar que son prácticamente estables para cada uno de los procesos (dentro del material $n_1 \sim 0.7$, y para la interfase $n_2 \sim 0.6$ que son valores similares a los reportados en la Ref. 19).

4. Conclusiones

En este trabajo se han analizado las conductividades del sistema $Li_2S-Sb_2S_3-P_2S_5$, observándose dos regiones de distinta naturaleza: electrónica y iónica, asimismo se observó un ligero aumento en la conductividad iónica al añadirse LiI o Li_3PO_4 . La conductividad iónica de las muestras alcanzó valores hasta 10^{-6} S/cm a temperatura ambiente, lo que permite ubicarlos como electrolitos sólidos de litio, pero no se pueden utilizar en la fabricación de las baterías convencionales de litio, sin embargo, pueden ser considerados como candidatos a ser utilizados en las microbaterías de litio, donde se preparan en forma de película delgada. La modelación de los resultados de impedancia al circuito equivalente R(RQ)(RQ) para la composición $0.5Li_2S-0.2P_2S_5-0.3Sb_2S_3$ permitió separar los procesos que ocurren dentro de la muestra durante las

mediciones. Además, se pudieron calcular los valores de resistencias y capacitancias correspondientes, tanto al material como a la interfase del electrolito/electrodo. Se encontró que la dependencia de las conductividades está en función exponencial con la temperatura en concordancia con un proceso del tipo Arrhenius, y a partir de este modelo se reportaron los valores de energía de activación, E_a y los factores preexponenciales, σ_0 .

1. J.M. Tarascon y M. Armand, Nature 414 (2001) 359.

- 2. M.S. Whittingham, Chem. Rev. 104 (2004) 4271.
- D. Aurbach, E. Zinigrad, Y. Cohen y H. Teller, Solid State Ionics 148 (2002) 405.
- J. Schwenzel, V. Thangadurai and W. Weppner, *Journal of Power Sources* 154 (2006) 232.
- 5. C. A. Angell, Solid State Ionics 105 (1998) 15.
- 6. M. Duclot y J.-L. Souquet, J. of Power Sources 97-98 (2001) 610.
- 7. D. Ravaine, J. of Non-Cryst. Solids 73 (1985) 287.
- J.H. Kennedy, Z. Zhang y H. Eckert, J. of Non-Cryst. Solids 123 (1990) 328.
- 9. J.-P.R. Malugani y G. Robert, Solid State Ionics 1 (1980) 519.
- H. Eckert, Z. Zhang y J.H. Kennedy, *Journal of Non-Crystalline* Solids 107 (1989) 271.
- Z. Nagamedianova y E. Sánchez, J. Non-Cryst. Solids 311 (2002) 1.

Agradecimientos

Los autores desean expresar su agradecimiento al National Science Foundation y al Consejo Nacional de Ciencias y Tecnología por el apoyo recibido para la realización de esta investigación a través de los proyectos NSF-CONACYT 35998U, CONACYT 46919 y del Programa PAICYT-UANL.

- Z. Nagamedianova y E. Sánchez, J. Non-Cryst. Solids 329 (2003) 13.
- 13. Z. Zhang y J.H. Kennedy, Solid State Ionics 38 (1990) 217.
- 14. P.G. Bruce, *Solid State Electrochemistry* (Cambridge University Press, 1995).
- 15. E. Sanchez y C.A. Angell, MRS Symp. Proc. 548 (1999) 461.
- 16. A. West, Solid State Chemistry and its Applications (Wiley, 1987).
- M.C.R. Shastry, M. Menetrier y A. Levasseur, Solid State Comm. 85 (1993) 887.
- C. León, Relajación de la conductividad eléctrica en conductores iónicos cristalinos, Tesis Doctoral, Universidad Complutense de Madrid (1997).
- 19. Y.-J. Shin, M.-H. Park y S. Yoon, *Bull. Korean Chem. Soc.* **21** (2000) 1141.
- E. Barsoukov y J.R. Macdonald, *Impedance Spectroscopy* 2nd (Ed. Wiley-Interscience, 2005).