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In this paper we study an interacting Bose gas at low temperatures, confined in a one-dimensional potential composed of four wells. In order
to derive and validate the effective Hamiltonian that describes this system, we study the stationary states of a particle confined in the four-well
potential. In particular, we calculate the energies and the corresponding wave functions for the ground state and for the three lowest excited
states. It was established that the effective Hamiltonian of a four-well optical lattice is composed of tunneling terms among all the wells, and
interaction terms between pairs of particles within the same well.
Keywords:Optical lattices; Bose-Einstein condensation; ultracold interacting.

En este artı́culo se estudió un gas de Bose con interacciones a bajas temperaturas, confinado en un potencial unidimensional de cuatro pozos.
Para deducir y validar el Hamiltoniano efectivo que describe este sistema se estudiaron en detalle los estados estacionarios de una partı́cula
confinada en el potencial de cuatro pozos. En particular, se calcularon las energı́as y las correspondientes funciones de onda del estado base
y los tres primeros estados excitados. Se estableció que el Hamiltonaino efectivo del gas de Bose en una redóptica de cuatro pozos está
compuesto de términos de tunelaje entre todos los pozos y términos de interacción entre pares de partı́culas dentro del mismo pozo.
Descriptores:Redeśopticas; condensación de Bose-Einstein; gases de Bose ultrafrios con interacción.

PACS: 03.75.Lm, 03.75.Nt, 02.70.Hm

1. Introduction

The experimental realization of the Bose-Einstein condensa-
tion in 1995, in vapors of rubidium, sodium and potassium
vapors [1, 2], has given rise to a new field in the study of
these and other ultracold gases: the control and manipula-
tion of highly degenerate neutral atoms [3,4], that is, systems
composed of a large number of particles in the same quantum
state. One of the achievements of these degenerate gases are
the so called optical lattices in one dimension [5–7]. These
are formed when a Bose gas at temperatures close to the con-
densation temperature is confined in a one dimensional pe-
riodic potential composed of a finite number of wells. Such
a potential can be produced as a result of the superposition
of two counter propagating standing laser beams. Thus, the
transport of atoms through the barriers can be controlled ex-
perimentally by modifying the optical potential that confines
the atoms [8].

The creation of the optical lattices by several experimen-
tal groups has motivated the community to study their behav-
ior from a theoretical point of view. A useful tool in the study
of these systems is the second quantization formalism. This
formalism, supported by the indistinguishable quantum na-
ture of the atoms, is based on the knowledge of a complete
set of single-particle wave functions, to establish the Hamil-
tonian that describes a many-body system [9]. In this con-
text the determination of the energies and their corresponding
wave functions of a particle confined in a specific potential
results relevant.

The main purpose of the present work is to derive and val-
idate the effective Hamiltonian that describes a gas of bosons
confined in an optical lattice composed of four wells. That is,
we shall concentrate on a derivation from first principles of
the effective Hamiltonian to appropriately describe the many-
body system. To obtain this derivation, we study the states
of a single particle confined in the four well potential in de-
tail. As we shall see, this analysis justifies the validity of
the Hamiltonian and establishes the applicability limits of the
Bose-Hubbard (BH) Hamiltonian [10] for a lattice composed
of four wells. The BH Hamiltonian has been widely used for
describing highly correlated bosonic systems. The main con-
tribution of the present study is to consider the modifications
in the BH Hamiltonian when the confining potential is com-
posed of a finite number of wells, particularly an arbitrary
potential composed of four wells. The study of the dynami-
cal behavior of the Bose gas inside the finite optical lattice is
beyond the scope of this work, and it will be considered in a
later study.

Due to the fact that the gases confined in the optical lat-
tices are at very low temperatures, the theoretical study of
their dynamics in the second quantization scheme requires
only the calculation of the ground state and the first excited
states. Therefore, the complete set of single-particle wave
functions mentioned above can be safely replaced by a less
numerous set. In the particular case of an optical lattice com-
posed of four wells in one dimension, it is enough to know the
ground state and the three lowest excited states, if their asso-
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ciated energy levels lie below the top of the potential barriers.
This is a consequence of the fact that the energy levels of a
four-well potential split into sets of four levels, so that the
separation among the sets is greater than the separation be-
tween the levels in each set [11]. To calculate the first set of
energy levels and their corresponding wave functions, in this
work we shall use the Split Operator (SO) method, which is
applicable to any bounded potential [12]. In this study we
concentrate on symmetrical four well potentials in one di-
mension.

As mentioned before, the optical potential produced by
the interference of standing laser beams can be modified with
the purpose of controlling the transport of atoms inside the
potential. In other words, by varying the depth and width of
the potential barriers, the tunneling of the atoms through the
barriers can be controlled. Based on the calculation of the
wave functions of a single particle in the four well potential,
we determined how the effective Hamiltonian that describes
the many body system is modified when the potential that
confines the atoms is varied.

By using the SO spectral method, we evaluated numeri-
cally the energies and the corresponding wave functions asso-
ciated with the four lowest bound states{εn, ϕn}, n = 0, .., 3
of a particle confined in a four-well potential. To perform
such an analysis, we proposed a model potential dependent
on 5 parameters. As we shall see, these parameters allow us
to consider modifications in the depth and width of the wells.

This work is organized in four sections. In Sec. 2, we
derive the effective Hamiltonian that describes an ultracold
Bose gas with interactions, confined to the one-dimensional
potential composed of four wells. In Sec. 3, we describe
briefly the method employed to obtain the energies and the
wave functions of a single particle in the potential. Results
for the energies and wave functions considering the depen-
dence on the depth and width of the wells are also presented.
Finally, in Sec. 4, some conclusions of the present study are
given.

2. Effective Hamiltonian of an interacting
Bose gas confined in a one dimensional four
wells lattice

In the second quantization formalism, the most general
Hamiltonian that describes a many body system with inter-
actions between pairs of particles is

H =
∫

dxΨ̂†(x) (T (x) + V (x)) Ψ̂(x)

+
1
2

∫
dxdx′Ψ̂†(x)Ψ̂†(x′)U(x, x′)Ψ̂(x′)Ψ̂(x), (1)

whereT (x) is the kinetic energy operator,V (x) is the ex-
ternal potential that confines the atoms (in this study it is a
four-well potential), andU(x, x′) is the interaction potential
between pairs of particles. The field operatorsΨ̂†(x) and

Ψ̂(x) can be written in terms of any complete set of single-
particle wave functions as

Ψ̂†(x) =
∑

n

ϕ∗n(x)a†n and Ψ̂(x) =
∑

n

ϕn(x)an, (2)

where the operatorsan anda†n satisfy the usual commutation

rules for bosons
[
an, a†l

]
= δn,l. In this work, we model the

interactions among the particles through a contact interaction
potential

U(x, x′) =
4π~2a

m
δ(x− x′), (3)

wherea is the scattering length. We should remark that this
model potential is valid in the limit of low energies and in the
Born approximation [13]. Due to the fact that in dilute ultra-
cold gases the effect of the interaction among the particles is
fully included in the scattering lengtha, the specific form of
the interaction potential does not affect the main qualitative
features of the many body description.

The energy levels associated with the bound states of a
one-dimensional potential composed ofn wells are split into
n-tuples of levels such that the separation between the n-
tuples is much greater than the separation between the levels
in each n-tuple [13]. Therefore, for sufficiently deep wells,
the energy spectrum of a particle confined in a potential com-
posed of four wells will be formed by several sets of four
levels. Due to the fact that the system under study consists of
a Bose gas at very low temperatures, the only relevant states
to describe it are the states associated with the lowest energy
levels in the four-well potential [11]. Then, for the special
case of ultracold bosons, the complete set of single-particle
wave functions required in the expressions for the field oper-
ators (2) in the second quantization formalism, can be safely
replaced by the set{εn, ϕn}, n = 0, 1, 2, 3 of the single-
particle wave functions in a four-well potential. By adjusting
the depths of the potential barriers, one can guarantee that
only the first set of energies and its corresponding states is
necessary for the description of the Bose gas.

After we substitute the eigenfunctionsϕn(x) in Eq. (1),
the HamiltonianH that describes the many body system be-
comes

H =
3∑

n=0

εna†nan +
3∑

k,n,l,m=0

ga†ka†nalam, (4)

where

g =
4π~2a

m

∫
ϕk(x)ϕn(x)ϕl(x)ϕm(x)dx. (5)

From this equation we see that the part of the Hamiltonian
that involves the kinetic energy and the external potential
(that is, the four-well potential) is diagonal, as a consequence
of the fact that the field operators (2) were expressed in the
basis{εn, ϕn}, n = 0, 1, 2, 3. The second term inH repre-
sents the interactions between pairs of particles in different
statesϕn(x). Thus, the Hamiltonian (4) describes an ultra-
cold gas of bosons with interactions, confined in a potential
composed of a finite number of wells in one dimension.
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In order to study the dynamics in a finite optical lat-
tice, the Hamiltonian (4) can be rewritten in a more appro-
priate basis than the extended single particle wave functions
ϕn(x) [11]. This basis is formed by the localized wave func-
tions in each well, and can be constructed from the extended
wave functionsϕn(x) as follows:

ψ1(x)=
1√
8

(
ϕ0(x)+

√
3ϕ1(x)+

√
3ϕ2(x)+ϕ3(x)

)
, (6)

ψ2(x)=
1√
8

(√
3ϕ0(x)+ϕ1(x)−ϕ2(x)−

√
3ϕ3(x)

)
, (7)

ψ3(x)=
1√
8

(√
3ϕ0(x)−ϕ1(x)−ϕ2(x)+

√
3ϕ3(x)

)
, (8)

ψ4(x)=
1√
8

(
ϕ0(x)−

√
3ϕ1(x)+

√
3ϕ2(x)−ϕ3(x)

)
. (9)

This transformation is a generalization of the usual trans-
formation performed in a two-level system when a rotation
through 90 degrees is made [13]. For a system of particles
confined in ann-well potential, the linear transformation that
relates the extended and the localized wave functions is given
by the Wigner rotation matrix [14] and has been previously
used in Ref. 11. Similarly, the transformation that defines the
creation and annihilation operatorsb†i andbi of particles in
each well, in terms of the operatorsa†n andan, is the same as
the transformation that relates the extended and the localized
single-particle wave functions. As we shall see in the next
section, the linear combination that definesψ1(x) [Eq. (6)]
is the probability amplitude of finding a particle localized in
well 1; ψ2(x), ψ3 y ψ4(x) are the probability amplitudes of
finding a particle localized in the wells 2, 3 and 4, respec-
tively.

Before we write the HamiltonianH in the basis of the
localized wave functions in each well, we want to empha-
size that the energy levels associated with the wave functions
ϕn(x) do not necessarily need to satisfy the condition of be-
ing equally spaced; that is, for a given external potential com-
posed of four wells, those energy levels can satisfy the gen-
eral relation:ε1 − ε0 = ∆, ε2 − ε1 = ∆/q, ε3 − ε2 = ∆/r,
whereq y r are two parameters (q, r > 0) that can be adjusted
to specify the separation of the four lowest energy levels in
each potential. As we shall see below, whenH is expressed in
the basis of the localized wave functions, the transformation
of the diagonal term

HD =
3∑

n=0

εna†nan

will be modified as a consequence of the non-equal separa-
tion between the lowest energy levelsεn, n = 0, 1, 2, 3. The
HamiltonianHD becomes in this case:

HD = −∆
8

{√
3

(
1 +

1
r

+
2
q

)

×
[
b†1b2 + b†2b1 + b†3b4 + b†4b3

]

+
(

3 +
3
r

+
2
q

) [
b†2b3 + b†3b2

]

+
(

1 +
1
r
− 2

q

) [
b†1b4 + b†4b1

]

+
√

3
(

1− 1
r

) [
b†1b3 + b†3b1 + b†2b4 + b†4b2

]}
. (10)

From this expression forHD, we see that the tunneling terms
between non-adjacent wells become zero when parameters
q and r are equal to 1, that is, when the energy levels are
equally spaced. In other words, the effective Hamiltonian
that describes a Bose gas with no interactions, confined in
an arbitrary four well potentialV (x), will be composed of
tunneling terms between all the wells unless such a potential
possesses equally-spaced energy levels.

After we substitute the localized wave functions and their
corresponding creation and annihilation operators in the sec-
ond term of HamiltonianH, that is, in the interaction term

HI =
3∑

k,n,l,m=0

ga†ka†nalam,

we find the interaction of particles in different wells. How-
ever, if the overlap between the localized wave functions
ψi(x) can be neglected, the integral of any arbitrary product
of four localized wave functions

∫
ψi(x)ψj(x)ψk(x)ψl(x)dx

can be considered to be equal to zero. Thus, the Hamiltonian
that describes the interaction term of the HamiltonianH will
be:

HI =
4π~2a

m

4∑

i=1

b†i b
†
i bibi, (11)

that is, it contains only interactions of particles within the
same well. Considering both contributionsHD andHI , the
Hamiltonian that describes bosons with interactions in a four
well potentialV (x) whose energy levels are equally spaced
is:

H = −∆

{√
3

2

[
b†1b2 + b†2b1 + b†3b4 + b†4b3

]

+
[
b†2b3 + b†3b2

]}
+

4π~2a

m

4∑

i=1

b†i b
†
i bibi. (12)

From this Hamiltonian we can conclude that the dynam-
ics of a Bose gas confined in a four well potential will be
described by the coefficients∆ anda, that is, the tunneling
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coupling coefficient between adjacent wells, and the coeffi-
cienta that modulates the interaction between pairs of parti-
cles within the same well.

In the next section we shall study in detail the wave func-
tions of a particle confined in a one-dimensional potential
composed of four wells, in particular, the eigenfunctions as-
sociated with the lowest bound states. Such an analysis will
allow us to validate the effective Hamiltonian 12, and to es-
tablish the conditions under which the Bose-Hubbard Hamil-
tonian correctly describesan optical lattice composed of four
wells. This Hamiltonian has been widely used in describing
finite optical lattices in one dimension. As is well known, the
Bose-Hubbard Hamiltonian establishes that particles can tun-
nel only between adjacent wells with equal probability, and
interactions among the particles occur within the same well.
The main purpose of the present work is to establish how this
Hamiltonian is modified for a finite potential, in particular for
a potential composed of four wells.

3. Wave functions of a particle in a one-
dimensional four well potential

In this section we determine the energies and the wave func-
tions of a particle with massm described by the Hamiltonian

H =
p2

2m
+ V (x), (13)

where the functional form ofV (x) is

V (x) = V1x
10 + A1e

− (x+a)2

2σ2
1

+ A2e
− x2

2σ2
2 + A1e

− (x−a)2

2σ2
1 . (14)

In this equation, parametersAi andσi take into account
the possibility of varying the depth and the width of the wells,
while the coefficientV1 is used to ensure that the particle
moves inside the four-well potential. The center of each well
can be modified through parametera.

By using the Split Operator (SO) method introduced by
M.D. Feit and J.A. Fleck [12] we determine the four lowest
energy levels and their corresponding wave functions, asso-
ciated with the bound states of a particle confined in the po-
tentialV (x). The energies and wave functions of those levels
will be denoted as(εn, ϕn), n = 0, 1, 2, 3.

The SO method is based on the spectral decomposition
of an initial wave functionψ(x, 0) in terms of the eigenfunc-
tions of the Hamiltonian (13):

ψ(x, 0) =
∑

n

cnϕn(x). (15)

This decomposition can be obtained from the temporal evo-
lution of the initial wave function as described below.

In the temporal evolution operator

U(t) = exp
[−iHt

~

]
, (16)

the kinetic energy operator̂p2/2m, must be divided into two
equal parts, such that the temporal evolution of the initial
stateψ(x, 0) after an interval∆t is given by:

ψ(x, ∆t) ≈ e−i p̂2

2m
∆t
2~ e−iV (x)∆t

~ e−i p̂2

2m
∆t
2~ ψ(x, 0). (17)

Due to the non-commutation of the operatorsp̂ = −i~d/dx
andV (x), this equation is valid up to the second order, that is,
the first errors do not appear until the third order in∆t. The
successive application of the temporal evolution to the initial
stateψ(x, 0) in intervals∆t allows us to obtain the state at a
posterior timet.

The initial wave functionψ(x, 0) can be chosen in an al-
most arbitrary way. However, in order to obtain an energy
spectrum with even and odd values, this function must not
have a definite parity. For the present analysis, we shall use
as the initial wave function a gaussian function centered in
the first well.

In order to obtain the energies and their corresponding
wave functions, it is necessary to define the correlation func-
tion between the initial state and the state at timet as:

P1(t) = 〈ψ(0)|ψ(t)〉. (18)

By expressing the functionψ(x, t) as a linear superposition
of the eigenfunctions ofH,

ψ(x, t) =
∑

n

cnϕn(x)e−iεnt/~, (19)

the correlation functionP1(t) can be rewritten as

P1(t) =
∑

n

|cn|2e−iεnt/~, (20)

whose Fourier transform is

P1(ε) =
∑

n

|cn|2δ(ε− εn). (21)

From this equation one can read directly the energy eigenval-
uesεn for a given potentialV (x).

It is important to note that, in the above lines, the knowl-
edge ofP1(t)is implicit for all times. In order to take into
account the finite size of our sampling (0 < t < T ), is nec-
essary the introduction of a special functionw(t), called the
normalized Hanning window function [12]. By multiplying
the correlationP1(t) by w(t)/T , we obtain, in the reciprocal
space, the energy spectrum identifying the “peaks” associated
with different values ofεn for a given potentialV (x).

The wave functions associated with the eigenvaluesεn

can also be determined from the spectral decomposition
method. To do so, we must perform a numerical integration
as follows:

ϕn(x) = N

T∫

0

ψ(x, t)w(t) exp(iεnt)dt = Nψ(x, εn).
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For the potential model (14), we considered 22 different
sets of parameters{Ai, Vi, σi, a} to determine the four lowest
energy levels. For purposes of, illustration, we selected three
of these sets to show the dependence of the eigenenergies on
the choice of the parameters. From our analysis, we want to
remark first that the separation between these energy levels
is highly dependent on small changes of the parameters. As
stated above, we illustrate the results obtained for the 3 dif-
ferent sets of parameters. We shall denote these potentials as
V1(x), V2(x) y V3(x).

In Table I, the parameters associated with each potential
are specified. The eigenvalues of the energy for the ground
state and the three lowest excited states are shown in Table II.
In Fig. 1 we plot the potentialsV1(x), V2(x) y V3(x); the hor-
izontal lines in each case indicate the energy levels. As can be
observed, all of these levels correspond to bound states inside
the four well potential. From this figure, one can also observe
that the energy levels satisfy the following conditions:

i) for V1(x), ε2 − ε1 < ε1 − ε0 = ε3 − ε2,

ii) for V2(x), ε3 − ε2 ≈ ε2 − ε1 ≈ ε1 − ε0, and

iii) for V3(x), ε2 − ε1 > ε1 − ε0 = ε3 − ε2.

We should point out that it is essential that the potential bar-
riers in each case should be deep enough in order to guar-
antee that at least four bound states exist in each potential.
This assumption is necessary to justify the use of the basis
{ϕn(x), n = 0, ..3} in the many body Hamiltonian (1).

In Fig. 1a we illustrate the energy for the case in which
the wells in the center have approximately half of the width
of the wells in the exterior. By using the notation introduced
in the previous section for the separation between levels, we
getq ≈ 2.91 andr ≈ 1.04. From our analysis, we observe
that, as the width of the central wells is reduced with respect
to the exterior wells, the levelsε1 andε2 tend to the same
value, while the levelsε0 andε3 separate fromε1 andε2 in
the same proportion.

TABLE I. The values of the parameters listed in this table determine
in each case the specific potential of Eq. (2).

Potential V1 A1 A2 σ1 σ2 a

V1(x) 4.0× 10−7 8.10 6.50 1.118 0.500 2.500

V2(x) 1.9× 10−7 4.40 3.30 0.576 0.650 2.625

V3(x) 2.7× 10−7 4.30 3.70 0.420 0.700 2.625

TABLE II. Eigenvalues of the energy associated with the four low-
est bound states of the potentialsV1(x), V2(x) y V3(x).

Potential ε0 ε1 ε2 ε3

V1(x) 0.7032 0.8846 0.9468 1.1208

V2(x) 0.5672 0.7002 0.8184 0.9483

V3(x) 0.6039 0.7116 0.8957 1.0057

FIGURE 1. The potentials analyzed with the Split Operator SO
method are shown, Figs. (a), (b) and (c) correspond to the poten-
tials V1(x), V2(x) y V3(x) of Table I respectively. In each poten-
tial, the horizontal lines indicate the four lowest energy levelsε0,
ε1, ε2, y ε3.

In Fig. 1b, we show the results forV2(x). In this case
we chose the parametersσi and Vi such that the consecu-
tive energy levels have almost the same spacing,i.e. we get
q ≈ r ≈ 1.0. In comparison with the results obtained for
potentialV1(x), we observe that this condition requires that
the widths of the four wells become almost equal, and that
the exterior wells be deeper than the central wells.

For the potentialV3(x) (Fig. 1c), the parameters are cho-
sen such that the energy levels have opposite characteristics
than those obtained for the potentialV1(x). In order to ob-
serve this effect, we need only vary the width of the wells. In
this case we foundq ≈ 0.58 andr ≈ 0.97.

The wave functions in arbitrary units associated with the
set of energies{εn, n = 0, 1, 2, 3} for each potential, are
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FIGURE 2. Figures (a), (b), and (c) show the wave functions in arbitrary units associated with the energy levelsε0, ε1, ε2, y ε3, of a particle
confined in the potentialsV1(x), V2(x) andV3(x), respectively.

shown in Fig. 2. The Figs. 2a, 2b and 2c correspond to
potentialsV1(x), V2(x), y V3(x) respectively.

From this analysis, we observe that while the values of
the energy have high sensitivity to the choice of parameters
{Ai, Vi, σi, a}, the associated wave function, as expected,
has the same structure. We found numerically that the over-
lap between the extended wave functions in the same state is
at least 95%.

In the light of Eq. (10), we see that if the energy levels
of a given potentialV (x) are not equally spaced,i.e. if the
parametersq and r are different from 1, then in the effec-
tive Hamiltonian (12) tunneling terms between non-adjacent
wells must be considered. In a previous study for the dy-
namics of a Bose gas confined in a three-well potential [15],
it was demonstrated that the dynamics is substantially mod-
ified when tunneling terms between non-adjacent wells are
included.

From the extended wave functionsϕn(x), the localized
wave functions in each wellψi(x) can be constructed using
the Eqs. (6)-(9). In Fig. 3, these localized wave functions
in arbitrary units for the potentialV2(x) are shown. From
this figure, we observe that the overlap between any of these
functionsψi(x) andψj(x) can be considered to be negligi-
ble. We numerically verified that this overlap is smaller than
1% in each case. Thus, according to what was established in
the previous section

(if
∫

ψi(x)ψj(x)dx ≈ δi,j

then
∫

ψi(x)ψj(x)ψk(x)ψl(x)dx ≈ 0),

it is well justified that the effective HamiltonianHI have in-
teractions only between particles within the same well.

Rev. Mex. F́ıs. 53 (2) (2007) 126–132
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FIGURE 3. The localized wave functions in arbitrary units of a
particle in the potentialV2(x) are shown (see Fig. 1).

We can conclude that if the confining four-well potential
is such that the tunneling coupling coefficients are not negli-
gible, the dynamics in an optical lattice of four wells using the
Bose-Hubbard Hamiltonian is not fully accurate. However, it
is well justified that in this Hamiltonian only interactions be-
tween particles in the same well be taken into account.

4. Conclusions

In this work, we have derived and validated the effective
Hamiltonian that describes a Bose gas with interactions, at
very low temperatures, when it is confined in a potential in
one dimension composed of four wells. That is, from first
principles we performed a derivation of the effective Hamil-
tonian that represents the many-body system. In order to val-
idate this Hamiltonian, we studied in detail the energies and
the wave functions of a single particle confined in such a po-
tential ({εn, ϕn(x)}). In particular, we obtained the wave

functions associated with the lowest bound states. By using
a linear transformation, the localized wave functions in each
well ψi(x) were constructed in terms of the extended wave
functionsϕn(x).

We used as an assumption the fact that, in an ultracold
Bose gas, only the lowest states are occupied. Then, work-
ing in the second quantization formalism, we considered as a
complete basis the set{ϕn(x), n = 0, ..3}, to derive the ef-
fective Hamiltonian that describes the system of bosons with
interactions. In the basis of the localized wave functions in
each well, we found that this Hamiltonian is composed of
terms describing the tunneling between all the wells, and in-
teraction terms between particles within the same well.

Based on the study of the stationary wave functions, that
is, the extended wave functions, we demonstrated that, if the
four lowest energy levels in the potential are equally spaced,
only tunneling terms between adjacent wells become relevant
in the description of the many body system. From our anal-
ysis, we also concluded that the fact that only interactions
between particles in the same well appear in the effective
Hamiltonian is a consequence of assuming that the overlap
between the localized wave functions can be neglected.

Transport of ultracold Bose gases confined in potentials
composed of three wells has been studied in previous works
[11,15]. In those studies it was observed that the dynamics of
the particles is governed by the tunneling energy∆ and the
coefficient that modulates the interactiong. Although the tun-
neling dynamics in a four-well potential is beyond the scope
of this work, we can safely extrapolate that the temporal evo-
lution of this system will have qualitative features similar to
those observed for the three-well system.

It is important to note that the dynamics of an arbitrary
optical lattice composed of four wells will be described by
an effective Hamiltonian that contains tunneling terms among
all the wells. In other words, the experimental realization of
an optical lattice in which the particles can tunnel only be-
tween adjacent wells requires a precise tuning of the optical
potential creating it.

1. M.H. Anderson, J.R. Esher, M.R. Matthews, C.E. Weiman, and
E.A. Cornell,Science269(1995) 198.

2. K. Xu et al., Phys. Rev. Lett.72 (2005) 043604.

3. G. Roatiet al., Phys. Rev. Lett.82 (2004) 230402.

4. F.S. Cataliottiet al., Science293(2001) 843.

5. M.A. Cazalilla, A.F. Ho, and T. Giamarchi,New J. Phys.8
(2006) 158.

6. B.P. Anderson and M.A. Kasevich,Science282(1998) 1686.

7. C. Orzel, A.K. Tuchman, M.L. Fenselau, M. Yasuda, and M.A.
Kasevich,Science291(2001) 2386.

8. R. Franzosi, M. Cristiani, C. Sias, and E. Arimondo,Physical
Review A74 (2006) 013403.

9. A.L. Fetter and J.D. Walecka,Quantum Theory of Many Parti-
cle Systems(MacGraw-Hill, New York, 1971).

10. A.M. Rey et al., Phys. Rev A69 (2004) 033610.

11. R. Paredes,Physical Review A73 (2006) 033616.

12. M.D. Feit, J.A. Fleck, and A. Steiger,Journal of Computational
Physics47 (1982) 412.

13. L. Landau and L. Lifshitz, Quantum Mechanics, Non-
Relativistic Theory(London: Pergamon Press, 1958).

14. M.E. Rose,Elementary Theory of Angular Momentum(John
Wiley and Sons, New York, 1957).

15. R. Paredes,Laser Physics12 (2006) 0012.

Rev. Mex. F́ıs. 53 (2) (2007) 126–132


