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A simultaneous Distorted Wave Born Approximation calculation of elastic scattering, fusion and breakup cross sections for energies above
and below the Coulomb barrier energy is presented for reactions involving weakly bound projectiles on heavy targets. In the approach, a
Woods-Saxon optical potential U is used where its imaginary part W is split into a volume part WF which is only responsible for fusion
absorption and a surface part WDR which accounts for direct reactions. The fusion and direct reaction cross sections are calculated in terms
of WF and WDR respectively. The optical potential parameters are determined from a simultaneous χ2-analysis of recent experimental
data of elastic scattering and fusion cross sections. From this, energy dependent forms for WF (E) and WDR(E) can be determined and
by the dispersion relation the corresponding real polarization potentials VF (E) and VDR(E) are also found. The appearance or absence of
the threshold anomaly can therefore be extracted from these energy dependent forms. By turning on and off the potentials responsible for
breakup reactions (VDR and WDR) the effect of breakup on fusion can be studied. So, regions of suppresion and of enhancement around the
barrier energy can be determined for the nuclear systems under study.

Keywords: Nuclear reactions; exotic nuclei; threshold anomaly.

Dentro de la aproximación de ondas distorsionadas de Born, se hace un estudio simultáneo de reacciones de dispersión elástica, fusión y
de rompimiento del projectil conocido como breakup para reacciones nucleares que involucran projectiles debilmente ligados con blancos
pesados. Se utilizan potenciales de Woods-Saxon U en los que la parte imaginaria W que es responsable de todos los procesos de absorción
es dividida en dos partes, una WF responsable sólo de los procesos de fusión y otra WDR de los demás procesos, es decir de las reacciones
directas. Los parámetros de tales potenciales serán determinados através de un ajuste simultáneo de los datos experimentales de fusión y de
dispersión elástica. Se formulan entonces formas dependientes de la energı́a para WF y WDR através de las cuales de pueden determinar
las partes reales de los potenciales de polarización VF y VDR usando la relación de dispersión. Del comportamiento con la energı́a de estás
cuatro formas puede entonces determinarse la presencia o ausencia de la anomalı́a de umbral para el potencial de fusión y de reacciones
directas respectivamente y en consecuencia del potencial total de absorción W . Finalmente considerando o anulando los potenciales VDR y
WDR se realiza un estudio de la influencia que el proceso de rompimiento del projectil (breakup) tiene sobre el de fusión.

Descriptores: Reacciones nucleares; núcleos exóticos; anomalı́a de umbral.

PACS: 24.10.-i; 25.70.Jj; 23.23.+x; 56.65.Dy

1. Introduction

Nuclear reactions between neutron rich stable and unstable
projectiles with heavy and medium targets have been the ob-
ject of recent experimental and theoretical works. Neutron
rich nuclei have the property of exhibiting a halo structure
that may extend to large distances. These nuclei also show
low lying dipole modes and small neutron threshold ener-
gies for breakup [1]. In particular, weakly bound stable nuclei
with small neutron separation energies are of great interest as
well due to the high breakup probability. The effect that the
breakup mechanism has on other reaction processes particu-
larly on fusion has been the object of several recent experi-
mental and theoretical works. In fact, some theoretical pa-
pers suggest contradictory ideas about the effect that breakup
of weakly bound projectiles has on fusion with medium and
heavy targets. The controversy arises from whether the strong
coupling to the breakup channel enhances or hinders the fu-
sion process above and particularly below the Coulomb bar-
rier energy region [2–7]. Only until recently, it has been pos-
sible to use radioactive beams of unstable nuclei on medium

and heavy targets. Since the intensities of such beams are
very low, measurements of fusion below the barrier energy
have become difficult and time consuming. Then, in order
to understand the high breakup probability of nuclear beams
and the effect that breakup has on fusion, it is convenient to
use high intensity beams of weakly bound stable or long half-
life unstable projectiles. For instance, beams of this kind are
stable nuclei such as 9Be, 6Li and 7Li that have low neutron
threshold energies from 1.48 MeV to 2.45 MeV or unstable
long half-life nuclei such as 6He with small 2n separation
energy (0.98 MeV). Without doubt, the understanding of fu-
sion, breakup and neutron transfer mechanisms of these type
of incident beams is a necessary step in order to undertake
similar studies on unstable radioactive beams such as 11Li
and 11Be.

Stable nuclei like 9Be, 6Li, 7Li have a relatively small
neutron separation energy and in particular 9Be has the
property that when the valence neutron is knocked out, the
remaining nucleus 8Be becomes unstable and decays into
two α particles with T1/2 = 0.07 fs. Even more, 9Be
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is strongly deformed since its 8Be core has a well known
α-α structure. The breakup mechanism of 9Be can proceed
through the channels 9Be ⇒ n +8 Be with a threshold en-
ergy Eth =1.665 MeV or through 9Be ⇒ α +5 He with
Eth = 2.467 MeV. Now, since both 8Be and 5He are un-
bound these decay channels end up in two α particles plus
one neutron. In a nuclear reaction of 9Be with heavy targets
such as 209Bi or 208Pb [8–13] several processes can occur
after the breakup of 9Be;

a) Elastic breakup (EBU) when none of the fragments are
captured by the target.

b) Incomplete fusion (ICF) when one of the α particles
fuses to the target.

c) Complete fusion (CF) when the whole projectile 9Be
fuses to the target or when all the fragments after
breakup fuse to the target.

d) Neutron transfer (NT) when the neutron produced after
breakup is transferred to the outer shells of the target.

Possibly, some of the most important aspects to be ques-
tioned about these processes are related to the effect that the
significant breakup yield for this nucleus has on fusion. For
example;

1) Is the fusion enhanced or suppressed at different en-
ergy regimes? or

2) Is this enhancement or suppression related to the com-
plete fusion or to the total fusion?,

3) How is that breakup of the projectile influence the ap-
pearance or absence of the threshold anomaly?

Several recent papers have tried to address these ques-
tions for reactions of 9Be, 6Li, 7Li or 6He with differ-
ent targets. Dasgupta et al., [11] arrive to the conclusion
that for the system 9Be +208 Pb the breakup of 9Be has
a strong influence on suppressing the complete fusion yield
above the barrier energy. In fact, their calculations show that
the CF is only about 68% of the expected fusion as predicted
by coupled-channel calculations. For this same system, R.J.
Woolliscroft et al., [12, 13] have made complete measure-
ments of elastic scattering angular distributions, α-breakup
and one-neutron transfer yields. Their data show that for en-
ergies well below the fusion barrier energy there are substan-
tial breakup and 1n-transfer yields. However, their optical
model analysis show that despite the high breakup and 1n-
transfer cross section values, the usual threshold anomaly still
appears. This means that, in spite of the high values of the
direct reaction measurements associated to elastic breakup
and 1n-transfer reactions, the energy dependence of the ab-
sorption part of the optical potential still sharply decreases
around the fusion barrier energy for decreasing bombarding
energies as usually occurs for systems that show the thresh-
old anomaly. On the other hand, the studies of N. Keeley et

al., [14, 15] for beams of weakly bound nuclei such as 6Li
(6Li ⇒ α + d, with threshold energy Eth = 1.48 MeV) and
7Li (7Li ⇒ α + t, with Eth = 2.45 MeV) show that for
the reaction 6Li +208 Pb the usual threshold anomaly does
not appear, not being the case for 7Li +208 Pb. Accordingly,
the system 6Li +208 Pb shows a high α-breakup yield below
the barrier energy. Since 9Be has a break-up threshold en-
ergy (9Be ⇒8 Be + n ⇒ α + α + n, Eth = 1.67 MeV)
closer to that for 6Li, N. Keeley et al., [14, 15] assume that
the threshold anomaly should be absent for reactions involv-
ing 9Be. For the similar nuclear system 9Be +209 Bi, Sig-
norini et al., [5, 9, 10] do not arrive to a definitive conclusion
due to the small number of data precisely below the barrier
energy region. Recently, the Brazilian group [6, 16–19] have
intensely studied reactions of weakly bound beams such as
6Li, 7Li and 9Be with medium mass targets as 27Al and
64Zn. In particular for the system 9Be +64 Zn, they have
determined that the prior breakup of 9Be into 8Be + n and
then to α + α + n does not affect the total fusion (sum of
the complete plus incomplete fusion cross sections) in any
energy regime. However, the complete fusion becomes sup-
pressed basically below the barrier energy due to the part of
total fusion that corresponds to incomplete fusion. Above the
barrier energy, the ICF results negligible leaving the TF al-
most the same as the CF. In agreement with the expectations
of Refs. 14 and 15, the threshold anomaly is not found for
9Be +64 Zn around the barrier energy.

In this work, we will study some reactions involving
weakly bound projectiles such as 9Be, 6Li and 6He with
targets 208Pb and 209Bi within the Distorted Wave Born Ap-
proximation (DWBA) for direct reactions. Within this ap-
proach, we intend to elucidate the various and sometimes di-
verging conclusions found for these systems as cited above.
That is, within the well known direct reaction approach as the
DWBA, a simultaneous calculation of elastic scattering, fu-
sion, and breakup cross sections will be performed. We will
inquire into the effect that the breakup process has on the fu-
sion one and on the so-called threshold anomaly for the sys-
tems 6Li+208 Pb, 9Be+208 Pb and 6He+209 Bi. In the cal-
culations, a Woods-Saxon optical potential Ua = Va+Wa for
the entrance channel a is used. The imaginary part Wa is split
into volume and surface parts, that is Wa = Wa,F + Wa,DR.
Also, it will be assumed that the volume part Wa,F of Wa is
solely responsible for the fusion absorption process while the
surface part Wa,DR for all other absorption processes. The
determined relative motion distorted waves χ

(+)
a obtained

with the Woods-Saxon potential Ua will be used through-
out the calculations, in this sense all of the calculated values
will be consistent with elastic scattering. We propose that
by means of the decomposition of Wa, the breakup effect of
the projectile on fusion will be more clearly isolated in terms
of the behavior of Wa,DR. Similarly, it is expected that the
conjugated energy dependence of the fusion part Wa,F and
direct reaction part Wa,DR will tell us about how strong is
the breakup effect on fusion. That is, if there is fusion sup-
pression or enhancement around the barrier energy. Also, it
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is expected that the energy dependence of Wa,F and Wa,DR

and the corresponding real parts Va,F and Va,DR will tell us
if the the usual threshold anomaly is present.

The paper is organized as follows, in Sec. 2 a brief de-
scription of the model is presented. Section 3 is dedicated to
the calculations, in which a simultaneous χ2-analysis of re-
cent elastic scattering and fusion cross sections will be done.
The extracted Woods-Saxon parameters should simultane-
ously fit the fusion and elastic scattering cross section data.
The total reaction cross section can be determined from the
elastic scattering one since σR = σRuth − σel where σRuth

corresponds to the pure Rutherford Coulomb calculation and
σel to our actual calculation. The difference σDR = σR−σF

corresponds to the direct reaction cross section which for
the nuclear systems under consideration and for energies be-
low the barrier is very close to the breakup plus 1n-transfer
cross section. Also in this section, a discussion of the thresh-
old anomaly is presented. As is well known the threshold
anomaly refers to the closing of reaction channels as the bom-
barding energy decreases around the Coulomb barrier energy.
This is related to a sharp decrease in the strength of the ab-
sorption potential Wa around the barrier. Through the disper-
sion relation, it is found that the strength of the corresponding
real nuclear polarization part of the optical potential shows a
sharp increase just around the barrier energy. Within our ap-
proach, by splitting Wa into a fusion part WF,a and a direct
reaction part WDR,a, we can separate the influence of each
part in the determination of threshold anomaly. In the last
part of the calculations, we discuss the effect of breakup on
fusion yields by isolating the separate influence of each VDR

or WDR or both together on the calculated fusion cross sec-
tion. So, regions of energy where there is fusion suppression
or enhancement can be distinguished. Finally, Sec. 4 is dedi-
cated to a summary of this work.

2. Basic formalism

The Hamiltonian H for the nuclear system is of the form,

Ha = Ta + Va, (1)

where the potential Va is defined by,

Va(r,E) = VCoul(r)− Va,0(r)− Ua(r, E), (2)

VCoul(r) is the Coulomb potential between the reacting
ions, Va,0(r) is the energy independent Hartree-Fock poten-
tial and Ua(r, E) is the nuclear polarization potential given
by [20–22],

Ua(r, E) = Va(r, E) + iWa(r, E). (3)

For the moment and to facilitate the notation, we will drop
the index a which indicates the incident elastic channel. The
imaginary part W will be assumed to be composed of two
parts, a fusion part and the direct reaction part, i.e.,

W (r, E) = WF (r, E) + WDR(r, E), (4)

where WF will be responsible for fusion reactions and WDR

for all other absorption processes, that is direct reactions. The
real polarization potential V (r, E) can be derived from the
corresponding imaginary polarization potential W (r, E) by
the dispersion relation,

V (r, E) =
(E − Eb)

π
P

∞∫

0

W (r,E′)
(E′ − Eb)(E′ − E)

dÉ, (5)

here Eb is a reference energy as defined in Ref. 23. Therefore,
for each part of the imaginary potential W (r, E) of Eq. (4),
there corresponds a real part, that is VF (r,E) for WF (r, E)
and VDR(r, E) for WDR(r,E), each given by a relation like
Eq. (5). Thus, by using Eq. (4), we would have that the total
real nuclear polarization potential satisfies,

V (r, E) = VF (r,E) + VDR(r,E). (6)

The energy independent nuclear potential V0(r) and the fu-
sion absorption potential WF (r, E) are assumed to have the
geometrical forms,

V0(r) = V0f(r) (7)

and,
WF (r,E) = WF (E)f(r) (8)

where,

f(r) =
1

1 + exp(xi)
, xi =

r −Ri

ai
, i = 0, F (9)

here ai refers to the diffuseness parameter and
Ri = ri(A

1/3
1 + A

1/3
2 ) the radial parameter. The surface

imaginary potential WDR(r, E) is defined by,

WDR(r,E) = 4aDRWDR(E)
df(r)
dRDR

, (10)

where aDR stands for the direct reaction diffuseness and
RDR for the corresponding radial parameter. The parame-
ters V0, WF (E) and WDR(E) will be extracted from a si-
multaneous χ2-analysis of the elastic and fusion experimen-
tal data as it will be shown in the next section It should be
pointed out that the breakup cross section may include con-
tributions from Coulomb and nuclear interactions, this im-
plies that the direct reaction potential includes both effects.
Also, the Hartree-Fock potential V0(r) in Eq. (2) may have
an energy dependence due to the non-locality effect coming
from the knockon-exchange contribution, we will not con-
sider such effects since they are negligible [24]. The angle-
integrated total reaction cross section is calculated by using
the full absorption potential W , i.e.,

σR(E) =
2
~v

〈
χ(+)

a |W (E)|χ(+)
a

〉
(11)

where we have rewritten the sub-index a to emphasize the
elastic channel. χ

(+)
α is the distorted wave function which is

solution of Haχ
(+)
a = Eaχ

(+)
a , Ha being the Hamiltonian of
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Eq. (1), v is the relative velocity between the colliding ions.
The fusion and direct reaction cross sections are similarly ob-
tained by,

σi(E) =
2
~v

〈
χ(+)

a |Wi(E)|χ(+)
a

〉
, i = F, DR. (12)

3. Simultaneous χ2-analysis of elastic scatter-
ing, fusion, and direct reaction cross sec-
tions

Recently, there has been an extensive experimental work on
reactions involving weakly bound projectiles. For the nu-
clear systems studied in the present work, we will consider
the data of Refs. 25 and 26 for the 6He +209 Bi system,
Refs. 14 and 15 for 6Li+208 Pb, and Refs. 11 and 12 for the
9Be +208 Pb system. Now, the direct reaction cross section
can be further generated by,

σDR = σR − σF . (13)

Therefore, if there are sufficient data for the elastic scat-
tering and the fusion cross section below and above the
Coulomb barrier energy, the total reaction and the direct re-
action cross sections can be determined in the same region
of energies. It should be mentioned that the way in which
σDR has been generated in this work is about 10 to 30%

larger than the measured breakup cross section for the sys-
tem 6Li +208 Pb [27], the difference should be due to in-
complete fusion. As for 9Be +208 Pb, σDR is very close to
the sum of the breakup and transfer cross sections [13] As
a first step, and in order to explore into the behavior of the
absorption potentials WF and WDR with the energy, we will
determine the best optical potential parameters for the real
Hartree-Fock potential and imaginary fusion and direct reac-
tion parts of the optical potential by a simultaneous χ2-fitting
of elastic scattering and total fusion data. For the real nuclear
Hartree-Fock potential, we fix the values V0 = 18.36 MeV,
r0 = 1.22 fm and a0 = 0.57 fm for the 6Li +208 Pb sys-
tem and V0 = 29.53 MeV, r0 = 1.25 fm and a0 = 0.65 fm
for the 9Be +208 Pb while for 6He +209 Bi a deeper poten-
tial strength is nedeed that is, V0 = 100.4 MeV, r0 = 1.1 fm
and a0 = 0.54 fm. On the other hand, for 6Li +208 Pb, we
fix the radial and diffussenes parameters rF = 1.4 fm and
aF = 0.42 fm of WF and rD = 1.47 fm and aD = 0.85 fm
of WDR remaining WF (E) and WD(E) to be fitted. For
9Be +208 Pb, we set rF = 1.4 fm, aDR = 0.5 fm,
rD = 1.51 fm while WF (E), WD(E) and aF are calcu-
lated by the χ2-analysis. Finally, regarding 6He +209 Bi,
we fix rF = 1.4 fm, aF = 0.55 fm, WD = 0.4 MeV and
aD = 1.25 fm remaining WF (E) and rD to be fixed. In
Table I, all the calculated parameters are listed as function of
the collision energy.

TABLE I. Optical potential parameters. Energies and potential depths in MeV. Radial parameters in fm.

6Li +208 Pb 6He +209 Bi

Ecm − VB WF WDR Ecm − VB WF rDR

-8.95 0.0023 0.015 -8.62 0.0227 1.729

-6.13 0.016 0.105 -5.98 0.0237 1.648

-2.37 0.0324 0.395 -4.5 0.0242 1.622

-1.43 0.069 0.462 -3.02 0.0544 1.592

0.56 0.152 0.507 -1.644 0.0845 1.506

2.45 0.219 0.56 1.11 0.0855 1.5

4.44 0.22 0.59 3.22 0.0864 1.483

8.32 0.221 0.67 5.87 0.0874 1.47

8.94 0.0885 1.43
9Be +208 Pb

Elab Ecm Ecm − VB WF WDR aF

38 36.42 -1.88 0.0056 0.2287 0.365

40 38.34 0.0 0.0138 0.3497 0.299

42 40.26 1.96 0.0399 0.4237 0.297

44 42.17 3.87 0.0319 0.4073 0.289

46 44.1 5.8 0.009 0.4477 0.2252

48 46.0 7.71 0.1297 0.335 0.2598

50 47.92 9.62 0.0998 0.4864 0.3821

60 57.51 19.21 0.2047 0.5552 0.0996

68 65.2 26.88 0.1847 0.5649 0.1865

70 67.1 28.8 0.2897 0.4627 1.15
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Before doing final calculations of elastic, total reaction, fusion and direct reaction cross sections, we assume linear
parametrizations for the fitted optical potential strength parameters for each system, so for 6Li +208 Pb we have ( in MeV),

WF (Ecm)=





0 Ecm ≤ E0,F = 26.8
0.4(Ecm − 26.8) 26.8 < Ecm ≤ 34
2.9 34 < Ecm

(14)

and,

WDR(Ecm)=





0 Ecm < E0,DR = 22
0.08(Ecm − 22) 22 < Ecm < 28
0.023(Ecm − 28) + 0.5 28 < Ecm < 37.9
0.73 37.9 < Ecm

, (15)

where E0,F and E0,DR correspond to the fusion and direct reaction threshold energies. Similarly for 9Be +208 Pb we have,

WF (Ecm)=





0 Ecm ≤ E0F = 36.92
0.0082(Ecm − 36.92) 36.92 < Ecm ≤ 62.1
0.207 62.1 < Ecm

(16)

and,

WDR(Ecm)=





0 Ecm ≤ E0F = 16.94
0.0131(Ecm − 16.94) 16.94 < Ecm ≤ 52.28
0.4629 52.28 < Ecm

. (17)

Finally, for 6He +209 Bi the corresponding equations are,

WF (Ecm)=





0 Ecm ≤ E0F = 15.4
1.25(Ecm − 15.4) 15.4 < Ecm ≤ 18.5
4.0 18.5 < Ecm

(18)

and,

rD(Ecm)=





1.73 Ecm ≤ 14.0
1.73− 0.03(Ecm − 14.0) 14.0 < Ecm ≤ 21.4
1.51 21.4 < Ecm

(19)

It should be remembered that for any given energy
WT = WF + WDR. Now, by using the parametrizations for
the potential depths WF and WDR as function of the energy
just given, the corresponding real polarization potentials VF ,
VDR and VT = VF + VDR can be found through the use of
the dispersion relation, Eq. (5). The integration of the linear
forms Eqs. (15)-(19) has already been given in Ref. 23, the
results are of the form,

πV (E) = W0 [εa ln |εa| − εb ln |εb|]
+ (W1 −W0)[ε′b ln |ε′b| − ε′c ln |ε′c|]
−W1[ε′′c ln |ε′′c | − ε′′m ln |ε′′m|]
+ W1[η ln η − (η + 1) ln(η + 1)], (20)

where, εa and εb are defined by,

εa =
E − Ea

Eb − Ea
and εb =

E − Eb

Eb −Ea
(21)

with Ea and Eb (Ea < Eb < ∞) being the limiting energies
of the first linear segment. Similar equations for ε′b, ε

′
c, ε

′′
c etc.

are valid for the second, third etc. linear segments. For each
reacting nuclear system final calculations of cross sections
will be done with the use of the energy dependent forms just

FIGURE 1. Imaginary absorption potentials, WF , WDR and WT

as functions of the energy for the systems a) 9Be +208 Pb, b)
6Li +208 Pb and c) 6He +209 Bi.
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FIGURE 2. Real polarization potentials, VF , VDR and VT as func-
tions of the energy for the systems a) 9Be+208 Pb, b) 6Li+208 Pb
and c) 6He +209 Bi.

given for the fusion and direct reaction absorption poten-
tials and the corresponding real parts calculated in Eq.(21).
The imaginary potentials WF (E), WDR(E) and its sum
WT at the strong absorption radius are shown in Figs. 1a-1c
while the corresponding VF , VDR and VT are presented
in Figs. 2a-2c. From these figures it can be seen that the
9Be +208 Pb system shows the threshold anomaly around
the barrier energy (VB,cm = 38.3 MeV). This is not the
case for the systems 6Li +208 Pb and 6He +209 Bi since
around the corresponding barrier energies (VB,cm=29.6.3
and 20.3 MeV), WT does not show a sharp decrease and
consecuently VT does not show the usual bell shape cen-
tered at the barrier (Ecm = VB). In Figs. 3a,3b and 3c
the elastic scattering calculation is presented for the systems
9Be+208 Pb and 6He+209 Bi. Fig. 4a shows the results for
the breakup and fusion cross sections for 6He+209Bi, where
it has been assumed that all of the direct reaction cross section
corresponds solely to breakup for energies around and below
the barrier energy. Fig. 4b shows the corresponding calcula-
tions for 6Li+208 Pb in comparison with the data of [14,28].
As seen in these calculations, for energies around below the
barrier energy, the direct reaction processes account for most
of the total absorption. The small breakup threshold energy
for the weakly bound projectiles treated in the present study
is the main factor for the high breakup and neutron transfer
yields that persist being important even for energies well be-
low the barrier energy.

FIGURE 3. Elastic scattering cross section for a), b) 9Be +208 Pb

and c) 6He +209 Bi.

We pass now to consider the effect that breakup reactions
have on fusion, this can be done by turning on and off the part
of the potential that is responsible for direct reactions, that is
VDR and WDR. We have to remember that breakup reactions
are the most important contributors to direct reactions for the
weakly bound projectiles involved in the present study. There
are two physical effects by which VDR and WDR affect fu-
sion reactions, an attractive VDR tends to lower the Coulomb
barrier and therefore enhances fusion, on the other hand a
loss of flux into direct reactions represented by WDR lowers
or suppresses fusion reactions. So, by considering each VDR

and WDR and then both together will tell us the independent
effect on fusion. Therefore, we define the ratio,

Ri = σF (i)/σF (VDR = WDR = 0);

i = VDR,WDR, VDRWDR. (22)
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FIGURE 4. a) Total reaction, breakup and fusion cross sections for
6He +209 Bi. b) Total reaction, direct reaction and fusion cross
sections for 6Li +208 Pb.

It should be remarked that σF (VDRWDR) corresponds to our
final calculation that we have shown above. Fig. 5 shows
the results for the three nuclear systems under study. In the
range of energies considered, as expected, the real attractive
potential VDR lowers the fusion barrier and for that reason
RVDR

> 1 which means fusion enhancement for all ener-
gies. On the other hand, WDR is connected to the loss of flux
mainly into the breakup channel and therefore RWDR < 1
which means fusion suppression in the whole range of ener-
gies. When both potentials VDR and WDR are applied we
can separate regions of enhancement and suppression, so for
6He +209 Bi the ratio RVDRWDR

is smaller than one for all
energies considered above and below the barrier energy. For
9Be +208 Pb there is a net fusion enhancement for energies
Ecm < VB +4 and suppression for energies above this range.
Finally the 6Li+208Pb system there is fusion suppression for
energies Ecm > VB − 1 and supression otherwise.

FIGURE 5. RV DR, RWDR and RV DR,WDR as defined in the text
for the systems a) 6He+209Bi, b) 9Be+208Pb and c) 6Li+208Pb.

4. Summary

In this work, we have presented a simultaneous DWBA cal-
culation of elastic scattering. direct reaction (breakup) and
fusion cross sections. In the model, the optical polarization
potential has been split into a fusion part and a direct reac-
tion part each responsible for the corresponding fusion and
direct reactions. Energy dependent forms for each imagi-
nary parts WF (E) and WDR(E) have been determined by
a χ2-analysis of elastic and fusion data. Then correspond-
ing energy dependent forms for VF (E) and VDR(E) have
been derived from the dispersion relation. These energy de-
pendent forms show that the threshold anomaly shows up for
the system 9Be+208 Pb. However, this is not the case for the
6He+209Bi and 6Li+208Pb systems where WT (E) shows a
slow decreasing and a stable behavior around the correspond-
ing barrier energies VB . On the other hand, in these two cases
VT (E) does not show the usual bell shape around VB as oc-
curs when the threshold anomaly is present. The effect of
breakup on fusion cross sections have been studied by turning
on and off the potentials responsible for fusion enhancement
VDR and fusion suppresion WDR. So, energy regions of fu-
sion enhancement and suppression have been determined for
the three nuclear systems of the present work.
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