
REVISTA MEXICANA DE FÍSICA S 52 (4) 49–55 NOVIEMBRE 2006

Landau level broadening without disorder, non-integer plateaus without
interactions – an alternative model of the quantum Hall effect
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I review some aspects of an alternative model of the quantum Hall effect, which is not based on the presence of disorder potentials. Instead,
a quantization of the electronic drift current in the presence of crossed electric and magnetic fields is employed to construct a non-linear
transport theory. Another important ingredient of the alternative theory is the coupling of the two-dimensional electron gas to the leads and
the applied voltages. By working in a picture where the external voltages fix the chemical potential in the 2D subsystem, the experimentally
observed linear relation between the voltage and the location of the quantum Hall plateaus finds an natural explanation. Also, the classical
Hall effect emerges as a natural limit of the quantum Hall effect. For low temperatures (or high currents), a non-integer substructure splits
higher Landau levels into sublevels. The appearence of substructure and non-integer plateaus in the resistivity is not linked to electron-
electron interactions, but caused by the presence of a (linear) electric field. Some of the resulting fractions correspond exactly to half-integer
plateaus.
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Se revisan algunas propiedades de un modelo alternativo del efecto Hall cuántico, que no está basado en la presencia de potenciales de
desorden. En cambio, se emplea una cuantización de la corriente de arrastre electrónico en la presencia de campos eléctricos y magnéticos
cruzados para construir una teorı́a de transporte no-lineal. El acoplamiento del gas bidimensional de electrones a las guı́as y los voltajes
aplicados es otro ingrediente importante de esta teorı́a alternativa. Se encuentra una explicación natural de la relación lineal que se observa
experimentalmente entre el voltaje y la ubicación de los niveles Hall cuánticos. Además, el efecto Hall clásico emerge como un lı́mite
natural del efecto Hall cuántico. A temperaturas bajas (o corrientes altas), una subestructura no-entera divide los niveles Landau más altos en
subniveles. La aparición de una subestructura y niveles no-enteros en la resistividad no está ligada a las interacciones electrón-electrón, sino
que es causada por la presencia de un campo eléctrico (lineal). Algunas de las fracciones resultantes corresponden exactamente a niveles
semi-enteros.

Descriptores: Efectos Hall cuánticos; teorı́a y modelos.

PACS: 73.43.Cd

1. The classical Hall effect

A purely electric field leads to a uniform acceleration of a
charged particle, whereas a purely magnetic field forces the
particle on a circular path. The combination of both fields
gives rise to the electron drift motion, which is oriented per-
pendicular to both, electric E and magnetic B fields. Av-
eraging the equation of motions over one cyclotron period
T = 2πm/(eB) yields the drift-velocity:

vd =
1
T

t+T∫

t

dt′ ṙ(t′) = (E ×B)/B2. (1)

The drift-velocity vd is also independent of the initial veloc-
ity ṙ(0).

In the following I consider the electronic motion in a two-
dimensional subsystem. The orientation of the magnetic field
is shown in Fig. 1. The constant drift-velocity has important
consequences for the transport of electrons in a solid which
is placed in a magnetic field. In a classical Hall experiment
deflected electrons form an electric field along the edges of
a metal. The conducting electrons propagate in the presence
of this electric Hall field, which can be used to determine the

carrier-density in the sample [4]. Completely neglecting scat-
tering events, one can extract the basic relation between the
classical current J

J = Nevd, (2)

(N denotes the electron density, e the electronic charge) and
the resistivity tensor ρ (or it’s inverse, the conductivity tensor
σ) from Ohm’s law:

J = ρ−1 · E ⇒ ρ−1 = σ =
Ne

B
(

0 −1
1 0

)
. (3)

The resistivity ρxy = B/(Ne) is proportional to the magnetic
field. Notice that the classical Hall effect does in principle not
depend on the presence of disorder or scattering processes.
The “electric Hall-field brake” ensures a constant drift veloc-
ity.

1.1. The quantum Hall effect

In contrast to the classical Hall effect, the quantum Hall effect
observed by von Klitzing [5] shows a non-linear variation of
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FIGURE 1. a) Schematic view of a Hall bar. A current J is flow-
ing through a two-dimensional electron gas (2DEG) in the x − y–
plane, which is oriented perpendicular to an external magnetic field
B. The deflected electrons at the sample edges produce a Hall volt-
age Uy over the sample width W , which is measured along with
the longitudinal voltage drop Ux. b) (adapted from [3], Fig. 1):
Schematic picture of a Metal-Oxide-Semiconductor (MOS) device.
The two-dimensional electron gas (2DEG) at the interface between
the oxide and the silicon is controlled by applying a gate voltage Vg .
The gate voltage changes the Fermi energy E

(3D)
F of the semicon-

ductor, which in turn couples to the Fermi-energy EF of the 2DEG.
If EF < (E1 − E0) holds, the electrons only populate the ground
state of the 1D quantum well in z-direction that has the eigenen-
ergy E0, which links both Fermi energies via EF = E

(3D)
F − E0.

the resistivity with the magnetic field. In the integer quantum
Hall effect, the resistivity ρxy is quantized:

ρxy =
h

ie2
, i = 1, 2, 3, . . . (4)

The conditions for the observation of the quantum Hall effect
are low temperatures and very clean samples.

Interestingly, no standard theory of the integer quantum
Hall effect is available. While there exist several models
which lead to a quantized resistivity, basic questions remain
unanswered: for example, the breakdown of the quantized
resistivity above a critical current is documented experimen-
tally, but remains a challenge for most theories.

In the case of the electric field, the difficulty comes from
the fact that current theories of the quantum version of the
Hall effect are not based on the Hamiltonian of crossed elec-
tric and magnetic fields, but rather on the addition of a disor-
der potential to a purely magnetic field:

Hlattice,disorder =
[
p− e

c
A(r)

]2

/(2m) + VLD(r), (5)

where VLD(r) denotes a periodic lattice potential and pos-
sibly uncorrelated disorder potentials (which are often as-
sumed to disappear on the average:

∫
drVLD(r) = 0). This

Hamiltonian differs from the classical Hall Hamiltonian by
the omission of the electric Hall field. The disorder potential
becomes an essential part of the description and the appear-
ance of a quantized conductivity is linked to the presence of
a fluctuating potential-landscape VLD [6, 7]. Also it cannot
sustain an electric field, which would require that the poten-
tial landscape is not averaged to zero. Thus for most previ-
ous theories of the quantum Hall effect, the electric Hall-field
brake is disregarded. In contrast to the classical Hall effect,
disorder forms an essential part of the model.

2. Quantized slopes in the quantum Hall effect

In this section I explore the connection between the density
of states (DOS), the Fermi energy, and the number of current
carriers. In principle, the number (or density of carriers) is
obtained by a convolution integral of two independent quanti-
ties: the DOS and the probability of occupation of a quantum
state, which is given by the Fermi-Dirac distribution:

N(EF , T ) =

∞∫

−∞
n(E) f(E,EF , T ) dE (6)

f(E,EF , T ) =
[
e(E−EF )/(kT ) + 1

]−1

. (7)

For very low temperatures, the Fermi-Dirac distribution be-
comes a step-function:

N(EF ) =

EF∫

−∞
n(E) dE (8)

In the absence of external fields, the DOS of a free, non-
interacting two-dimensional electron gas (2DEG) is indepen-
dent of the energy of the state

n
(2D)
free (E) = Θ(E)

m

2π~2
, Θ(E) =

{
0 E < 0
1 E > 0 (9)
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whereas for crossed electric and magnetic fields, the DOS
becomes a sum of shifted oscillator densities [11], eq. (20):

nE×B(E) =
∞∑

k=0

nk,E×B(E), (10)

nk,E×B(E) =
[Hk (Ek/Γ)]2

2k+1k!π3/2l2Γ
e−E2

k/Γ2
, (11)

where Hk(x) denotes the Hermite polynomial. The level
width parameter Γ and the energies Ek are given by

Γ = eEy

√
~/(eB)

ωL =
eB
2m

(12)

Ek = E − Γ2/(4~ωL)− (2k + 1)~ωL.

The question how the two-dimensional (quantized) sub-
system is coupled to the contacts in an experiments is impor-
tant for a model of the QHE. In principle, one can think of
two possibilities:

• One can view the subsystem as completely isolated
and filled with a fixed number of particles. In this
N = const picture, a change in the underlying DOS
(i.e. by a change in the magnetic field), yields in prin-
ciple a change of the energy in the system.

• On the other hand, a system which is part of an elec-
tric circuit can undergo fluctuations in the number of
particles, whereas the energy remains fixed.

Traditional theories of the QHE try to use an N = const
picture for the current-carrying electrons. However, if one
defines the energy of the system to be identical to the last
occupied state, problems arise from the absence of available
states in the gap between two Landau levels. Another mech-
anism is needed to “pin” the Fermi-energy in between two
Landau levels. A commonly used approach is the addition of
another kind of density of states, which does not support a
current but only provides a non-zero density of states in the
gap. This other kind of electrons act as a reservoir and should
buffer the otherwise oscillatory Fermi energy.

The alternative model of the QHE [1] follows a different
approach: Instead of adding electrons from a reservoir, I pro-
pose to treat the QHE system as a system which is part of
an electric circuit and is therefore working at a fixed voltage
(or Fermi energy) in three dimensions. The two-dimensional
subsystem has a fixed voltage difference to the 3D system
and therefore has to adjust its number of carriers in order to
fulfill the energy conditions of the complete system (see also
the discussion in [12]).

In this picture, the QHE can be seen as caused by cou-
pling a system with a fixed number of channels to a larger
system. The direct coupling of the Fermi-energy of the com-
plete system and the subsystem to external voltages provides
a good way to test this picture.

If the Fermi energy is directly determined by a gate volt-
age Vg (minus a constant offset voltage Vo) via

EF = α(Vg − Vo), (13)

it is possible to obtain the intersection points of the (classical)
Hall resistivity with the quantized Hall graph. The intersec-
tion points are obtained by equating both resistivities for the
same Fermi energy EF

Rcl
xy =

B
eNav

!= Rqm
xy =

B
e
∫ EF

0
nE×B,↑↓(E, E ,B) dE

,

Nav =

EF∫

0

dE 2 n
(2D)
free (E) =

m∗

π~2
EF , (14)

where n
(2D)
free (E) is given by (9) multiplied by two to account

for the spin degeneracy and nE×B(E, E ,B) by eq. (10) with
the addition of a spin-splitting (see Sec. 5.5.2 in Ref. [13]).
Note that the intersection point is not necessarily exactly in
the middle of a plateau (see Fig. 2).

At the plateaus Rqm
xy = (h/e2 i), i = 1, 2, 3, . . . holds

and simultaneously one reaches the intersection point (14)
with the classical Hall line Rqm

xy = Rcl
xy . Therefore the mag-

netic field values at the intersection points with the quantized
resistivity are given by

h

e2i
=

B

eNav
⇒ Bi =

h

e i
Nav. (15)

An example for such an intersection point is B2 = 10 T in
Fig. 2. Now it is possible to derive how the magnetic field
value of the intersection points changes as a function of the
Fermi energy and therefore of the average particle number.

FIGURE 2. Classical Hall line (straight line) vs. quantum Hall
curve, calculated from [1]. The QHE leads to a quantized resis-
tance ρxy = (1/i)(h/e2), i = 1, 2, 3, . . .. Parameters (references
for the values in brackets): effective mass m∗ = 0.1, mobility
µ = 17 m2V−1s−1, effective g-factor g∗ = 10 [2], tempera-
ture T = 1 K, current jx = 1 Am−1, average carrier density
Nav = 2.4 × 1015 m−2 (corresponding to a fixed Fermi energy
of EF = 11.6 meV.)
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Using Eq. (15), I obtain for the slopes in GaAs/AlGaAs het-
erostructures

∂Bi

∂Nav
=

h

e i
, (16)

or expressing α in terms of the capacitance C for a Si-
MOSFET [α = C/(n(2D)

free e)]

e

C

∂Bi

∂Vg
=

h

e i
. (17)

These values reflect exactly the experimentally reported
quantized slopes ( [8], Eq. (1), and [14], p. 329). Disorder
was deliberately discarded, although it may be important for
the observed fine-structure in the experiments. A compari-
son of the theoretical prediction with experimental results is
shown in Fig. 3. The excellent agreement supports the under-
lying model of a Fermi energy which is directly proportional
to the applied gate voltage, while the actual number of parti-
cles may fluctuate about an average value.

FIGURE 3. Grayscale plot of the conductance σxx as a function
of the gate voltage Vg and the magnetic field in a silicon MOS-
FET. Left panel: A schematic representation of the experimental
data obtained by Cobden et al., published in [8], Fig. 2(a). Right
panel: theoretical prediction using [1], with the following param-
eters (references for the values in brackets): transverse effective
mass m∗ = 0.19 [9], mobility µ = 0.19 m2V−1s−1 [8], effective
g-factor g∗ = 5 [2], valley splitting in silicon Evalley = 1.3 meV
[10], temperature T = 1.0 K [8], C/e = 8.6× 1015 m−2V−1 [8],
Voff = 2.3 V [8], jy = 0.1 Am−1 [assumed]. The location of
the plateaus (enumerated by p) follows quantized slopes. In the
transition region between two p’s, the theory shows less structure
compared to the experimental result.

Recent experiments trace the evolution of the plateaus as
a simultaneous function of the magnetic field B and an ap-
plied gate-voltage Vg . Experiments have been performed us-
ing GaAs heterostructures [14] (see also [1]) as well as Sil-
icon MOSFET devices [8] (see Fig. 3). Both experiments
confirm the linear law for the plateau location in the Vg–B-
plane.

3. The role of the electric field in the quantum
Hall effect

In principle, a microscopic theory of the QHE could work
without the presence of the electric field in the basic Hamil-
tonian, since the electric Hall field is quickly build up as the
response of the system to an externally applied voltage. How-
ever, to my knowledge, this time-dependent generation of the
Hall field is not included in theories of the QHE. Since the
steady-state crossed-fields configuration is reached on a short
time-scale and the electric field remains present, the field has
to be included in the propagation of successive electrons. In-
terestingly, basic quantities like the local density of states are
changed in the presence of an electric field [11, 13, 15].

The presence of the electric Hall field does in general not
destroy the gaps between two purely magnetic Landau lev-
els, but broadens the Landau levels and imprints a different
substructure on each level. These properties are reflected in
a non-trivial form of the local density of states (see Fig. 4)
and show the divergence of the quantum Hall effect from a
classical electron drift picture:

• For emission from a localized contact, the drift de-
pends not only on the field ratio, but also on the kinetic
energy of the electrons: for certain energy ranges, lo-
calized currents are formed with zero macroscopic flux
and the electron propagation is blocked. This is in stark
contrast to the classical case, where every electron can
participate in the drift motion, independent of its initial
(kinetic) energy.

• Landau-levels are broadened by the electric field in a
non-trivial way. Each Landau level acquires a different
substructure and width, dependent on the level number
and the electric and magnetic field values (see Fig. 4).

• The broadening follows a power law, which leads to a
critical Hall field for the breakdown

Ecrit ∝ B3/2. (18)

• Higher Landau levels begin to overlap and therefore
cannot sustain a quantized transport. Note that there is
a natural broadening occuring due to the presence of
the Hermite polynomials in eq. (10).

Experiments by Kawaji et al. [16–18], who studied the QHE
and its breakdown as a function of the electric Hall field, are
in precise agreement with the theoretical predictions. In fact,
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FIGURE 4. Local density of states (LDOS) nE×B(E) in crossed
electric and magnetic fields, see [11, 15]. NE×B(E) denotes the
carrier density obtained from NE×B(E) =

∫ E

−∞ nE×B(E′)dE′.
Note the substructure within Landau levels and the broadening de-
pendent on the electric field value.
the same power law as the theoretically calculated one (see
eq. 18) is empirically deduced from the experimental data
in [16].

Also, Kawaji obtains different critical fields for different
Landau levels, which is explained by the Landau-level depen-
dent broadening in the theory [11]. The experimental findings
can be explained within the heuristic theory of the Hall con-
ductivity [1], which goes beyond linear response theories and
their assumption of a linear relation between the conductivity
and the current. Instead a non-linear relation

j = σ(B, E) · E (19)

is derived. A comparison of the theory and experimental data
is shown in Fig. 5.

4. Non-integer plateaus

The subdivision of the density of states for higher Landau
levels is a suprising result. It is caused by the presence of the
electric Hall field. Normally, interactions are invoked to ex-
plain a splitting of Landau levels into sublevels. In the present
case, no interactions (or disorder) are needed to get a broad-
ening and simultaneously a splitting of Landau levels. Of

FIGURE 5. Breakdown of the QHE. Diagonal resistance
Rxx ∝ σxx as a function of the magnetic field in the i = 4
plateau for different currents and therefore electric Hall fields:
jx=σxy(B, E)Ey . a) A schematic representation of the experi-
mental results obtained by Kawaji, published in [17], Fig. 2. b)
theoretical prediction using the non-linear expression for the con-
ductivity σxx(EF , Ey,B, T, τ) derived in [1], with the follow-
ing parameters (references for the values in brackets): Effective
mass m∗=0.1, scattering time τ=1×10−13 s, effective g-factor
g∗=12 [2], temperature T = 1.2 K, average number of particles
Nav=4.5×1015 m−2 [17] (corresponding to a fixed Fermi energy
of EF = 10.7 meV.) Due to the lack of more experimental data
(i.e. over a wider magnetic field range), the parameters should be
viewed as empirically derived. However, independent of the exact
values, the observed power law for the critical Hall field (18) is
always reproduced by the theory.
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FIGURE 6. Same as Fig. 2, but at T = 150 mK. The substructure
of the LDOS in higher Landau levels is visible (compare Fig. 4).
Half-filled plateaus exist at ρxy = (2/5, 2/7)h/e2, however not at
ρxy = (2/9, 2/11)h/e2. Notice that even for T = 0 K the sub-
structure remains in place, thus giving rise to subdivided Landau
levels in a non-interacting particle model.

special interest are half-filled Landau levels, which are stable
against variations of the electric field value [11]. In a sim-
ple spin-splitting picture, the appearence of spin doubles the
appearence of each Landau level due to an energy shift of

∆E = ±1
2
g∗m~ωL. (20)

If I assume spin-splitted Landau levels (see Fig. 6,
half-integer plateaus are expected at (2/5)(h/e2) and
(2/7)(h/e2), but not at (2/9)(h/e2) and (2/11)(h/e2)
(where instead a peak occurs at these values). Interestingly,
strong anisotropies have been observed experimentally at
these fractions [19], which warrant a further examination of
these fractions, i.e. as a function of electric Hall fields.

Notice that the present theory does not predict a subdivi-
sion of the lowest Landau level (which is not in line with ex-
periments). A possible explanation is that many-body effects
become predominant for low Landau levels at high magnetic
fields [19]. Also the fluctuations of the particle number (see
Fig. 11 in [13]) are largest at the lowest Landau level, leading
to an additional enhancement of interactions at strong mag-
netic fields.

5. Conclusions

The heuristic theory reviewed in this article has features not
contained in conventional theories of the QHE:

• It incorporates the electric field in the underlying den-
sity of states and yields the classical Hall effect in the
limit of strong currents. It explains quantitatively the
breakdown of the quantized Hall conductivity. Other

theories do not consider the electric Hall field, and are
thus unable to explain the (experimentally observed)
dependence of the plateau width on the electric Hall
field.

• The many-body aspect is taken into account by con-
structing a band model of the QHE, which is filled ac-
cording to the density of states (DOS) in the presence
of the external magnetic field and the electric Hall field.
The DOS features gaps in the plateau regions.

• The current is calculated in a purely quantum-
mechanical way, without using perturbative linear-
response theory. The theory shows a sharp contrast be-
tween the classical propagation of electrons in crossed
electric and magnetic fields emitted from a localized
contact and their quantum-mechanical motion [11,13].

• In contrast to other theories of the QHE, this model al-
lows for fluctuations of the number of carriers about an
average value. The coupling between the Fermi energy
of the two-dimensional electron gas and the device is
provided by a gate voltage (see Fig. 1). The number of
carriers is calculated as a function of the gate voltage
(and therefore the Fermi energy). Note, that N(EF )
will provide the plateaus, while the average drift ve-
locity is constant. As a result, N(EF ) oscillates as a
function of the magnetic field for fixed EF . The gaps in
the DOS in perpendicular electric and magnetic fields
cause the observed conductivity quantization.

• Surprisingly, crossed electric and magnetic field in-
duce a substructure in a Landau-level which leads to
plateaulike structures at several fractional and nearly
fractional values of the conductivity quantum [11]. Al-
though their values match the observed FQHE frac-
tions only partially, it is nevertheless remarkable that
a non-interacting particle theory already generates a
fractional pattern.
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