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Este trabajo investiga, utilizando la aproximación del pseudo potencial de Sagdeev, las ondas solitarias iónico-aćusticas compresivas y
rarefactivas de amplitud arbitraria, las cuales han sido encontradas en plasmas a dos temperaturas electrónicas. Se deriva la expresión del
pseudo potencial y se obtienen los rangos de los parámetrosMs, α y µ de coexistencia de las ondas solitarias compresivas y rarefactivas para
el caso de un plasma iónico fŕıo. Adeḿas se estudió el efecto de estos parámetros sobre la amplitud de las ondas.
Descriptores:Ondas electrostáticas y oscilaciones.

The compresive and rarefactive ion-acoustic solitary wave of arbitrary amplitude which have been found to coexist in two-electron tempera-
ture plasmas, are investigated by the pseudo potential approach. An expression of this pseudo potential have been derived and the range of
the parameters spaceMs, α andµ for the coexistence of these solitary structures are found for the case of cold ion plasma. Aditionally, the
effect of the parameters space on wave amplitude was studied.
Keywords:Electrostatic waves and oscillations.

PACS: 95.30.Qd; 52.35.Fp; 52.35.Ra; 52.35Mw

1. Introducción

Un problema que ha tenido considerable atención es el es-
tudio del comportamiento no-lineal de la dinámica de ondas
en un plasma a dos temperaturas electrónicas, el cual es muy
común en plasmas producidos por láseres [1], plasmas de la-
boratorios y plasmas en el espacio [2], debido a su importan-
cia en la investigación espacial y en experimentos básicos del
laboratorio.

El entendimiento de este comportamiento no-lineal de la
dinámica de ondas en un plasma a dos temperaturas elec-
trónicas requiere un estudio de ondas solitarias compresivas
y rarefactivas, ya que tales estructuras de potencial han sido
observadas en simulaciones computacionales [3], en experi-
mentos de laboratorio y en plasmas aurorales [4]. Un gran
número de investigaciones teóricas se han realizado sobre el
estudio de las estructuras solitarias con o sin campo magnéti-
co externo, ignorando los efectos de la temperatura iónica y
de la corriente íonica. El primero en investigar las ondas no
lineales en un plasma no magnetizado con electrones calien-
tes isot́ermicos e iones frı́os fue Sagdeev (1966), quién redujo
las ecuaciones básicas que gobiernan la dinámica de las on-
das no lineales en la forma de la integral de energı́a de una
part́ıcula cĺasica en un pozo de potencial. El cuasi-potencial
obtenido(el cual es llamado también el potencial de Sagdeev)
puede ser analizado para predecir la existencia de soluciones
localizadas [5]. En particular, la motivación de este trabajo
es estudiar las estructuras solitarias iónico-aćusticas compre-
sivas y rarefactivas, en un fluido iónico tibio con dos distribu-
ciones electŕonicas bajo los efectos de la temperatura iónica y
de la corriente íonica, utilizando la aproximación del pseudo-
potencial.

Las ecuaciones básicas que gobiernan el fluido iónico ti-
bio se presentan en la Sec. 2. La coexistencia de estructuras

solitarias compresivas y rarefactivas de amplitud arbitraria
para el caso unidimensional han sido estudiadas en la Sec. 3.
Finalmente, una breve discusión de los resultados es dada en
la Sec. 4.

2. Ecuaciones del sistema

En este trabajo se considera un plasma consistente de un flui-
do iónico adiab́atico tibio con su corriente finita y dos distri-
buciones maxwellianas de electrones (dos tipos de electrones,
calientes y fŕıos, los cuales están separadamente en equili-
brio térmico a temperaturasTeh y Tec, respectivamente). De
aqúı, se tiene en el equilibrio quenc0 + nh0 = n0, donde
nc0 (nh0) es la densidad del número de electrones en equili-
brio a temperaturaTec (Teh) y n0 es la densidad de número
de iones con una temperatura constanteTi. El sistema b́asico
de ecuaciones que gobierna la dinámica de iones en el caso
unidimensional está dado por:
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donde n es la densidad nuḿerica de iones norma-
lizada a su valor de equilibrion0; v es la velo-
cidad del fluido íonico normalizada a la velocidad
iónico-aćustica Cs = (kBTef/m)1/2, con kB siendo
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la constante de Boltzmann,m la masa de un ion;
Tef = TehTecn0/(nc0Teh + nh0Tec) la temperatura efec-
tiva; ϕ es el potencial electrostático normalizado akBTef/e,
con e como la carga electrónica; P es la presíon t́ermi-
ca del ion normalizada an0kBTi; σ=Ti/Tef , siendo
Ti la temperatura del ion;α=Teh/Tec y µ=nh0/nc0.
La variable espacial está normalizada a la longitud de
Debye λDef=(kBTef/4πn0e

2)1/2 y la variable tem-
poral est́a normalizada al perı́odo del plasma iónico
ω−1

P =(m/4πn0e
2)1/2.

3. Estructuras solitarias unidimensionales

Para obtener una solución de onda solitaria, hacemos depen-
der todas las variables dependientes de una sola variable in-
dependienteξ = x − Mt, dondeM es el ńumero de Mach
(la velocidad de la onda solitaria normalizada a la velocidad
iónico-aćusticaCs). Considerando la condición estacionaria,
es decir,∂/∂t = 0, obtenemos de las Ecs. (1), (2) y (3)
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dondeMs = M−v0, σ0 =
√

3σ/M2
s y σ1 =

√
1 + σ2

0 , y en
donde se han impuesto las condiciones de frontera,ϕ → 0,
v → v0, P → 1 y n → 1 paraξ → ±∞.

Multiplicando la Ec. (4) reducida al sistema móvil por
dϕ/dξ e integrando una vez, obtenemos
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2
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)2 + V (ϕ) = 0, (6)

La cual puede ser considerada como una “ley de energı́a” de
una part́ıcula oscilante de masa unitaria con velocidaddϕ/dξ
y posicíon ϕ en un potencialV (ϕ). Usando la Ec. (5) e in-
tegrando la Ec. (4) bajo las mismas condiciones de frontera
utilizadas anteriormente, obtenemos
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el cual es conocido como el potencial de Sagdeev, donde
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y C1 es una constante de integración, la cual se elige de ma-
nera tal queV (ϕ) = 0 paraϕ = 0. Considerando el caso
correspondiente a iones frı́os (σ = 0) obtenemos que

n =
Ms√

M2
s − 2ϕ

, (9)

el cual es la densidad numérica de iones, dondeMs contiene
la velocidad de la corriente iónica.

Usando la Ec. (9) en la Ec. (4) obtenemos la ecuación
no lineal que describe el comportamiento del potencial elec-
trost́atico, la cual puede ser integrada obteniéndose
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Empleando el ańalisis del potencial de Sagdeev [5] , las
soluciones de onda solitaria de la Ec. (6) existen si se cumple:

(i) (d2V/dϕ2)ϕ=0 < 0, de modo que el punto fijo en el
origen es inestable, y

(ii) V (ϕ) < 0 cuando0 < ϕ < ϕmáx para ondas solitarias
positivas yϕmı́n < ϕ < 0 para ondas solitarias nega-
tivas, dondeϕmáx(mı́n) es el valor ḿaximo(ḿınimo) de
ϕ para el cualV (ϕ 6= 0) = 0, los cuales corresponden
a la amplitud de la onda solitaria.

La naturaleza de estas ondas solitarias, cuya amplitud
tiende a cero cuando el número de MachMs tiende a su valor
cŕıtico, puede ser encontrada al expandir el potencial de Sag-
deev al tercer orden en una serie de Taylor enϕ. El número
de Mach cŕıtico es el que corresponde a la desaparición del
término cuadŕatico. Al mismo tiempo, si el término ćubico
es negativo, hay un pozo de potencial sobre el lado negativo,
y si el t́ermino ćubico es positivo, hay un pozo de potencial
sobre el lado positivo. El ńumero de Mach crı́tico encontrado
esMsc = 1,−1.

FIGURA 1. Potenciales de Sagdeev conσ = 0, α = 12,
Ms = 1.01 para valores deµ < 10 y ϕ < 0.
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TABLA I. Valores deα, µ y Ms para la coexistencia de las ondas
solitarias.

Paŕametros Intervalo de coexistencia

de ondas solitarias

µ = 10 Ms = 1.01 11.1751 < α ≤ 20.00

σ = 0 α = 12 Ms = 1.01 4.50 ≤ µ ≤ 14.88

α = 12 µ = 10 1.00 < Ms ≤ 1.02027

TABLA II. Efecto de las variaciones de los parámetros sobre la am-
plitud de las ondas solitarias.

Cuando aumenta La amplitud de las La amplitud de las

el paŕametro: ondas rarefactivas ondas compresivas

α disminuye aumenta

µ aumenta-disminuye aumenta

Ms aumenta aumenta

FIGURA 2. Potenciales de Sagdeev conσ = 0, α = 12,
Ms = 1.01 para valores deµ > 10 y ϕ < 0.

Tomando el valor positivo deMsc la tercera derivada es
negativa, es decir, existen ondas solitarias compresivas y ra-
refactivas si se cumple

(α2 + µ) (1 + µ)
(α + µ)2

− 3 > 0, (11)

el cual da un criterio muy simple para analizar el rango de los
diferentes paŕametros, tales comoα, µ, y v0 (v0 est́a dentro
deMs), para el cual los tipos compresivos y rarefactivos de
las ondas solitarias existen.

4. Discusíon

En las Tablas I y II se resume el efecto de los distintos
paŕametros para la coexistencia de las ondas solitarias y las
variaciones de su amplitud. Ambas ondas solitarias compresi-
vas y rarefactivas coexisten para 11.1751< α ≤ 20.00, cuan-
do se mantienen fijos los demás paŕametros enσ = 0, µ = 10
y Ms = 1.01. En cambio, al mantenerσ = 0, α = 12
y Ms = 1.01 los dos tipos de ondas solitarias se producen
si 4.5≤ µ ≤ 14.88. Adicionalmente, fijando los parámetros
σ = 0, α = 12 y µ = 10, la velocidad de la onda solitaria tie-
ne que encontrarse en el intervalo: 1.00< Ms <1.02027 para
que coexistan las ondas solitarias compresivas y rarefactivas.

En cuanto a la amplitud de las ondas, se observa que con
el aumento deα la amplitud de las ondas rarefactivas dismi-
nuye y la de las ondas compresivas aumenta. Por otro lado,
se observ́o que un aumento en la velocidad de la onda solita-
ria (Ms) implica un aumento de su amplitud. Esto se cumple
para los dos tipos de ondas. Del mismo modo, la amplitud
de las ondas solitarias compresivas es mayor a medida que
µ crece. Adicionalmente, es importante recalcar que en el
caso de las ondas rarefactivas la amplitud de las ondas pri-
mero aumenta y luego disminuye con la variación deµ, al-
canźandose un ḿınimo a cierto valorµ = µc (siendoµc un
valor cŕıtico el cual depende del espacio de los parámetros)
(ver Figs. 1 y 2).
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