PLASMAS REVISTA MEXICANA DE FHSICA S52(3) 230-232 MAYO 2006

Estructuras solitarias de amplitud arbitraria en plasmas
a dos temperaturas electonicas con iones fros

C.A. Mendoza-BricBo y M. Luna-Cardozo
Centro Fsica Fundamental, Universidad de Los Andeg&rida, Venezuela.
e-mail: cesar@ula.ve

Recibido el 13 de enero de 2004; aceptado el 22 de abril de 2004

Este trabajo investiga, utilizando la aproxintatidel pseudo potencial de Sagdeev, las ondas soliténesoradisticas compresivas y
rarefactivas de amplitud arbitraria, las cuales han sido encontradas en plasmas a dos temperathnisasle®é deriva la exprési del
pseudo potencial y se obtienen los rangos de Ia@petros\/;, a y 1 de coexistencia de las ondas solitarias compresivas y rarefactivas para
el caso de un plasmairiico flio. Adenas se estudiel efecto de estos ganetros sobre la amplitud de las ondas.

DescriptoresiOndas electroéticas y oscilaciones.

The compresive and rarefactive ion-acoustic solitary wave of arbitrary amplitude which have been found to coexist in two-electron tempera-
ture plasmas, are investigated by the pseudo potential approach. An expression of this pseudo potential have been derived and the range ¢
the parameters spadé,, o andy for the coexistence of these solitary structures are found for the case of cold ion plasma. Aditionally, the
effect of the parameters space on wave amplitude was studied.
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1. Introduccion solitarias compresivas y rarefactivas de amplitud arbitraria
para el caso unidimensional han sido estudiadas en la Sec. 3.

Un problema que ha tenido considerable atema@s el es- Finalmente, una breve discside los resultados es dada en

tudio del comportamiento no-lineal de la dmica de ondas la Sec. 4.

en un plasma a dos temperaturas etettas, el cual es muy

comun en plasmas producidos péskres [1], plasmas de la- 2. Ecuaciones del sistema

boratorios y plasmas en el espacio [2], debido a su importan-

cia en lainvestigadin espacial y en experimentoadicos del  En este trabajo se considera un plasma consistente de un flui-

laboratorio. do ibnico adiaftico tibio con su corriente finita y dos distri-

El entendimiento de este comportamiento no-lineal de lduciones maxwellianas de electrones (dos tipos de electrones,
dinamica de ondas en un plasma a dos temperaturas elecalientes y fros, los cuales esh separadamente en equili-
tronicas requiere un estudio de ondas solitarias compresivdisio termico a temperaturdg,, y T.., respectivamente). De
y rarefactivas, ya que tales estructuras de potencial han sigmu, se tiene en el equilibrio que.g + nyo = ng, donde
observadas en simulaciones computacionales [3], en experi-g (nx0) €s la densidad delimero de electrones en equili-
mentos de laboratorio y en plasmas aurorales [4]. Un grabrio a temperaturd,. (T.;) y no es la densidad delimero
nimero de investigacionesigcas se han realizado sobre el de iones con una temperatura constantél sistema hsico
estudio de las estructuras solitarias con o sin campo @tagn de ecuaciones que gobierna laatimica de iones en el caso
co externo, ignorando los efectos de la temperatuncay  unidimensional egtdado por:

de la corrientednica. El primero en investigar las ondas no on 0O
lineales en un plasma no magnetizado con electrones calien- ot + %("V) =0, (1)
tes |soérm|cos e iones fos fue Sagdeev (196_6), @un redujo Ov Ov 9o o OP
las ecuacionesdsicas que gobiernan la dimica de las on- —tv— = - 2
das no lineales en la forma de la integral de efzedg una ot~ Oz gz nOx
paricula chksica en un pozo de potencial. El cuasi-potencial 57P+V37P BPQ —0 3)
obtenido(el cual es llamado targni el potencial de Sagdeev) 0t Ox ox ’
puede ser analizado para predecir la existencia de soluciones 9% 1 14 pu
localizadas [5]. En particular, la motivécei de este trabajo oz <1+/~L) exp {04 (a n M) }
es estudiar las estructuras solitariasico-adisticas compre-
sivas y rarefactivas, en un fluidonico tibio con dos distribu- 4 <M> ox [(W) ] B

; . ) - P el —n, (4)
ciones electrnicas bajo los efectos de la temperatoraga y 1+p a+p

de la corrientebnica, utilizando la aproximagn del pseudo- donde n es la densidad nuenica de iones norma-
potencial. lizada a su valor de equilibriony; v es la velo-

Las ecuacionesdsicas que gobiernan el fluidonico ti-  cidad del fluido onico normalizada a la velocidad
bio se presentan en la Sec. 2. La coexistencia de estructurdmico-adistica CS:(kBTef/m)l/Q, con kg siendo
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la constante de Boltzmanmn la masa de un ion;
Tes = TenTecno/ (neoTen + nroTec) la temperatura efec-
tiva; ¢ es el potencial electrastico normalizado &gTcy /e,
con e como la carga eledinica; P es la presin termi-
ca del ion normalizada awkgT;; o=T;/T.s, Siendo
T; la temperatura del ion=Te,/Tec ¥ p=nno/Nco-
La variable espacial estnormalizada a la longitud de
Debye Ap.j=(kpT.s/4mnge?)'/? y la variable tem-
poral esh normalizada al pévdo del plasma Gnico

wpt=(m/4mnge?)'/2.

3. Estructuras solitarias unidimensionales

Para obtener una soldci de onda solitaria, hacemos depen-

el cual es la densidad nuarica de iones, dond&/, contiene
la velocidad de la corrientémica.

Usando la Ec. (9) en la Ec. (4) obtenemos la ecuaci
no lineal que describe el comportamiento del potencial elec-
trosfatico, la cual puede ser integrada obégmiose

a+ [

v =L ploe [ (55) 4
- [l [(352) 4

—MS\/Z\/[SQ —2304—01.

(10)

der todas las variables dependientes de una sola variable in-

dependient¢ = x — Mt, dondeM es el umero de Mach

Empleando el alisis del potencial de Sagdeev [5] , las

(la velocidad de la onda solitaria normalizada a la velocidagoluciones de onda solitaria de la Ec. (6) existen si se cumple:

ibnico-adisticaC's). Considerando la condimn estacionaria,
es decirg/dt = 0, obtenemos de las Ecs. (1), (2) y (3)

_ﬂl

dondeMs = M —vq, 00 = \/30/M2y o1 =+/1+03,yen
donde se han impuesto las condiciones de frontera; 0,
v — vy, P—1yn — 1paraé — +oo.

Multiplicando la Ec. (4) reducida al sistemabwmil por
dp/d¢ e integrando una vez, obtenemos

1 do., _
5(675) +Vi(p) =0,
La cual puede ser considerada como una “ley de éaiedg
una paricula oscilante de masa unitaria con velocidadd¢
y posicbn ¢ en un potencial/ (p). Usando la Ec. (5) e in-

2¢
M2o}

2 0_(2)
" A@ﬁ) ot ©)

(6)

(i) (d*V/dp?),—o < 0, de modo que el punto fijo en el
origen es inestable, y

(i) V(¢) < 0cuanddd < ¢ < vmax para ondas solitarias
positivas Yemm < ¢ < 0 para ondas solitarias nega-
tivas, dondep,, sx(min) €S €l valor mximo(ninimo) de
o para el cualV (¢ # 0) = 0, los cuales corresponden
a la amplitud de la onda solitaria.

La naturaleza de estas ondas solitarias, cuya amplitud
tiende a cero cuando elimero de Mach\/, tiende a su valor
critico, puede ser encontrada al expandir el potencial de Sag-
deev al tercer orden en una serie de Taylopegl nUmero
de Mach citico es el que corresponde a la desapaniael
término cuadatico. Al mismo tiempo, si el&rmino dbico
es negativo, hay un pozo de potencial sobre el lado negativo,

tegrando la Ec. (4) bajo las mismas condiciones de fronte@ si el ermino dibico es positivo, hay un pozo de potencial

utilizadas anteriormente, obtenemos
A e o ()
a1+ p)? ot
o+ p) [(Hu) }
— || €X
e P o) ¢

1
Mool 4 ge T+ O,

Vie) =

(7
el cual es conocido como el potencial de Sagdeev, donde

2¢

- M2 2 ) )
s01

y C; es una constante de integi@ej la cual se elige de ma-

nera tal quel’(¢) = 0 parap = 0. Considerando el caso
correspondiente a ionedds (© = 0) obtenemos que

M,

VMZ=2¢

0 = cosh™* [ oi (1 (8)

200

n =

9)

sobre el lado positivo. Eliimero de Mach ético encontrado
esM,.=1,-1.
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FIGURA 1. Potenciales de Sagdeev con = 0, a« = 12,

M, = 1.01 paravaloresdg < 10y ¢ < 0.
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TABLA |. Valores dex, 1 y M, para la coexistencia de las ondas
solitarias.

Paametros Intervalo de coexistencia
de ondas solitarias
n=10 M, =1.01 11.1751 < a < 20.00
c=0 a=12 Ms; =1.01 4.50 < < 14.88
a=12 w=10 1.00 < M, < 1.02027

TABLA Il. Efecto de las variaciones de los garetros sobre la am-
plitud de las ondas solitarias.

Cuando aumenta La amplitud de las La amplitud de las

el paametro: ondas rarefactivas ondas compresivas
Q@ disminuye aumenta
I aumenta-disminuye aumenta
M aumenta aumenta

Vi)
-‘—"

r-5e-06
r-1e-05
-1.5e-05
r-2e-05

r2.5e-05

~Je-05
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FIGURA 2. Potenciales de Sagdeev cen
M = 1.01 para valores dg > 10y ¢ < 0.
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Tomando el valor positivo dé/,,. la tercera derivada es
negativa, es decir, existen ondas solitarias compresivas y ra-
refactivas si se cumple

(a® +p) (1+ p)

-3>0
(a+ p)? -

(11)

el cual da un criterio muy simple para analizar el rango de los
diferentes pametros, tales come, u, y vo (vo €sé dentro

de M,), para el cual los tipos compresivos y rarefactivos de
las ondas solitarias existen.

4. Discusbn

En las Tablas | y Il se resume el efecto de los distintos
palametros para la coexistencia de las ondas solitarias y las
variaciones de su amplitud. Ambas ondas solitarias compresi-
vas y rarefactivas coexisten para 11.1¢51 < 20.00, cuan-
do se mantienen fijos los dé&spaametros e = 0, 1 = 10
y My = 1.01. En cambio, al mantener = 0, a = 12
y My = 1.01 los dos tipos de ondas solitarias se producen
si 4.5< p < 14.88. Adicionalmente, fijando los ffanetros
oc=0,a=12yu = 10, la velocidad de la onda solitaria tie-
ne que encontrarse en el intervalo: k00/; <1.02027 para
gue coexistan las ondas solitarias compresivas y rarefactivas.
En cuanto a la amplitud de las ondas, se observa que con
el aumento dev la amplitud de las ondas rarefactivas dismi-
nuye y la de las ondas compresivas aumenta. Por otro lado,
se obser& que un aumento en la velocidad de la onda solita-
ria (M) implica un aumento de su amplitud. Esto se cumple
para los dos tipos de ondas. Del mismo modo, la amplitud
de las ondas solitarias compresivas es mayor a medida que
1 crece. Adicionalmente, es importante recalcar que en el
caso de las ondas rarefactivas la amplitud de las ondas pri-
mero aumenta y luego disminuye con la vagexcde ., al-
canzandose un imimo a cierto valon = u. (siendou. un
valor ciitico el cual depende del espacio de losapagtros)
(ver Figs. 1y 2).
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