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Classical origin for a negative magnetoresistance
and for its anomalous behavior at low magnetic fields in two dimensions
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The classical two-dimensional problem of non-interacting electrons scattered by a static impurity potential in the presence of a magnetic field
is investigated both analytically and numerically. A strong negative magnetoresistance is found, due to freely circling electrons, which are
not taken into account by the Boltzmann-Drude approach. Moreover, at very low magnetic fields, the resistivity turns out to be proportional
to |B|, due to a memory effect specific for backscattering events.
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El problema bidimensional de electrones no interactuantes dispensados por un potencial estático en presencia de un campo magnético, se
investiǵo tanto analı́tica como ńumericamente. Se encuentra una fuerte magneto-resistencia negativa debida a los electrones libres circulantes,
los cuales no se contemplan en la aproximación de Boltzman-Drude. Mas aún, a un campo magnético muy pequẽno, la resistividad se sale
de la proporcionalidad de|B|, debido al efecto de memoria especifico para los eventos de retrodispersión.
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The negative magnetoresistance,i.e. decrease of resistance
in magnetic field, frequently observed in semiconductors and
as in metals, remained a mystery for a long time. The first
interpretation of Altshuleret al. [1] based on quantum in-
terference effects (weak localization) might explain the drop
of resistivity often observed at very low values of the clas-
sical parameterβ = ωcτ (ωc = eB/mc is the electron cy-
clotron frequency,τ is the momentum relaxation time,B is
the magnetic field,e andm are the electron charge and ef-
fective mass, respectively). However, in some experiments,
a relatively large (up to 50%) decrease of the resistivity is
observed up toβ >∼ 1 or even atβ À 1. This high-field ef-
fect is not so well understood, and is either attributed to the
effect of electron-electron interaction [2], which was consid-
ered theoretically in Refs. 3, or left without any explanation.
Moreover, in some experiments [4], the resistivity is found to
decrease quasi-linearly with the applied field for very small
values ofβ, in contrast with the generally expected quadratic
behavior. In this paper, we show that all these phenomena
can be recovered in the framework of a simple classical ap-
proach that we have already proposed [5, 6] and which takes
into account memory effects not present in the conventional
Boltzmann-Drude (BD) approach.

We first recall that the BD approach predicts zero magne-
toresistance. The Drude conductivity tensor is given by:

σxx =
σ0

1 + β2
, σxy =

σ0β

1 + β2
, (1)

whereσ0 = ne2τ/m is the zero-field conductivity, andn
is the electron concentration. For the resistivity tensor, it
follows that ρxx = ρ0 = 1/σ0, ρxy = β/σ0 = B/nec,

and therefore the longitudinal resistivity is independent of
the magnetic field. This result applies to degenerate elec-
trons for which the timeτ , entering Eq. (1) should be taken
at the Fermi energy (for non-degenerate electrons one should
take into account the dependence of the scattering timeτ on
the electron energy which, after averaging Eqs. (1) over the
Boltzmann energy distribution, results in apositivemagne-
toresistance). Therefore, to explain the experimental facts in
a classical framework, one should go beyond the BD approx-
imations.

In our classical picture, we consider non-interacting 2D
electrons with a given energy scattered by short-range im-
purity centers in the presence of a magnetic field perpen-
dicular to the 2D plane, and we show that for any type of
scattering, a strong negative magnetoresistance exists up to
β À 1. We perform computer simulations of the electron
dynamics in such a system with hard disk impurities (the so-
called Lorentz model [7, 8] and variants), and find an excel-
lent agreement between the numerical results and a very sim-
ple theory which is based on previously known results [7,8].
Moreover a thorough analysis of our numerical results, at
very smallβ, reveals that the resistivity varies linearly with
the field, an anomaly that we explain by invoking memory
effects associated with backscattering.

The main idea put forward in Refs. 7 and 8 is that, ex-
cept for the case of smallβ, the BD approach does not work,
even as a first approximation, because of the existence of “cir-
cling” electrons, that never collide with the short-range scat-
tering centers, the fraction of such electrons being [8]

P = exp(−2πR/`) = exp(−2π/β), (2)
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whereR = v/ωc is the cyclotron radius,v is the electron
(Fermi) velocity, and̀ = vτ is the electron mean free path.
Contrary to the intrinsic assumption in the BD approach, an
electron that happens to make one collision-less cycle will
stay on its cyclotron orbit forever. The behavior of the rest
of the electrons, the “wandering” electrons, in terms of Ref.
8, whose fraction is1 − P , is controlled by the parameter
NR2, the number of scatterers within the cyclotron orbit,N
being the impurity concentration. ForNR2 À 1 they behave
basically as predicted by the BD theory, with an important
modification: after a collision with a given scatterer there is
a probabilityP that the electron will re-collide with the same
scatterer without experiencing any other collisions. As a re-
sult, forβ À 1, the electron will re-collide with the same im-
purity center many times, and its trajectory will have the form
of a rosette, sweeping a circular area of radius2R around the
impurity center [7]. Since the number of impurities inside
this area,4πNR2, is large, the electron will eventually col-
lide with one of them, and thus continue its diffusion in the
2D plane. As it follows from the results of Ref. 8, frequent re-
collisions with the same center, will lead to the isotropization
of scattering, so that the effectiveτ in Eq. (1) becomes field-
dependent. This effect is absent if the scattering is isotropic.
At strong fields, when the parameterNR2 becomes small
enough, the rosettes around different scatterers do not overlap
anymore, the colliding electrons become localized and give
zero contribution to bothσxx andσxy. This means that a per-
colation transition should occur [7]. The calculated thresh-
old is (NR2)c = 0.36 [8]. Thus, there are two character-
istic values of the magnetic field,B1 defined byωc = 1/τ
(β = 1), andB2 defined byωc = v

√
N (NR2 = 1). The

ratio B1/B2 = (Nd2)1/2 ¿ 1, whered is the scattering
cross-section, is the small parameter of the theory.

It follows, that from the results of Ref. 8 for the sim-
ple cases of isotropic scattering andB ¿ B2 (NR2 À 1),
that the conductivity tensor for wandering electrons is sim-
ply given by the BD expressions, Eq. (1), with an additional
factor (1 − P ) in bothσxx andσxy. The circling electrons
behave like free electrons with an effective concentrationnP ,
giving a zero contribution toσxx, but contributing a term
Pσ0/β = Pnec/B to σxy; and this is the reason why the
magnetoresistance is negative. This role of circling electrons
was overlooked in Ref. 8, but was recognized later [9] (see
also Refs. 10 and 11).

Thus, the conductivity tensor is given by:

σxx = σ0
1− P

1 + β2
, (3)

σxy = σ0

(
(1− P )

β

1 + β2
+ P

1
β

)
. (4)

As a consequence, for the resistivity tensor we obtain

ρxx = ρ0
1− P

1 + P 2/β2
, ρxy = ρ0β

1 + P/β2

1 + P 2/β2
. (5)

Formulas equivalent to Eqs. (3,4) were previously obtained
by Baskin and Entin [11] for scattering by randomly posi-

tioned antidots. The expression forρxx clearly exhibits neg-
ative magnetoresistance. Since the termsP/β2 andP 2/β2

are small for anyβ, Eqs. (4) are very similar to

ρxx = ρ0(1− P ), ρxy = ρ0β =
B

nec
, (6)

with better accuracy than than 2% forρxx, and 4% forρxy.
Note that at low fields, Eqs. (4) and (5) predict an exponen-
tially small magnetoresistance.

Let us now present the results of our numerical simula-
tions. In our model, a point particle (electron) with a given
absolute value of velocity, v, is scattered by disks of diame-
ter d randomly positioned on a plane inside a square box of
edge lengthL (we takeL/d = 1000 to be sure thatL stays
more than an order of magnitude larger than the electronic
mean-free path). Periodic boundary conditions are imposed
at the edges of the square box. Both the hard-disk (Lorentz)
model, which exhibits anisotropic scattering, and a modified
model with isotropic scattering are studied. To characterize
the coverage, we introduce a dimensionless concentration of
scatterersc = πNd2/4, which was changed fromc = 0.025
to c = 0.2. Studies of the percolation phenomena are beyond
the scope of the present study.

In the simulation, we first choose an initial electron posi-
tion at random with an initial velocity along thex-direction.
In a magnetic field perpendicular to the plane, the electron
trajectory is made of successive circular arcs of radiusR. For
each collision, we determine the intersections of the trajec-
tory with the disk periphery (the impact point), which gives
us the impact parameterb, and the scattering angleφ, ac-
cordingly. We follow the electron velocitiesvx(t), andvy(t)
during a timet = 20τ to get reliable results for the integral
below, and calculate the components of the diffusion tensor
by the standard formula:

Dij =
1
2

∞∫

0

< vi(0)vj(t) > dt. (7)

For each value of the field and the disk concentration, we
take the average over102 independent disk configurations,
and for each configuration, over106 independent trials for
the initial electron position. Of course, atB = 0, the tra-
jectories are straight-line segments, andDxy should vanish
(this provides a nice test for the numerical precision). The
conductivity tensor, being proportional to the diffusion ten-
sor, and the components of the resistivityρij are calculated
asDij/(D2

xx +D2
xy), with an appropriate normalization. For

the Lorentz model, numerical calculations of this type were
previously performed [10] with an emphasis on the percola-
tion phenomenon.

The numerical results forρxx, as a function ofβ for the
model with isotropic scattering, are presented in Fig. 1 (top).
The resistivity is normalized to the BD zero-field value,ρ0.
The thick line is the theoretical curve predicted by Eq. (4).
One can see that the theoretical and numerical curves are
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FIGURE 1. Numerical results for the resistivity as a function of
β = ωcτ for different impurity concentrations, compared to the
theoretical curve given by Eq. (4) for the isotropic scattering
model (top) and for the Lorentz model with anisotropic scattering
(bottom). Circles, squares, diamonds, and triangles correspond to
c = 0.025, 0.05, 0.1, 0.2, respectively. The continuous and dashed
thick lines are the theoretical curves in the isotropic and anisotropic
cases, respectively; and they are depicted in the inset on a larger
scale. Note the surprising crossings atβ = 2.

FIGURE 2. Numerical results for the magnetoresistance∆ρ/ρ(0)
as a function ofβ = ωcτ for different impurity concentrations.
Open circles, filled circles, and open triangles correspond to
c = 0.05, 0.1, 0.15, respectively. Both quantities have been di-
vided byc to better show the universal behavior at low field pre-
dicted by Eq. (7).

qualitatively similar and that the quantitative agreement im-
proves asc decreases. In the limitc → 0, the numerical
results converge to the theoretical curve, as they should.

Note that for a finitec, the value of the zero-field resistiv-
ity is higher than the BD valueρ0. The relative correction for
smallc is proportional toc ln(1/c), and is due to re-collisions
with the same impurity, which are not accounted for by the

Boltzmann equation [12]. Note also that the numerical re-
sults for a finitec approach the limiting theoretical curve from
above forβ < 2, and from below forβ > 2. This may be
qualitatively explained as follows. On the one hand, at small
β the resistivity for a finitec is higher than thec → 0 BD
value due to thec ln(1/c) correction. On the other hand, at
largeβ we are on the way to the percolation threshold, where
ρxx (but notρxy!) becomes zero. So, obviously, for largeβ
and finitec, the resistivity should be lower than the limiting
value given by Eq. (4).

Figure 1 (bottom) displays quite similar results obtained
for the hard disk Lorentz model (anisotropic scattering). The
theoretical curve (thick dashed line) was calculated using the
results of Ref. 8 for the wandering electrons, adding the con-
tribution of circling electrons, as explained above. In both
cases, all the numerical curves for differentc is cross the lim-
iting theoretical curve at the same pointβ = 2 (within our
numerical precision). We have no explanation for this sur-
prising finding so far.

When analyzing our numerical results for very small
β values, we has lots of difficulties in recovering a clear
quadratic behavior, in contrast with what we previously
claimed [5]. Therefore, we have re-done our simulations
in the Lorentz case (anisotropic scattering) by running many
moreβ values in the range0 < β < 1 with a higher preci-
sion (the average is now performed over ten times more tra-
jectories). The results for the three concentration values are
reported in Fig. 2 as a plot of∆ρ/(cρ(0)) versusβ/c, where
∆ρ = ρxx(β) − ρxx(0), andρ(0) = ρxx(0) is the zero field
value of the resistivity. In this figure, one clearly observes a
characteristic anomalous linear behavior forβ <∼ 2c followed
by a more conventional parabolic dependence onβ.

To understand this result, we have invoked memory ef-
fects associated with back scattering events [6]. For simplic-
ity, let us first consider the caseB = 0 and a particle which,
after going a distancex À d without collisions, experiences
backscattering at an angleφ = π, and then returns to the
initial point. The probability of this round trip of length2x
is proportional toexp(−x/`), not toexp(−2x/`), as would
suggest the BD approach, since the existence of a free corri-
dor of widthd allowing the first part of the journey guarantees
a collision-less return. This is not the case for scattering an-
gles outside the interval on the order ofd/x around the value
φ = π, when the probabilities for a free pathx before and
after collision become independent and equal toexp(−x/`).
Since typicallyx ∼ `, the probability of backscattering in
the interval∆φ ∼ d/` aroundφ = π is enhanced, and this
should lead to an additional increase of resistivity on the or-
der of d/` ∼ c, i.e. same order of magnitude as the con-
tribution of return loops involving two or more intermediate
scatterings. One can say that the existence of a free corri-
dor effectively enhances backscattering in the interval∆φ,
roughly by a factor of 2, thus increasing the transport cross-
section by an amount∼ d∆φ.

We attribute the low field anomaly in Fig. 2 to the in-
fluence of field on this effect. In the presence of even a
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small magnetic field, the electron trajectories before and af-
ter collisions can not follow the same path anymore. At high
enough fields this kills the memory effect and, as a conse-
quence, reduces the resistivity. Thus a negative magnetore-
sistance with a characteristic magnetic field defined by the
relationβ = d/` ∼ c ¿ 1 appears. We do not have a regu-
lar method for calculating analytically the magnetoresistance
at low fields. However, some qualitative conclusions may be
drawn as follows.

Consider again backscattering by an angle exactly equal
to π, but in the presence of magnetic field. In order to have
collision-less paths of lengthx before and after scattering, the
centers of all disks should be outside the corridor of widthd
surrounding these paths. The probability of this is propor-
tional toP = exp(−NS), whereN is the disk concentration
andS is the joint area of the two corridors. The overlapping
region should not be counted twice. While atB = 0 there is
full overlap,S = xd andP = exp(−x/`), in the presence of
a magnetic field the overlap diminishes and the relevant area
increases. In the low-field limit, this increase can be easily
calculated to be∆S = x3/(3R) ∼ B, so thatP decreases
linearly with B. This means that the (negative) magnetore-
sistance is linear inB for R >> `2/d, or β ¿ d/`. For
higher fields, such thatβ À d/`, the two corridors practically
cease to overlap and one hasS = 2xd, P = exp(−2x/`).
Similar considerations apply to backscattering in the interval
∆φ ∼ d/`.

A similar contribution comes from the influence of a mag-
netic field on the probability of the simplest re-collision pro-
cess1 → 2 → 1, which necessarily involves backscattering
in the same angular interval∆φ. At B = 0, the memory ef-
fect increases the relative contribution of this process to the
resistivity by an amount on the order ofc, and again the curv-
ing of the trajectories in the magnetic field will increase the
total areaS, and thus reduce the probability of this process.
In the low-field limit, one finds again that the area increase,
∆S, is linear inB. These qualitative considerations lead us
to the following conclusions:

(i) A characteristic magnetic field exists, at which the
classical parameterβ = ωcτ is small:βc=d/`∼c¿1.

(ii) The total drop of resistivity in the regionβ <∼ βc is on
the order ofd/` ∼ c.

(iii) At β ¿ βc the resistivityρxx is linear in the magnetic
field exhibiting the|B| cusp observed in our simula-
tion [13].

(iv) For βc ¿ β ¿ 1; only quadratic corrections inB re-
main, which are on the order ofcβ2. (It can be shown
that these corrections come from the influence of the
magnetic field on the contribution of return loops).

This means that at low fields,β ¿ 1, the magnetoresistance,
∆ρ, is described by the formula:

∆ρ/ρ(0) = −c(f(β/c) + Aβ2), (8)

whereA is a numerical constant andf(ξ) is a function which
behaves as|ξ| for small values of its argument and saturates at
some value on the order of 1 for|ξ| À 1. This theoretical pre-
diction is in excellent agreement with the simulations results
presented in Fig. 2, which allow to estimateA ' 0.3. Some
recent experimental results [4] for magnetoresistance of 2D
electrons in a disordered array of antidots, which is almost
exactly the experimental realization of the Lorentz model,
exhibit such a predicted anomalous behavior. We have also
presented a quantitative fit (without any adjusting parameter)
in Ref. 5.

In conclusion, we have shown that both a negative mag-
netoresistance and its low-field anomaly can be explained in
a classical framework taking into account corrections to the
standard Boltzmann-Drude approach. We are convinced that
these results, established here by using the Lorentz model
and variants, can apply to any other kind of disordered short
range potential. In the future, we will consider the more com-
plicated case of long range disorder in order to check numer-
ically available theoretical predictions [14].
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