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Classical origin for a negative magnetoresistance
and for its anomalous behavior at low magnetic fields in two dimensions
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The classical two-dimensional problem of non-interacting electrons scattered by a static impurity potential in the presence of a magnetic
is investigated both analytically and numerically. A strong negative magnetoresistance is found, due to freely circling electrons, which
not taken into account by the Boltzmann-Drude approach. Moreover, at very low magnetic fields, the resistivity turns out to be proportio
to | B|, due to a memory effect specific for backscattering events.
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El problema bidimensional de electrones no interactuantes dispensados por un potéitial @stpresencia de un campo metigo, se
investigh tanto andtica como fimericamente. Se encuentra una fuerte magneto-resistencia negativa debida a los electrones libres circular
los cuales no se contemplan en la aproxirbade Boltzman-Drude. Madia, a un campo ma@tico muy pequio, la resistividad se sale

de la proporcionalidad d&3|, debido al efecto de memoria especifico para los eventos de retrodispersi

Descriptores: Magneto-transporte; magneto-resistencia; semiconductores.

PACS: 05.60.+w; 73.40.-c; 73.50.Jt

The negative magnetoresistance, decrease of resistance and therefore the longitudinal resistivity is independent of
in magnetic field, frequently observed in semiconductors anthe magnetic field. This result applies to degenerate elec-
as in metals, remained a mystery for a long time. The firstrons for which the time-, entering Eq. (1) should be taken
interpretation of Altshuleet al. [1] based on quantum in- at the Fermi energy (for non-degenerate electrons one should
terference effects (weak localization) might explain the droptake into account the dependence of the scattering time

of resistivity often observed at very low values of the clas-the electron energy which, after averaging Egs. (1) over the
sical parameteff = w.T (w. = eB/mc is the electron cy- Boltzmann energy distribution, results inpasitivemagne-
clotron frequencyy is the momentum relaxation timé& is  toresistance). Therefore, to explain the experimental facts in
the magnetic fielde andm are the electron charge and ef- a classical framework, one should go beyond the BD approx-
fective mass, respectively). However, in some experimentgmations.

a relatively large (up to 50%) decrease of the resistivity is  |n our classical picture, we consider non-interacting 2D
observed up t@ 2, 1 or even at3 > 1. This high-field ef-  electrons with a given energy scattered by short-range im-
fect is not so well understood, and is either attributed to theyurity centers in the presence of a magnetic field perpen-
effect of electron-electron interaction [2], which was consid-dicular to the 2D plane, and we show that for any type of
ered theoretically in Refs. 3, or left without any explanation.scattering, a strong negative magnetoresistance exists up to
Moreover, in some experiments [4], the resistivity is found tog > 1. We perform computer simulations of the electron
decrease quasi-linearly with the applied field for very smalldynamics in such a system with hard disk impurities (the so-
values of33, in contrast with the generally expected quadraticcalled Lorentz model [7, 8] and variants), and find an excel-
behavior. In this paper, we show that all these phenomengnt agreement between the numerical results and a very sim-
can be recovered in the framework of a simple classical apple theory which is based on previously known results [7, 8].
proach that we have already proposed [5, 6] and which takegloreover a thorough analysis of our numerical results, at
into account memory effects not present in the conventionalery small3, reveals that the resistivity varies linearly with

Boltzmann-Drude (BD) approach. the field, an anomaly that we explain by invoking memory
We first recall that the BD approach predicts zero magneeffects associated with backscattering.
toresistance. The Drude conductivity tensor is given by: The main idea put forward in Refs. 7 and 8 is that, ex-
%0 oo cept for the case of smafl, the BD approach does not work,
Opz = T3 Oxy = T+ 52 (1) even as a first approximation, because of the existence of “cir-

cling” electrons, that never collide with the short-range scat-
whereo, = ne?r/m is the zero-field conductivity, and  tering centers, the fraction of such electrons being [8]

is the electron concentration. For the resistivity tensor, it

follows thatp,, = po = 1/00, pey = B/o0 = B/nec, P =exp(—2nR/{) = exp(—27/), (2)
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whereR = v/w, is the cyclotron radiusy is the electron tioned antidots. The expression faor, clearly exhibits neg-
(Fermi) velocity, and’ = v is the electron mean free path. ative magnetoresistance. Since the tefg? and P? /32
Contrary to the intrinsic assumption in the BD approach, arare small for any3, Egs. (4) are very similar to

electron that happens to make one collision-less cycle will

stay on its cyclotron orbit for_ever. The beha}vior of the rest paz = po(1 = P),  poy = poB = £7 (6)
of the electrons, the “wandering” electrons, in terms of Ref. nec

8, whose fraction id — P, is controlled by the parameter

9 o
N,R . the pumbgr of scatterers within tg‘e cyclotron orbit, N6 that at low fields, Egs. (4) and (5) predict an exponen-
being the impurity concentration. F&fR= > 1 they behave tially small magnetoresistance.

basi(_:r_;llly _as.predicted by _the B.D the(_)ry, with an important Let us now present the results of our numerical simula-
mod|f|cat_|(_)n. after a collision W'th a given scatterer there 'Stions. In our model, a point particle (electron) with a given
a probab|l|tyP that the e_Iect_ron will re-collide \.N!th the same absolute value of velocity, v, is scattered by disks of diame-
scatterer without experiencing any ot_her cplhsmns. As.a €ier d randomly positioned on a plane inside a square box of
sultl, forg > 1, the ellectron W|I_I re—cqlllde W|th the same im- edge length (we takeL /d — 1000 to be sure thal, stays
purity center many t.|mes, and Its trajectory V\."” have the formmore than an order of magnitude larger than the electronic
.Of a rqsette, sweeping a circular area of ra@%rqgnd_thg mean-free path). Periodic boundary conditions are imposed
Impurity center2[7]. Since the number OT impurities inside at the edges of the square box. Both the hard-disk (Lorentz)
t_h|s ar.ea,47rNR . IS large, the electrgn W'." evgntu.ally.col- model, which exhibits anisotropic scattering, and a modified
lide with one of them, and thus continue its diffusion in the model with isotropic scattering are studied. To characterize

2[)|Iplgne. A;:ttl;]ollows from tthe regllljllts (;lftR?:{ 8 frtequz'enttre- the coverage, we introduce a dimensionless concentration of
collisions wi e same center, will lead to the isotropization . .ocrc 7Nd?/4, which was changed from— 0.025

of scattering, so that the effectivein Eq. (1) becomes field- to ¢ = 0.2. Studies of the percolation phenomena are beyond
dependent. This effect is absent if the scattering is isotropicme scope of the present study

1 2
At strong fields, when the pqrameté/?R becomes small In the simulation, we first choose an initial electron posi-
enough, the rosettes around different scatterers do not overl%n at random with an initial velocity along thedirection

anymore, the colliding electrons become localized and IV a magnetic field perpendicular to the plane, the electron

zero contribution to both,, ando,,. This means that a per- . . . .

) o trajectory is made of successive circular arcs of radiugor
colation transition should occur [7]. The calculated thresh—each collision. we determine the intersections of the traiec-
old is (NR?). = 0.36 [8]. Thus, there are two character- : J

o e . tory with the disk periphery (the impact point), which gives
istic values of the r‘r_1agnet|c fields, defined Qbyw‘: =1 us)f[he impact paer)imgtér )zlirfd the Ecattepring)angtg a?:—
g tio: ;)’/gndf2 (c]j\?;'%?%bigclzvyﬁ cgj?fs}gthe:si)a{ttlrrilr? cordingly. We follow the electron velocities, (t), andv, (t)
cross-slectii)n_is the small parameter of the theor 9 during a timet = 207 to get reliable results for the integral
' X Y- . below, and calculate the components of the diffusion tensor
It follows, that from the results of Ref. 8 for the sim-

ple cases of isotropic scattering aBd< By (NR? > 1), by the standard formula:
that the conductivity tensor for wandering electrons is sim-

ply given by the BD expressions, Eg. (1), with an additional Dy; =
factor (1 — P) in both o, ando,,. The circling electrons '
behave like free electrons with an effective concentratifh

giving a zero contribution ter,;, but contributing a term  For each value of the field and the disk concentration, we
Poy/B = Pnec/B to 0,,; and this is the reason why the take the average oven? independent disk configurations,
magnetoresistance is negative. This role of circling electronand for each configuration, ovén® independent trials for
was overlooked in Ref. 8, but was recognized later [9] (seghe initial electron position. Of course, & = 0, the tra-

with better accuracy than than 2% fpr,., and 4% forp,,,.

DN | =

/ < ’UZ'(O)’UJ‘ (t) > dt. (7)

also Refs. 10 and 11). jectories are straight-line segments, abg, should vanish
Thus, the conductivity tensor is given by: (this provides a nice test for the numerical precision). The
1_-P conductivity tensor, being proportional to the diffusion ten-
Ogg = JOW7 (3) sor, and the components of the resistivity are calculated
asD;;/(D2,+ D3,), with an appropriate normalization. For
_ _ g 1 the Lorentz model, numerical calculations of this type were
Ouy =00((1—P) + P-). (4) : ; _
1432 B previously performed [10] with an emphasis on the percola-
As a consequence, for the resistivity tensor we obtain tion phenomenon.
1_p 14+ P/ The qumerical _results fgmm, as a function (_)f@ f_or the
Prx Pzy = PofS (5) model with isotropic scattering, are presented in Fig. 1 (top).

= po 2/32° 2/32"

1+P2/B 1+P2/6 The resistivity is normalized to the BD zero-field valysg,
Formulas equivalent to Eqs. (3,4) were previously obtained he thick line is the theoretical curve predicted by Eq. (4).
by Baskin and Entin [11] for scattering by randomly posi- One can see that the theoretical and numerical curves are
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1.2 ‘ ' Boltzmann equation [12]. Note also that the numerical re-
] isotropic sults for a finitec approach the limiting theoretical curve from
< 1 above forg < 2, and from below for3 > 2. This may be
:f 68 | qualitatively explained as follows. On the one hand, at small
’ ) 0 the resistivity for a finitec is higher than the — 0 BD
0.6 g value due to theIn(1/c¢) correction. On the other hand, at
14 large3 we are on the way to the percolation threshold, where
o pz= (but notp,,!) becomes zero. So, obviously, for large
12 anisotropic and fInI.IEC, the resistivity should be lower than the limiting
e ] value given by Eq. (4).
S i Figure 1 (bottom) displays quite similar results obtained
o for the hard disk Lorentz model (anisotropic scattering). The
~ 08 theoretical curve (thick dashed line) was calculated using the
a r results of Ref. 8 for the wandering electrons, adding the con-
0.6 tribution of circling electrons, as explained above. In both
i p cases, all the numerical curves for differeis cross the lim-
04 iting theoretical curve at the same pojnt= 2 (within our
i 3 numerical precision). We have no explanation for this sur-
02— 5 3 a4 prising finding so far.

B When analyzing our numerical results for very small
0 values, we has lots of difficulties in recovering a clear
qguadratic behavior, in contrast with what we previously
theoretical curve given by Eq. (4) for the isotropic scattering claimed [5]. Therefore, we have re-done our simulations

model (top) and for the Lorentz model with anisotropic scattering " the Lorentz case (anisotropic scattering) by running many

(bottom). Circles, squares, diamonds, and triangles correspond t§101€/3 values in the range < 4 < 1 with a higher preci-
¢ = 0.025,0.05,0.1,0.2, respectively. The continuous and dashed Sion (the average is now performed over ten times more tra-

thick lines are the theoretical curves in the isotropic and anisotropicjectories). The results for the three concentration values are
cases, respectively; and they are depicted in the inset on a largereported in Fig. 2 as a plot dkp/(cp(0)) versuss/c, where

FIGURE 1. Numerical results for the resistivity as a function of
8 = wer for different impurity concentrations, compared to the

scale. Note the surprising crossingsiat 2. Ap = pz(B) — pz2(0), andp(0) = p,(0) is the zero field
value of the resistivity. In this figure, one clearly observes a
0.0 characteristic anomalous linear behavior fog, 2¢ followed

by a more conventional parabolic dependencgon
o4 L | To understand this result, we have invoked memory ef-
& o fects associated with back scattering events [6]. For simplic-
° @ ity, let us first consider the cage = 0 and a particle which,
o after going a distance > d without collisions, experiences
A ° backscattering at an angle = =, and then returns to the
initial point. The probability of this round trip of lengtbx
is proportional taexp(—x/¢), not toexp(—2z/¢), as would
A e o suggest the BD approach, since the existence of a free corri-
0.4 ‘ ‘ ‘ dor of widthd allowing the first part of the journey guarantees
0 5 B1/% 15 2 a collision-less return. This is not the case for scattering an-
gles outside the interval on the orderdyfr around the value
¢ = =, when the probabilities for a free pathbefore and
after collision become independent and equalte(—x/¢).

Ap/(cp(0))
®

03 A Y @] gl

FIGURE 2. Numerical results for the magnetoresistarce/p(0)
as a function ofg = w.r for different impurity concentrations.

Open circles, filled circles, and open triangles correspond to_. . - N
¢ =0.05,0.1,0.15, respectively. Both quantities have been di- Since typicallyz ~ ¢, the probability of backscattering in

vided by c to better show the universal behavior at low field pre- the intervalA¢ ~ d/f f';l.round.¢ =mis enha.nc_e(_j’ and this
dicted by Eg. (7). should lead to an additional increase of resistivity on the or-

der ofd/¢ ~ ¢, i.e. same order of magnitude as the con-

qualitatively similar and that the quantitative agreement im-ribution of return loops involving two or more intermediate
proves as decreases. In the limit — 0, the numerical scatterings. One can say that the existence of a free corri-
results converge to the theoretical curve, as they should.  dor effectively enhances backscattering in the interval

Note that for a finite:, the value of the zero-field resistiv- roughly by a factor of 2, thus increasing the transport cross-
ity is higher than the BD valugy. The relative correction for section by an amount dA¢.
smallcis proportional ta:In(1/c¢), and is due to re-collisions We attribute the low field anomaly in Fig. 2 to the in-
with the same impurity, which are not accounted for by thefluence of field on this effect. In the presence of even a
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small magnetic field, the electron trajectories before and af- (i) A characteristic magnetic field exists, at which the
ter collisions can not follow the same path anymore. At high classical parametgt = w.7 is small: 8.=d/l~c<1.
enough fields this kills the memory effect and, as a conse- . o ] )
quence, reduces the resistivity. Thus a negative magnetore-(1) The total drop of resistivity in the regiof < j. is on
sistance with a characteristic magnetic field defined by the ~ the order ofd/( ~ c.

relationj = d/¢ ~ ¢ < 1 appears. We do not have aregu- (jiy At 3 < 3, the resistivityp,., is linear in the magnetic
lar method for calculating analytlcglly.the magne_toresstance field exhibiting the| B| cusp observed in our simula-
at low fields. However, some qualitative conclusions may be tion [13].

drawn as follows.

Consider again backscattering by an angle exactly equal(iv) For 3. < 3 < 1; only quadratic corrections ifs re-

to 7, but in the presence of magnetic field. In order to have main, which are on the order ofi*. (It can be shown
collision-less paths of lengthbefore and after scattering, the that these corrections come from the influence of the
centers of all disks should be outside the corridor of widith magnetic field on the contribution of return loops).

§urround|ng these paths. The pr-obabmFy of this is PrOPOrris means that at low fieldg, < 1, the magnetoresistance,
tional to P = exp(—NS), whereN is the disk concentration Ap. is described by the formula:
andS is the joint area of the two corridors. The overlapping P y '
region should not be counted twice. Wh_lle&t: 0 there is Ap/p(0) = —c(f(B/c) + Aﬂz), (8)
full overlap, S = xzd and P = exp(—xz/¢), in the presence of
a magnetic field the overlap diminishes and the relevant areghereA is a numerical constant arfd¢) is a function which
increases. In the low-field Iimit, this increase can be eaS”)behaveS a§| for small values of its argument and saturates at
calculated to be\S = 2%/(3R) ~ B, so thatP decreases some value on the order of 1 fg] > 1. This theoretical pre-
linearly with B. This means that the (negative) magnetore-giction is in excellent agreement with the simulations results
sistance is linear irB for R >> (*/d, or 3 < d/{. For  presented in Fig. 2, which allow to estimate~ 0.3. Some
higher fields, such that >> d/¢, the two corridors practically  recent experimental results [4] for magnetoresistance of 2D
cease to overlap and one héis= 2zd, P = exp(—2z/{).  electrons in a disordered array of antidots, which is almost
Similar considerations apply to backscattering in the intervabxactly the experimental realization of the Lorentz model,
Ap ~d/L. exhibit such a predicted anomalous behavior. We have also
A similar contribution comes from the influence of a mag- presented a quantitative fit (without any adjusting parameter)
netic field on the probability of the simplest re-collision pro- in Ref. 5.
cessl — 2 — 1, which necessarily involves backscattering  In conclusion, we have shown that both a negative mag-
in the same angular interval¢. At B = 0, the memory ef- netoresistance and its low-field anomaly can be explained in
fect increases the relative contribution of this process to tha classical framework taking into account corrections to the
resistivity by an amount on the ordergfand again the curv- standard Boltzmann-Drude approach. We are convinced that
ing of the trajectories in the magnetic field will increase thethese results, established here by using the Lorentz model
total areaS, and thus reduce the probability of this process.and variants, can apply to any other kind of disordered short
In the low-field limit, one finds again that the area increaserange potential. In the future, we will consider the more com-
AS, is linear inB. These qualitative considerations lead usplicated case of long range disorder in order to check numer-
to the following conclusions: ically available theoretical predictions [14].
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