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Many examples of systems presenting self-limiting behaviour exist in nature: population dynamics, structure engineering, Townsend’s
electron breakdown, nuclear decay in radioactive equilibrium, histeresis process, meteorological models, etcetera. Each case is treated,
generally with a different theory, sometimes a phenomenological one. In this work, we call your attention to the advantages the use of a
variational formulation should provide in the study of self-regulated systems, such as a unified description of the phenomena mentioned
above, further comprehension of the internal structure and symmetries of the related equations, and the equilibria points obtained via the
energy function. As a particular and useful case, we have the Lagrangean and Hamiltonian functions obtained from the logistic equation,
studying some of its dynamical properties and applications.
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Existen en la naturaleza ḿultiples ejemplos de sistemas que presentan un comportamiendo auto-limitante: dinámica de población, ingenieŕıa
de estructuras, cascada electrónica de Townsend, decaimiento radioactivo, procesos de histéresis, meteorologı́a, etcetera. En este trabajo
hacemos hincapié sobre las ventajas que brinde el uso de una formulación variacional en el estudio de sistemas autoregulados, tales como
una descripcíon unificada de los feńomenos, mayor comprensión de la estructura interna, de las simetrı́as de las ecuaciones relacionadas y
la obtencíon de los puntos de equilibrio por medio de la función de enerǵıa. Como caso particular se obtienen las funciones lagrangeana y
hamiltoniana de la ecuación loǵıstica, tratando algunas aplicaciones.

Descriptores: Ecuacíon loǵıstica; Lagrangeana de Verhulst; sistemas auto-regulados.

PACS: 02.30.Zz; 45.20.Jj; 87.23.Cc

1. Introduction

The variational formalism is a very powerful tool in physics,
presenting, in a single formula, all the dynamical informa-
tion of a system. The usual problem is to find an adequate
expression for the Lagrangean or Hamiltonian, when obtain-
ing the equations of motion, conserved quantities and other
relevant dynamical relationships. However, there is an inter-
esting different approach, known as the inverse problem of
the variational calculus (see, for example, [1,2]). It consists
in studying the existence and uniqueness (or multiplicity) of
Lagrangeans for systems of differential equations, meaning
to find the Lagrangean, if it exists, from the equations of mo-
tion. One important result is that of Hojman et al. [3], who
have proved that it is possible to construct the Lagrangean
for any regular mechanical system as a linear combination of
their own equations of motion. This particular construction is
much wider than the traditional definitionL = T −V , which
is only true when the “forces” involved are derivable from
position-dependent potentials (or very few cases of velocity-
dependent potentials), therefore it may be used for general
non-conservative systems.

Whereas the equations of the models employed to de-
scribe auto-regulated phenomena can be understood as equa-

tions of motion in the variational sense, the latter approach
shows itself to be one of the most adequate to obtain the La-
grangean formulation of the problem. Its application to the
study of self-limiting processes may provide additional un-
derstanding into the internal structure of these phenomena,
and also enables the use of a well known mathematical ma-
chinery to find conserved quantities, equilibria and stability
cases, as well as other dynamical properties.

In the following pages, we propose to deal with the prob-
lem of self-regulated systems, in particular with those de-
scribed by the Verhulst’s Logistic Equation (VLE, from now
on) [4], by means of the Hojman proceedure, to illustrate
how a variational formulation can be easily obtained once we
know the equation of motion and some additional informa-
tion about the system.

The VLE is a continuous non-linear population growth
model with a self-limiting density dependent mechanism. If
n(t) is the population at a timet, 1/A is the representative
time scale of response of the model to any change in the pop-
ulation, andB is the carrying capacity of the enviroment (the
maximum size of the stable steady state population), then the
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logistic equation can be written as

dn

dt
= An

(
1− n

B

)
(1)

The solution of equation (1), forn(0) = n0 is:

n(t) =
n0BeAt

B + n0 (eAt − 1)
. (2)

For n0 < B the profile is the characteristic sigmoid of the
model, and forn0 > B the behavior is similar to an expo-
nentially decay function (see Fig. 1).

2. Constructing the Verhulst’s Lagrangean

For convenience, we shall write (1) as

.
q ≡ dq

dt
= kq (B − q) , (3)

with k ≡ A/B, and we shall consider the one-dimensional
problem.

In our case it can be showed that the equation of motion
is

..
q − k2q(B − q)(B − 2q) = 0. (4)

The second order Hojman et al. method provides then

∼
LV = µ

[..
q − k2q(B − q)(B − 2q)

]
. (5)

We just need to determine the factorµ, which in this case
can be written as

µ = C1
∂C2

∂
.
q

, (6)

whereC2 is a constant of motion andC1 is an arbitrary func-
tion whose argument is a constant of motion. Observe that
from the initial conditions and (4) we can obtain the only
constant of motion,C2, the system possesses:

C2 ≡ 1
2

.
q
2 − 1

2
k2q2 (B − q)2 = 0 (7)

and a possible choice forC1 is (see reference [1])

C1 = cC2
2 , (8)

wherec is an arbitrary constant that multiplies the equation
of motion. The Lagrangean reads then

∼
LV = cC2

2

.
q
[..
q − k2q(B − q)(B − 2q)

]
. (9)

When inserted into the Euler-Lagrange equation, (9) pro-
vides the corresponding equation of motion (4) plus terms
that are zero in virtue of the constant of motion. How-
ever, it has been shown that for the one-dimensional problem
there exists an infinite number of Lagrangeans [2]. Thus, we
can write a more simpler solution-equivalent Lagrangean by

means of the total time derivative of a certain gauge. Given
the constant of motion, let choose

dΛ
dt

=
.
q
2 −

(
C1

dC2

dt
+ C2

)
(10)

Without loss of generality we setc = 1, and adding (10)
and (9) we obtain

LV =
1
2

.
q
2 +

1
2
k2q2 (B − q)2 (11)

and the Hamiltonian can be written as

HV =
1
2
P 2 − 1

2
k2q2 (B − q)2 (12)

where the generalized momentum is

P ≡ ∂L

∂
.
q

=
.
q (13)

3. Energies and Equilibrium Conditions

Now we proceed to study some of the applications the La-
grangean formalism offers to the Verhulst system. The first
term in (11) and (12) is identified as the usual traslational
“kinetic” energy: quadratic and homogeneous in the first
temporal derivative of the generalized coordinate. The sec-
ond term on the right side of equation (12), explicitily time-
independent, is identified as the potential energy of the sys-
tem:

V = −1
2
k2q2 (B − q)2 (14)

The behavior of this potential is qualitatively presented in
Fig. 2 for fixed carrying capacity. Note that equation (14)
can be interpreted as an impulsor-retardatrice potential, de-
pending only on the generalized coordinate. In fact, observe
that whenq0 ≤ B, for the interval(0, B/2) the accelera-
tion associated impulses the movement, being conversely for
the interval(B/2, B); the point(B/2) corresponds to a lo-
cal minimum, where the acceleration instantaneously annuls
itself. On the other hand, whenq0 > B, i.e. the interval
(B,∞), the character of the acceleration is always impul-
sive, even being

.
q < 0. Also, in virtue of (3) equation (12) is

identically zero, and it is clear in Fig. 2 that the kinetic energy
tends to annuls itself asq approachsB. As a consequence,
the system takes an infinite time to reach the steady state. All
this is consistent with the profiles sketched in Fig. 1 and with
the standard knowledge about equation (3).

One important application is that of finding the stability
cases. The usual derivative criteria provide as equilibrium
solutionsqe =

{
0, B

2 , B
}

. The first one corresponds to a
point of instability, the second to minimal potential energy
and the last one is, as expected, the state of stationary equi-
librium. As before, this analysis is in accordance with the
known behaviour of the VLE (see Fig. 1). It is important to
remark here that usually the study of its equilibrium points is
treated by means of a Taylor expansion of (3) aboutq = 0
andq = B (see for example [4]). The variational formalism
provides thus both a more elegant and complete treatment.
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FIGURE 1. The Verhulst logistic equation (B = 20). The dash line
corresponds ton0 < B and the solid one corresponds ton0 > B.

FIGURE 2. The Verhulst potential for different values ofk
(B = 5).

On the other hand, as far as the VLE can model various
self-regulated phenomena, it should be useful for the descrip-
tion of the related statistical systems to write the total mean
energy. We shall use the virial theorem for this porpouse. In
our case,

〈T 〉 = −1
2

〈
∂V

∂q
q

〉
=

1
2
k2

〈
q2 (B − q) (B − 2q)

〉
(15)

Then, the total mean energy is written as

〈E〉 ≡ 〈T + V 〉 = −1
2
k2

〈
q3(B − q)

〉

= −k

6

〈
d

dt

(
q3

)〉
(16)

or, explicitily, after evaluating the integral betweent = 0 and
t = ∞,

〈E〉∞ = lim
T→∞

{
− k

6T

[
q(T )3 − q3

0

]}

= 0 (17)

Thus the total mean energy of the systems described by VLE
is always null. But if as superior temporal bound we choose
the characteristic time of the system, then

〈E〉1/A = −A2

6B

[
q

(
1
A

)3

− q3
0

]
(18)

4. Concluding Remarks

By means of the inverse problem of the variational calculus,
in this work we have found the Lagrangean (11) and Hamil-
tonian (12) corresponding to the logistic equation as an ex-
ample of the way a variational formalism can be obtained for
general self-regulated systems (up today there was no vari-
ational formalism for the VLE). This may be regarded as a
proof that the VLE is an extremal, thus it is physically ac-
ceptable (it complies with the Hamilton’s least-action princi-
ple) despite the fact Verhulst introduced it heuristically. We
have also used the virial theorem to obtain the mean energies
of the system.

Despite the fact the VLE describes multiple phenomena
which one should think presents dissipation of energy (for
example as in population dynamics, growth of living beings
or meteorological models), it is easy to show that the Ver-
hulst system is conservative (population systems with a first
integral has been studied, see [4] and references therein): the
HamiltonianHV equals the total energyE of the system and
is the conserved quantity.

Finally, the self-regulated systems, not only those de-
scribed by the VLE, are present everywhere: certain aspects
in stability of structures, Townsend electron breakdown, his-
teresis and magnetization processes, the Amdhal law for scal-
ability of computer programs and a long etcetera. As far
as these phenomena are studied sometimes by quite differ-
ent disciplines of science, it is interesting to explore if it is
possible to provide a unified description for them in terms of
families of Lagrangeans (or Hamiltonians), that also would
help to classify the systems by their dynamical properties.
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