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Particle production by a spatially homogeneous time-dependent electric field
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We discuss the mechanism of production of positrons and electrons by a spatially homogeneous time-dependent electric field whose amplitude
vanishes for large values of time. Using the Hamiltonian diagonalization technique, we compute the density of particles created as a function
of time. We show that, as the time parameter goes to infinity, the distribution of pair created by the electric field reduces to the result
calculated via the Bogoliubov coefficients.
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En este articulo se discute el mecanismo de producción de electrones y positrones debido a un campo eléctrico homoǵeneo y dependiente del
tiempo cuya amplitud se anula para valores grandes del tiempo. Haciendo uso de la técnica de diagonalización del Hamiltoniano calculamos
la densidad de partı́culas creadas como una función del tiempo. Se muestra que, cuando el tiempo tiende a infinito, la distribución de pares
creados por el campo eléctrico se reduce al resultado obtenido a través de los coeficientes de Bogoliubov.

Descriptores: Produccíon de part́ıculas; ecuación de Dirac.

PACS: 03.65.Pm; 03.65.Nk

1. Introduction

In the last years a lot of work has been done on the problem
of particle production by strong electromagnetic fields [1–3].
After the publication of the pioneering articles of Heisenberg
and Euler [4] and Schwinger [5], spontaneous pair produc-
tion in the presence of strong electromagnetic fields has been
widely discussed in the literature [1, 2, 6–9]. Different meth-
ods have been applied in order to compute vacuum effects
in strong static and homogeneous electric fields. Among the
different approaches and techniques applied in the analysis
of quantum effects on stable vacua, we should mention the
proper time technique, the imaginary time method [7, 8], the
complex multiple reflection approach [10, 11], the diagonal-
ization method [2, 12, 13], and the complex path approach,
and tunnelling [14,15] among others.

Using a proper time technique, Schwinger computed the
persistence of the vacuum in the presence of a constant elec-
tric field. Using the natural system of units where~ = c = 1,
the imaginary part of effective action takes the form:

2ImL(1/2)
eff =

(qE0)2

4π3

∞∑
n=1

1
n2

e−nπm2/eE0 . (1)

The result (1) shows that pair production in the presence of
a constant electric field becomes important when the elec-
tric field intensity is comparable to the criticalEcr value:
Ecr = m2/e ≈ 1.32× 1016V/cm. The formula (1) has also
been used in modelling particle production in the central ra-
pidity region in high-energy nucleus-nucleus collisions. [16]

We are interested in studying the phenomenon of particle
creation in the presence of a spatially homogeneous electric
field associated with the vector potential (2)

Aµ = A(t)δµ
3 , (2)

whereA(t) is given by the expression:

A(t) = −(E/k0) tanh(k0t). (3)

The corresponding electric fieldE(t) has the form

E(t) = E/ cosh2(k0t). (4)

This background permits one to discuss the mechanism
of e+, e− pair production by a time-varying electric field. In
order to compute the dependence on time of the density of
particles created by the electric field, we apply the diagonal-
ization technique [2].

2. The diagonalization technique

The proper time technique [1, 2] can be generalized to ar-
bitrary electromagnetic and gravitational backgrounds but is
this an uphill task since it is not at all convenient to regularize
the effective Lagrangian in all such cases. For to these rea-
sons many workers in this field turn to the Bogoliubov trans-
formation technique [2]. In order to apply the Bogoliubov
transformation technique, one needs to solve the wave equa-
tion associated with the particle and identify the “positive”
and “negative” frequency modes. The adiabatic approach’ as
well as the WKB method, in most cases gives a recipe for
constructing approximate solutions of the basis; nevertheless
this technique neglects those effects associated with multiple
reflections and transmission resonances.

In order to study particle production in time-dependent
electric fields and to describe how the density of particles
created by an electric field evolves trough time, we are go-
ing to use the diagonalization method. This method was pro-
posed by Gribet al. [2] and developed by different authors,
who have shown its usefulness in discussing particle creation
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processes in the presence of strong electromagnetic and grav-
itational fields.

Recently Dolby and Gull [12,13] have introduced a mod-
ification in order to free it from the problems exhibited by
the old diagonalization method. In Ref. [13] the authors
show that their new approach is gauge invariant, and therefore
time independent vector potentials do not require a barrier-
approach interpretation. Among the advantages of the diag-
onalization method we should mention that it permits one to
discuss the evolution of the particle creation process through
time and it reproduces the results obtained with the adiabatic
approach in those cases where it is possible to define adia-
batic asymptotic states [2,9]

The standard diagonalization procedure proposed by Grib
et al. is equivalent to the particle definition developed by
Gull and Dolby, at least in those simple electromagnetic con-
figurations admitting an asymptotic Killing vector. Since the
electromagnetic fieldE(t) (4) is obtained via the time de-
pendent vector potentialA(t) (2), we do not have to appeal
to any tunnelling interpretation [14,15]. Nevertheless our re-
sult should be expected coincide with those of Padmanabhan
et al. [14,15] in the quasiclassical limit.

The Dirac equation in the presence of an electromagnetic
potential is

[iγµ(∂µ − ieAµ)−m] Ψ = 0 (5)

where we have adopted the natural system of units~ = c = 1,
and the metric signatureηµν = diag(+ − −−). The Dirac
matrices satisfy the anticommutation relations:

{γµ, γν} = 2gµν (6)

In order to apply the diagonalization method, we proceed
as follows [2,9]: We introduce the auxiliary spinorχ

Ψ = [iγµ∂µ − eγµAµ + m] χ (7)

Substituting (7) into the Dirac equation (5), we obtain:

[iγµ∂µ − eγµAµ −m] [iγµ∂µ − eγµAµ + m] χ = 0 (8)

and inserting the electromagnetic potential (2) in (8) we get
the second order differential equation:

[
∂2
0 − ∂i∂i + e2A2

3(t)− 2ieA3(t)∂3

+ie(∂0A3(t))γ0γ3 + m2
]
χ = 0 (9)

Following Ref. 2, we look for solutions of Eq. (9) in the form

χr = eipxf(p, t)Rr, (10)

whereRr are the eigenvectors of the matrixγ0γ3, satisfying
γ0γ3Rr = Rr, R+

r Rs = 2δr,s, r, s = 1, 2.

R1 =




0
1
0
−1


 , R2 =




1
0
1
0


 (11)

Substituting (10) into (9) we obtain thatf± satisfies the fol-
lowing second order differential equation

f̈± + [ω2 + ieȦ3)f± = 0, (12)

where the frequencyω satisfies the relation

ω2 = m2 + p2
⊥ + (p3 − eA3)2. (13)

As t → −∞ positive and negative frequency modes in
Eq. (12) satisfy the asymptotic behavior

f±(p, t) ≈
[
4ω−(p)(ω−(p) + p3 − eA3

−)
]−1/2

× exp[±iω−(p)t]. (14)

A complete system of solutions of the Dirac equation (5) can
be expressed as

ψ±pr(x) = (2π)−3/2
[
pνγν + i∂0γ

0 + eA3(t)γ3

+m
]
χ±pr(x) (15)

where the spinor solutionsψ±pr(x) are normalized according
to the product:

∫
ψ±p,r(x)ψ±p′r′(x)d3x = δ3(p− p′)δr,r′ (16)

The spinor field operatorΨ(x) has the form

Ψ(x) =
∑

r=1,2

∫
d3p

[
Ψ(−)

p,r (x)a(−)
p,r + Ψ(+)

−p,ra
(+)
p,r

]
(17)

Following the diagonalization approach [2,9], we obtain that
the time dependent Hamiltonian has the form

H(1/2)(t) =
∑
r,s

∫
d3p

[
A(−,−)

r,s (p, t)a∗+pr a−ps

+ A(−,+)
r,s (p, t)a∗+pr a+

−ps

+ A(+,−)
r,s (p, t)a∗−−pra

−
ps

+ A(+,+)
r,s (p, t)a∗−−pra

+
−ps

]
, (18)

where the coefficientsA(δ,ε)
r,s (p, t) of the Hamiltonian

H(1/2)(t) can be expressed as:

A(δ,ε)
r,s (p, t) = iψδ+

pr ∂0ψ
ε
ps. (19)

Substituting the spinorψ±pr(x) into (19), it is not difficult to

verify that A
(δ,ε)
r,s (p, t) = 0 for r 6= s. The non-zero coeffi-

cients in Eq. (19) are

A
(−,−)
11 = A

(−,−)
22 ≡ ωE,

A
(−,+)
11 = A

(−,+)
22 ≡ ωF,

A
(+,+)
11 = A

(+,+)
22 . (20)
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FIGURE 1. Particle density as a function ofpz
out/m, for E/Ecr = 1, k0 = 0.1 p = 0, 0.5 and1, and fortm=-5, 0, 5, and∞.

Using (11), (10), and (15), one obtains

E(p, t) = 4
(m2 + p2

⊥)
ω

Im
[
f (+)∗f (+)

]
− p3 − eA3

ω
(21)

and

E2(p, t) + |F (p, t)|2 = 1 (22)

Taking into account Eq. (20) and Eq. (21), we obtain that the
Hamiltonian (18) takes the form

H(1/2)(t)=
∑

r=1,2

∫
d3pω(p, t)

[
E(p, t)(a∗+pr a−pr−a∗−−pra

+
−pr)

+ F (p, t)a∗+pr a+
−pr + F ∗(p, t)a∗−−pra

−
pr

]
. (23)

The diagonalization of the Hamiltonian (23) can be carried
out with the help of the Bogoliubov transformations

a−pr = α∗p(t)b
−
pr(t)− βp(t)b+

−pr(t) (24)

a∗−pr = α∗−p(t)b
∗−
pr (t)− β−p(t)b∗+−pr(t), (25)

where the Bogoliubov coefficientsαp, βp satisfy the relation:

|αp(t)|2 + |βp(t)|2 = 1. (26)

In terms of the creation and annihilation operatorsb+
pr(t) and

b−pr(t), the Hamiltionian (23) reduces to the form

H(1/2)=
∑

r=1,2

∫
d3pω(p, t)

[
b∗(+)
p,r b(−)

p,r − b
∗(−)
−p,rb

(+)
−p,r

]
(27)

where the coefficientsαp(t) andβp(t) satisfy the relations:

βp(t)
αp(t)

= [1− E(p, t)] /F ∗(p, t), (28)

|βp(t)|2 = (1− E(p, t))/2. (29)

Expression (29) gives the density of particles created by the
electric field. The density of particles created per unit of vol-
ume is

n1/2 =
2

(2π)3

∫
d3p |βp(t)|2 (30)
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The exact solution of Eq. (12) with the vector potential (3),
having an asymptotic behavior associated with positive fre-
quency modes can be written in terms of the Gauss hyperge-
ometric functionF (µ, ν, γ, z) [17] as:

f<(t) = Neiω−t(1 + e2k0t)−iαF (µ, ν, γ,−e2k0t). (31)

Requiring thatf<(t) have the asymptotic behavior given by
Eq. (14), we determine the value of the constantN

N = [4ω−(p)(ω−(p) + p3 − eA3
−)]−1/2, (32)

and

µ = i

(
ω+ + ω−

2k0
− α

)
, ν = i

(
ω− − ω+

2k0
+ α

)
(33)

n =
sinh

[
π

(
α−ω++ω−

2k0

)]
sinh

[
π

(
α+ω++ω−

2k0

)]

sinh(πω+
k0

) sinh(πω+
k0

)
(34)

The asymptotic limit of|βp(t)|2, ast → +∞, reduces to the
expression (34). This result shows that, for the vector po-
tential (3), the density of particles created obtained via the
diagonalization method reduces to that derived with the help
of the standard adiabatic approach.

Figure 1 shows the evolution of the particle creation pro-
cess. The particles are created with small momentum, and

they are accelerated by the electric field. The peak at the ori-
gin corresponds to particles created at late times and there-
fore with less linear momentum than those produced at early
times.

3. Concluding remarks

We have applied the standard diagonalization technique ap-
proach in order to compute pair production by a hyperbolic
field (3). The computation of the time dependent particle den-
sity with the help of the adiabatic asymptotic positive and
negative frequency modes shows that, the Hamiltonian diag-
onalization gives reliable results if one chooses asymptotic
modes computed via the the adiabatic method. The depen-
dence on time of the quasiparticle distribution created by the
hyperbolic field (3) shows that the results obtained in the adi-
abatic field case can be extended to other electric field con-
figurations.
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