Sobre las colineaciones de las distribuciones tensoriales de Ricci de espacio-tiempos pared de dominio

N. Pantoja y A. Sanoja Centro de Astrofísica Teórica, Universidad de los Andes, Mérida 5101, Venezuela

Recibido el 24 de noviembre de 2003; aceptado el 4 de junio de 2004

Empleando la generalización distribucional de la derivada de Lie, se obtienen las simetrías de la métrica y de las distribuciones tensoriales de curvatura para un espacio-tiempo pared de dominio 3+1 dimensional asimétrico y estático y su límite de pared delgada.

Descriptores: Espacio-tiempos pared de dominio; colineaciones de Ricci, campos vectoriales de Killin; geometría distribucional.

Generalizing the Lie derivative to distribution-valued tensors, we examine the geometric symmetries of the metric and its distributional curvatures of a (3+1)-dimensional static and asymmetric domain wall spacetime and its thin wall limit.

Keywords: Domain Wall spacetimes; Ricci collineations; Killing vector fields; distributional geometry.

PACS: 04.20.-q; 11.27.+d

1. Introducción

Los espacio-tiempos pared de dominio han sido recientemente objeto de un intenso estudio, esto debido a la posibilidad de que nuestro universo puede ser una pared de dominio embebida en un espacio-tiempo de dimensión $D \geq 5$ [1,2,3,4]. En general, los modelos considerados poseen simetría de reflexión en torno de la pared, aunque este requerimiento no es necesario. En la Ref. 5, relajando la condición de simetría bajo reflexión, se obtiene un espacio-tiempo que es asintóticamente Minkowski a un lado de la pared y por el otro es la solución de Taub [6]. El espacio-tiempo está descrito por una métrica que pertenece a la clase de métricas regulares [7], métricas que admiten tensores de curvatura con un significado distribucional riguroso, y que además satisface los criterios de convergencia que aseguran que el límite de pared delgada está bien definido [7,8]. En lo que sigue estudiaremos las simetrías de la métrica y de las distribuciones de curvatura de este espacio-tiempo asimétrico, así como la permanencia y/o aparición de nuevas simetrías en el límite de pared delgada.

2. La derivada de Lie en el sentido de las distribuciones

Sea T_{ab} un campo tensorial localmente integrable y X^c un campo vectorial infinitamente derivable C^{∞} . Sea η_{ab} un tensor métrico C^{∞} definido sobre M y ∇_c el operador derivada compatible con η_{ab} , entonces

$$\pounds_X T_{ab} = X^c \nabla_c T_{ab} + T_{ac} \nabla_b X^c + T_{cb} \nabla_a X^c. \tag{1}$$

Sea U^{ab} un campo tensorial suave con soporte compacto sobre M. Tratando $\pounds_X T_{ab}$ como una distribución tensorial, se tiene

$$\pounds_X T_{ab} \left[U^{ab} \right] = -\int_{U_{cc}} T_{ab} [\pounds_X + \nabla_c X^c] U^{ab} w_{\eta}, \quad (2)$$

donde U_M es el dominio coordenado correspondiente a M y w_η el elemento de volumen natural compatible con η_{ab} . Por lo tanto definimos

$$\pounds_X T_{ab} \left[U^{ab} \right] \equiv -T_{ab} \left[\pounds_X U^{ab} + \nabla_c X^c U^{ab} \right]. \tag{3}$$

Los términos del miembro derecho de (3) son distribuciones bien definidas y por lo tanto la derivada de Lie de una distribución simétrica cualquiera T_{ab} a lo largo de X^c , un campo vectorial C^{∞} , define una distribución, a través de (3).

3. Un espacio-tiempo asimétrico

Consideremos la métrica estática y asimétrica, que en coordenadas cartesianas, viene dada por [5]

$${}^{q}g_{ab} = f(\xi)^{2/3}e^{-2k\xi/3}(-dt_{a}dt_{b} + e^{k\xi}(dy_{a}dy_{b} + dz_{a}dz_{b})) + f(\xi)^{2}d\xi_{a}d\xi_{b}$$
(4)

donde $f(\xi) = [\cosh(k\xi/2q)]^{-q}$, con k y q constantes y 0 < q < 1. Este espacio-tiempo es generado por una pared de dominio, es decir, una solución al sistema de ecuaciónes acopladas Einstein-campo escalar

$$G_{ab} = 8\pi T_{ab},\tag{5}$$

$$T_{ab} = \partial_a \phi \partial_b \phi - g_{ab} (\frac{1}{2} \partial^c \phi \partial_c \phi + V(\phi)), \qquad (6)$$

con

$$\phi(\xi) = \phi_0 \tan^{-1} \left(\sinh(\frac{k\xi}{2q}) \right), \quad \phi_0 = \sqrt{\frac{(1-q)q}{24\pi}}$$
 (7)

$$V(\phi) = \frac{k^2}{48\pi q} \cos^{2(1-q)} \left(\frac{\phi}{\phi_0}\right),\tag{8}$$

donde q es el ancho de la pared. El campo $\phi(\xi)$ toma valores en R, $V(\phi)$ posee simetría Z_2 , tiene al menos dos minimos degenerados y $\phi(\xi)$ interpola entre dos mínimos diferentes de $V(\phi)$. Por otro lado, T_{ab} satisface la condiciones de energía debil y dominante y viola la fuerte [5]. Este espacio-tiempo a pesar de que $V(\phi)$ posee simetría Z_2 no posee simetría de reflexión y es asintóticamente para $\xi < 0$ un espacio-tiempo Taub y para $\xi > 0$ es Minkowski [5].

El tensor de Ricci y el tensor de Einstein asociados a la geometría considerada vienen dados por

$${}^{q}R_{ab} = \frac{K^{2}}{12q} \left(\cosh \frac{k\xi}{2q} \right)^{-2(1-2q/3)} (-e^{-2k\xi/3} dt_{a} dt_{b}$$

$$+ e^{k\xi/3} (dy_{a} dy_{b} + dz_{a} dz_{b}))$$

$$+ \frac{k^{2}}{12q} (3 - 2q) \cosh^{-2} \left(\frac{k\xi}{2q} \right) d\xi_{a} d\xi_{b}, \qquad (9)$$

$${}^{q}G_{ab} = \frac{K^{2}}{12q} (2 - q) \left(\cosh \frac{k\xi}{2q} \right)^{-2(1-2q/3)} (-e^{-2k\xi/3} dt_{a} dt_{b}$$

$$+ e^{k\xi/3} (dy_{a} dy_{b} + dz_{a} dz_{b}))$$

$$- \frac{k^{2}}{12} \cosh^{-2} \left(\frac{k\xi}{2q} \right) d\xi_{a} d\xi_{b}. \qquad (10)$$

La métrica (4) pertenece al tipo de métricas regulares. Hagamos el límite distribucional $q \to 0$. Para obtener este límite, tanto la métrica, el tensor de Ricci y el tensor de Einstein deben ser considerados distribuciones tensoriales. Los límites para (4) y sus tensores de curvatura son [9]

$$\lim_{q \to 0} {}^{q}g_{ab} = -e^{-k\frac{|\xi|+2\xi}{3}} dt_{a}dt_{b} + e^{-k|\xi|} d\xi_{a}d\xi_{b}
+ e^{-k\frac{|\xi|+2\xi}{3}} e^{k\xi} (dy_{a}dy_{b} + dz_{a}dz_{b}), \tag{11}$$

$$\lim_{q \to 0} {}^{q}R_{ab} = k\delta(\xi) \left(-\frac{1}{3} dt_{a}dt_{b} + d\xi_{a}d\xi_{b} \right)
+ \frac{1}{3} (dy_{a}dy_{b} + dz_{z}dz_{b}), \tag{12}$$

$$\lim_{q \to 0} {}^{q}G_{ab} = \frac{2k}{3}\delta(\xi)(dt_adt_b - dy_ady_b - dz_adz_b). \quad (13)$$

La métrica (11) es identificada como el límite de pared delgada de (4) y describe un espacio-tiempo singular. Para $\xi < 0$ es un espacio-tiempo tipo Taub y $\xi > 0$ es un espacio-tiempo tipo Minkowski [5]. El tensor de Ricci distribucional (12) proviene de la métrica (11) y el tensor de Einstein distribucional (13) describe una fuente singular, que genera el espaciotiempo descrito por la métrica (11). Para este espacio-tiempo los tensores de curvatura están bien definidos como distribuciones [7].

4. Simetrías

Para ${}^qg_{ab}$ dado por (4) y exigiendo

$$\mathcal{L}_x{}^q g_{ab} = 0, \tag{14}$$

obtenemos los campos vectoriales de Killing para la métrica, que vienen dados por

$$X_1 = \partial_t, \quad X_2 = \partial_y, \quad X_3 = \partial_z, \quad X_4 = z\partial_y - y\partial_z.$$
 (15)

De igual forma, exigiendo para el tensor de Ricci (9)

$$\pounds_X{}^q R_{ab} = 0, \tag{16}$$

obtenemos las colineaciones de Ricci, que resultan ser los mismos campos vectoriales de Killing, por tanto este espaciotiempo, solo admite colineaciones impropias.

Por último, exigiendo para el tensor de Einstein (10) que

$$\pounds_X{}^q G_{ab} = 0, \tag{17}$$

obtenemos las colineaciones de materia, que resultan ser los mismos campos vectoriales de Killing.

En lo que sigue obtendremos la derivada de Lie distribucional de la métrica y los tensores de Ricci y Einstein de los espacio-tiempos pared gruesa, a lo largo de los campos vectoriales de Killing y las colineaciones de Ricci y materia, obtenidos en el caso no distribucional. Esto con el fin de determinar si los mismos siguen jugando el papel de simetrías de los tensores distribucionales. En lo que sigue se omitirá la etiqueta q para la métrica y para los tensores de Ricci, y de Einstein asociados a la pared de dominio gruesa, debido que la omisión no introduce confusiones.

Consideremos la métrica asimétrica y estática (4) y calculemos la derivada de Lie (3) a lo largo de los campos vectoriales de Killing definidos por (14). Para $X=z\partial_y-y\partial_z$ obtenemos

$$\mathcal{L}_{X}g_{ab}[U^{ab}] = -\int_{R^{4}} (\nabla_{y}(zg_{ab}U^{ab}) - U^{ab}\nabla_{y}(zg_{ab}) - \nabla_{z}(yg_{ab}U^{ab}) + U^{ab}\nabla_{z}(yg_{ab}))w_{\eta} + \int_{R^{4}} (g_{yy} - g_{zz})(U^{zy} + U^{yz})w_{\eta} = 0, \quad (18)$$

donde hemos integrado por partes,usado el hecho de que $g_{yy}=g_{zz}$ y que la métrica no depende de ξ . Para el resto de los campos vectoriales de Killing se obtiene de igual forma

$$\pounds_X g_{ab}[U^{ab}] = 0. \tag{19}$$

Calculemos a continuación la derivada de Lie del tensor de Ricci (9) a lo largo de las colineaciones de Ricci definidas por (16). Para $X=z\partial_y-y\partial_z$, tenemos

$$\mathcal{L}_{X}R_{ab}[U^{ab}] = -\int_{R^{4}} (\nabla_{y}(zR_{ab}U^{ab}) - U^{ab}\nabla_{y}(zR_{ab}) - \nabla_{z}(yR_{ab}U^{ab}) + U^{ab}\nabla_{z}(yR_{ab}))w_{\eta} + \int_{R^{4}} (R_{yy}(U^{zy} + U^{yz}) - R_{zz}(U^{yz} + U^{zy}))w_{\eta} = 0.$$
 (20)

Para el resto de las colineaciones de Ricci se obtiene de igual forma

$$\pounds_{\xi} R_{ab}[U^{ab}] = 0. \tag{21}$$

De manera análoga se calcula para el tensor de Einstein (10) a lo largo de las colineaciones de materia que satisfacen (17) y obtenemos

$$\pounds_X G_{ab}[U^{ab}] = 0. \tag{22}$$

Hemos verificado que las simetrías de los tensores métrica, de Ricci y de Einstein no distribucionales, son también simetrías de los mismos en el tratamiento distribucional.

5. Simetrías en el límite de pared delgada

Consideremos en lo que sigue la derivada de Lie distribucional para el tensor métrico (11), límite de pared delgada de (4), a lo largo de los campos vectoriales de Killing definidos por (14). Para $X = z\partial_y - y\partial_z$,

$$\pounds_X g_{ab}[U^{ab}] = -\int_{R^4} (U^{ab} \nabla_z (yg_{ab}) - U^{ab} \nabla_y (zg_{ab})) w_{\eta}$$

$$+ \int_{R^4} (g_{yy}(U^{yz} + U^{zy} - g_{zz}(U^{yz} + U^{zy}))w_{\eta} = 0, (23)$$

donde hemos integrado por partes y usado el hecho de que $g_{yy}=g_{zz}$ y la geometria es estática. Para el resto de los campos vectoriales de Killing también se cumple que

$$\pounds_X g_{ab}[U^{ab}] = 0.$$

Para el tensor de Ricci distribucional (12), a lo largo de las colineaciones de Ricci definidas por tenemos

$$\pounds_X R_{ab}[U^{ab}] = 0.$$

Como se esperaba, las colineaciones impropias del tensor de Ricci asociado a la pared gruesa son también colineaciones impropias del tensor de Ricci distribucional asociado a la pared infinitamente delgada.

Consideremos a continuación la derivada de Lie para la métrica (11), a lo largo de los campos vectoriales

$$X_1 = y\partial_t + t\partial_y, \quad X_2 = z\partial_t + t\partial_z.$$
 (24)

Tenemos

$$\mathcal{L}_{X_1} g_{ab}[U^{ab}] = 2(\Theta_{\xi}^- e^{k\xi/6} + \Theta_{\xi}^+ e^{k\xi/2}) \sinh\left(\frac{k\xi}{2}\right) \times (dt_a dy_b + dy_a dt_b), \quad (25)$$

donde Θ_{ξ}^- y Θ_{ξ}^+ es la distribución de Heaviside. El resultado indica que (X_1) no es un campo vectorial de Killing de (11). De igual forma se obtiene para X_2 ,

$$\pounds_{X_2} g_{ab}[U^{ab}] \neq 0 \tag{26}$$

y (X_2) tampoco es un campo vectorial de Killing de (11). Sin embargo, para el tensor de Ricci (14) tenemos que

$$\pounds_{X_1} R_{ab}[U^{ab}] = 0, \quad \pounds_{X_2} R_{ab}[U^{ab}] = 0.$$
 (27)

Se sigue que (X_1) y (X_2) son colineaciones propias del tensor de Ricci distribucional (12), debido a que no son heredadas de la métrica (11). Tanto (X_1) como (X_2) no son colineaciones del tensor de Ricci (9) y por lo tanto son simetrías que aparecen en el límite de pared delgada.

De forma análoga para el tensor de Einstein (13), a lo largo de las colineaciones de materia definidas por (17), y los campos vectoriales (1) y (2), obtenemos

$$\pounds_X G_{ab}[U^{ab}] = 0 \tag{28}$$

6. Conclusiones

Hemos extendido la derivada de Lie de campos tensoriales de rango dos simétricas, a distribuciones tensoriales simétricas de rango dos, permitíendonos obtener simetrías para distribuciones tensoriales. Con la extensión anterior, hemos verificado que los Killing de una métrica distribucional son colineaciones del tensor de Ricci y de Einstein distribucional, al igual que el caso suave. Las simetrías de la métrica, el tensor de Ricci y el tensor de Einstein del espacio-tiempo pared gruesa, lo son para la métrica, el tensor de Ricci y el tensor de Einstein distribucionales asociados al espacio-tiempo pared delgada (herencia de simetrías de la pared gruesa a la delgada). Además para el espacio-tiempo considerado, en el límite de pared delgada, las distribución tensorial de Ricci, admite 2 colineaciones propias, las cuales se generan en el proceso de límite. El resultado es de particular interés, ya que empleando geometría diferencial estándar, para un tensor de Ricci y de Einstein igual a cero, no hay posibilidad de hacer ninguna manipulación para obtener sus simetrías, problema que desaparece en el contexto de teoría de distribuciones, al menos para la geometría estudiada. El espacio-tiempo singular, tratado en este trabajo, prueba la utilidad del acercamiento que provee la geometría distribucional para describir singularidades espacio-temporales en relatividad general [7,8,9].

- 1. L. Randall y R. Sundrum, *Phys. Rev. Lett.* **83** (1999) 4690.
- 2. F. Bonjour, C. Charmousis y R. Gregory, *Class. Quantum Grav.* **16** (1999) 2427.
- 3. O. DeWolfe, D.Z. Freedman, S.S. Gubser y A. Karch, *Phys. Rev. D* **62** (2000) 046008.
- 4. M. Gremm, Phys. Lett. B 478 (2000) 434.
- 5. R. Gass y M. Mukherjee, *Phys. Rev. D* **60** (1999) 065011.
- 6. A.H. Taub, Annals. Math. 53 (1951) 472.
- 7. R. P. Geroch y J. Traschen, Phys. Rev. D 36 (1987) 1017.
- 8. R. Guerrero, A. Melfo y N. Pantoja, *Phys. Rev. D* **65** (2002) 125010.
- A. Melfo, N. Pantoja y A. Skirzewski, *Phys. Rev. D* 67 (2003) 105003.