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Spherically-symmetric mass accretion onto logatropic protostars
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We follow the spherical gravitational collapse and the subsequent accretion phase of nonsingularA = 0.2 logatropes of both subcritical
and critical masses using numerical hydrodynamics. The initial configuration is close to hydrostatic equilibrium. In all cases, we assume
fiducial values of the central temperature (Tc = 10 K) and surface pressure (ps/k = 1.3 × 105 cm−3 K) that are appropriate for star
formation in isolated environments. We find that immediately after the transition toward a singular density profile, the mass accretion rate
increases abruptly in a very short timescale followed by a phase of much slower increase, after which a peak value ofṀacc is reached. At
this point about 40% of total mass has been accreted by the central protostar. Thereafter, the accretion rate declines for the remainder of
the evolution until 100% of the total core mass is condensed into a form of stellar mass. The results predict peak values ofṀacc as high as
∼ 5 − 6 × 10−5 M¯ yr−1 for logatropes close to the critical mass and imply that stars of mass1 M¯ ≤ M? ≤ 92 M¯ all form within
3.6–6.6× 106 years. The models are representative of the early protostellar phase from Class 0 to Class I objects.
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Haciendo uso de un código hidrodińamico se calcula el colapso gravitacional y la acreción de esferas logatrópicas no-singulares conA = 0.2
y masas subcrı́ticas y cŕıtica, a partir de configuraciones cercanas al equilibrio hidrostático. Para todos los modelos se toman valores de la
temperatura central (Tc = 10 K) y de la presíon superficial externa (ps/k = 1.3 × 105 cm−3 K) consistentes con los valores tı́picos en
regiones donde la formación estelar ocurre en forma aislada. Inmediatamente después que la esfera alcanza un perfil singular de densidad, la
tasa de acreción aumenta abruptamente en una escala de tiempo muy corta. A esta fase sigue una de crecimiento más lento en la cualṀacc

aumenta hasta alcanzar un máximo valor. A este punto de la evolución cerca del 40% de la masa total ha sido acrecida por la protoestrella.
Luego la tasa de acreción decrece lenta y progresivamente por el resto de la evolución hasta que el 100% de la masa total es convertida en
masa estelar. Los resultados predicen valores máximos deṀacc del orden de∼ 5− 6× 10−5 M¯ yr−1 para logatropos con masa cercana
al valor cŕıtico e indican que estrellas con masas entre 1 y92 M¯ se forman en 3.6–6.6 × 106 años. Los modelos se aplican a la fase de
evolucíon protoestelar comprendida entre objetos de la Clase 0 y I.

Descriptores: Hidrodinámica; formacíon estelar; acreción y discos de acreción

PACS: Hidrodińamica; Formacíon estelar; Acreción y discos de acreción

1. Introduction

Over the past few years our understanding of star formation
has notably improved both theoretically and observationally.
However, the precise way in which dense molecular cloud
cores, i.e., the condensations that form at scales less than a
parsec within large molecular clouds [1,2], condense to form
stellar objects is still unclear.

Observations of the internal structure of both low- and
high-mass dense cores are essential constrain the initial con-
ditions for current star formation models. For instance, many
theoretical models of star forming clouds employ the sin-
gular isothermal sphere, in whichρ ∝ r−2 [3]. However,
this model is not applicable to more realistic clouds with fi-
nite central densities such as the marginally stable Bonnor-
Ebert sphere. In particular, numerical hydrodynamic calcu-
lations of the isothermal collapse of critically stable Bonnor-
Ebert spheres predict that 44% of the mass infalls at a few
times the speed of sound once a central protostellar core
has formed [4]. Although recent observations indicate that
some starless cloud cores can be very well fitted by the struc-
ture of pressure-bounded Bonnor-Ebert spheres [5,6], there
is complete lack of evidence in support of such high col-
lapse velocities. Moreover, it is also well-known on obser-

vational grounds that the nonthermal componentσNT of the
total velocity dispersion dominates over the thermal one in
massive cores [7]. In addition, significant nonthermal mo-
tion has also been detected in low-mass cores [7,8]. In par-
ticular, the nonthermal line widths in the former cores are
consistent withσNT ∝ r0.21, while σNT ∝ r0.53 in the
latter ones [7], implying that the velocity dispersion rises
more steeply with the radius in low-mass cores than in mas-
sive ones. SinceσNT is observed to decrease toward small
radii inside molecular clouds and within individual dense
cores [7]. This decrease suggests that nonthermal support
must come largely from magnetohydrodynamic (MHD) tur-
bulence on the largest scales and that velocities are in preva-
lence of thermal origin at the smallest scales. Evidently, these
properties cannot be accounted for with the use of a simple
isothermal equation of state.

Alternatively, McLaughlin and Pudritz [9] introduced a
logatropic equation of state in which the nonthermal (turbu-
lent) effects are modelled through a logarithmic dependence
of the pressure on density. They showed that this form repro-
duces on average the observed internal velocity-dispersion
of both molecular clouds and cores of low and high mass.
In a separate paper [10], these authors derived solutions for
both the equilibrium and self-similar collapse of logatropic
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spheres. In particular, the unstable singular equilibrium with
ρ ∝ r−1 everywhere is the analogy for Shu’s [3] unstable sin-
gular isothermal sphere, whereas the stable nonsingular equi-
librium solution is the counterpart of the hydrostatic Bonnor-
Ebert sphere. Recently, Reidet al. [11] performed fully
three-dimensional hydrodynamic simulations of the gravita-
tional collapse of nonsingular spherical logatropes of fiducial
mass< 5 M¯. These calculations were extended to much
higher masses (up to the critical value) by Sigalotti et al. [12],
who found that about 6% of the mass collapses supersoni-
cally in a1 M¯ sphere, while only∼ 0.02% behaves in this
manner in a critical (≈ 92.05 M¯) logatrope. This finding
is in clear contrast with the 44% prediction for the collapse
of the critically stable Bonnor-Ebert sphere [4]. In this pa-
per, we shall follow the mass accretion history of isolated
logatropes of varied masses up to the point where 100% of
the total mass has been accreted by the central protostar and
compare the results with observational estimates for Class 0
and Class I objects.

2. Initial Conditions

We define a sequence of seven model calculations of non-
singular logatropes of both subcritical (1, 10, 50, 60, 80
and 90M¯) and critical (≈ 92.05 M¯) masses, all starting
with a central temperature of 10 K and a fiducial truncation
pressureps/k = 1.3 × 105 cm−3 K. With this choice of the
parameters the models are appropriate for isolated star forma-
tion. The stable nonsingular equilibria from which the calcu-
lations start are constructed as described in Ref. 12, using the
logatropic equation of state [9,10]

p = pc

[
1 + A ln

(
ρ

ρc

)]
, (1)

wherepc andρc refer to central values andA = 0.2, which
gives the best fit of Eq. (1) to the observed internal velocity-
dispersion profiles for low- and high-mass cores [9].

The nonsingular density profile for the critically stable
(≈ 92.05 M¯) logatrope is shown in Fig. 1. Similar varia-
tions are obtained for all other subcritical spheres. We see
that the cloud is singular withρ ∝ r−1 in the outer lay-
ers. The collapse of the nonsingular spheres is initiated by
adding a 5% density enhancement to the equilibrium pro-
file at all radii. For the details of this initial collapse phase,
we refer the reader to [12]. This phase ends when the en-
tire cloud approaches a singular density profile everywhere
at time t = 0. In particular, near the center anr−3/2 den-
sity profile sets in, which extends in radius up tor = r0,
wherer0 = 3σc/(4πGρc)1/2 is the characteristic radius of
the spherical core. Hereσ2

c = pc/ρc is the central velocity
dispersion. Forr > r0, the profile matches theρ ∝ r−1

power-law. Recent observational evidence indicates power-
law density variations in the structure of Class 0 objects that
match the density profiles of both equilibrium (ρ ∝ r−1) and

FIGURE 1. Nonsingular density profile of a pressure-truncated,
A = 0.2 logatrope of critical massM ≈ 92.05 M¯.

collapsing (ρ ∝ r−3/2) logatropic spheres [13]. Similar evi-
dence has also been found for the structure of young massive
stars [14].

The calculations of this paper were performed using a
1D hydrodynamics code based on a second-order accurate
Lagrangian remap technique. Temporal second-order accu-
racy is enforced by solving the Lagrangian equations in a
predictor-corrector fashion. After the Lagrangian update, the
solution is mapped back onto a Eulerian grid that is allowed
to follow as close as possible the Lagrangian motion. The
initial collapse phase is calculated using only the Lagrangian
version of the code to guarantee sufficient spatial resolution
near the originr = 0. At the precise time of singularity for-
mation, the smallest central grid shells are lopped off into a
sink cell in order to remove from the calculation the details of
the flow around the singularity. An inflow/outflow boundary
condition is implemented across the sink cell surface. Once
the sink cell is activated, the subsequent evolution is calcu-
lated using the Eulerian version of the code. In this way, the
mass which enters the sink is assumed to be condensed into
a central point mass located at the origin. This mass (Macc)
will no longer interact hydrodynamically with the rest of the
grid, but only gravitationally via a point mass potential. The
outer core surface is handled by keeping the pressure there
at a constant value equal to the truncation pressureps. A
more detailed account of the methods, sink cell treatment and
boundary conditions is given in [12]. In contrast with those
previous calculations, we use here an increased initial spa-
tial resolution consisting of 400 uniformly distributed radial
zones.

3. Logatropic Accretion Phase

In this section, we describe the evolution starting from the
time (t = 0) of singularity formation and monitor the tempo-

Rev. Mex. F́ıs. S52 (3) (2006) 5–8



SPHERICALLY-SYMMETRIC MASS ACCRETION ONTO LOGATROPIC PROTOSTARS 7

ral variation ofMacc(t) only when the sink cell is activated
(t > 0). The details of the mass accretion history for all mod-
els considered is displayed in Fig. 2, where the central mass
accretion in solar masses (Fig. 2a) and the central mass accre-
tion rate in units of solar masses per year (Fig. 2b) are shown
as functions of time. In all cases, the evolution is followed up
to the point where 100% of the total mass has been accreted
by the growing central protostar. We see from Fig. 2a that
the accretion lifetime increases with increasing mass up to
50 M¯ and then decreases as the mass approaches its critical
limit, implying that stars of mass between 1 and≈ 92.05 M¯
all form within 3.6–6.6 × 106 yr. The weak dependence of
the free-fall time on mass and the initialt4 dependence of
the mass accretion in logatropes [10], are responsible for this
small spread in the star-formation times. Immediately after
singularity formation, the mass accretion rate grows steeply
in a very short timescale (Fig. 2b). This feature is com-
mon to all masses. This phase is followed by one of much
slower increase which ends when a maximum value ofṀacc

is achieved, corresponding to the point where about 40% of
the total available mass has been accreted by the central pro-
tostar. We also note that the higher the total core mass, the
steeper the growth of the accretion rate during this interme-
diate phase. In particular, the present models predict peak
values ofṀacc between∼ 8 × 10−7 M¯ yr−1 for a 1 M¯
core and∼ 6×10−5 M¯ yr−1 for a critical logatrope. There-
after, the accretion rate decreases steadily for the remainder
of the evolution. Such a decline is expected because the cen-
tral protostar is drawing mass from a finite reservoir. Once
the expansion wave reaches the outer boundary, it will not
set new mass into collapse and so the flow of inward-moving
material cannot be maintained at the same rate.

These models are suggestive of the early phases of pro-
tostellar evolution, including the Class 0 stage, in which the
protostar contains half the mass of the initial core [15], and
the Class I stage, in which the protostar accretes the remain-
der of the final stellar mass, leading to the formation of an
optically visible young star (Class II object). In our mod-
els, the transition from a nonsingular to a singular collapse
(when a central point-mass forms) marks the beginning of
the Class 0 stage. The calculations predict lifetimes for this
phase of∼ 1.5–5.3 × 105 yr, consistent with the observa-
tional estimates of a few105 yr reported by Gregersen and
Evans [16] for a sample of collapsing sources representa-
tive of Class 0 objects. Furthermore, the logatropic models
predict timescales of∼ 0.7–1.6 × 106 yr for the transition
from Class 0 to Class I sources and of∼ 2.9–5 × 106 yr
from Class I to Class II objects. This implies predicted life-
times of∼ 0.8–1.0 × 106 yr for the Class 0 phase and of
∼ 2.0–3.5 × 106 yr for the Class I phase. Observational es-
timates suggest a Class 0 lifetime of∼ 1–3 × 104 yr com-
pared to∼ 2 × 105 yr for the Class I sources in theρ Oph
main cloud [17]. These times are∼ 1–2 orders of magnitude
shorter than those predicted by the present logatropic models.
However, these estimates refer to regions of multiple star
formation,

FIGURE 2. a) Temporal evolution of the central mass accretion and
b) central mass accretion rate in physical units for all logatropic
core masses considered. The evolution is shown up to the point
where nearly all of the finite core mass has fallen into the central
protostar.

while the present models apply to isolated star-forming re-
gions. In addition, the transition from Class 0/I to Class I/II
has been determined by assuming that there are no disruption
mechanisms operating during protostellar evolution and that
the final stellar mass is determined by the total core mass,
which has no observational support. In particular, there is
strong evidence that outflows are directly powered by mass
accretion and that their decline is correlated to a correspond-
ing decline of the mass accretion rate during the evolution
from the Class 0 to the Class I stage [18].
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At the borderlines indicative of the transition be-
tween Class 0 and Class I sources, the logatropic mod-
els predict Ṁacc∼0.07–5.5 × 10−5 M¯ yr−1. The cor-
responding values for the transition between Class I and
Class II protostars areṀacc∼0.02–1.4× 10−6 M¯ yr−1.
These values are consistent with the inferred decrease
from ∼ 0.3–1× 10−5 M¯ yr−1 for Class 0 sources to
∼ 0.7–2× 10−7 M¯ yr−1 for evolved Class I protostars
[19]. Further recent estimates for massive protostars indi-
cate accretion rates≥ 10−5 M¯ yr−1 [20], which agree with
our predicted Class 0 lifetimes for high-mass (≥ 50 M¯)
logatropes. Because of the high luminosities of young mas-

sive stars, radiative acceleration may significantly contribute
to the dynamical evolution of high-mass cores, leading to
larger sizes of the accretion rate, shorter lifetimes and smaller
final stellar masses than predicted by the present hydrody-
namic collapse models. A further step towards improving
the picture of logatropic collapse is the inclusion of rota-
tion. In this case, anisotropic accretion throughout the for-
mation of a flattened circumstellar disk is likely to affect
the spherically symmetric timescales and accretion rates pre-
dicted here, which may still apply to the limiting case of very
slow rotation.
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