
FÍSICA ESTAD́ISTICA REVISTA MEXICANA DE FÍSICA S52 (3) 35–37 MAYO 2006

Metastable lifetime of a kinetic Ising model with a transition dynamic algorithm
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We calculate the average lifetime〈τ〉 of the metastable state of a 2-d kinetic Ising model. The model evolves under what is called a transition
dynamic (TDA), which assumes that the system in going from an initial to a final state, must pass through an intermediate statet, such that
the transition rate has the form,W (i → j) = W (i → t)W (t → j). The results are obtained in two different ways. First, by calculating
the first-passage time from the metastable to an absorbing state. Second, by the technique of absorbing Markov chains. Our calculations
reproduce the standard result obtained in the low-temperature nucleation regime,〈τ〉 = AeΓ/kBT . However, we find thatA andΓ differ
from the values calculated for the standard Glauber dynamics. These results are consistent with recent studies which indicate that, contrary
to common belief,Γ is not simply the metastable energy barrier, but depends on the stochastic dynamics used.
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Calculamos la vida media〈τ〉, del estado metastable de un modelo cinético de Ising en 2-dimensiones. La evolución del sistema viene dada
por una dińamica de transición (TDA) que asume que el sistema para poder pasar de un estado inicial a uno final debe pasar por un estado
intermediot, tal que la probabilidad de transición es de la formaW (i → j) = W (i → t)W (t → j). Los resultados son obtenidos de
dos formas distintas. Una del cálculo del tiempo que toma el sistema metaestable en pasar por primera vez a un estado absorbente. La
otra utilizando la t́ecnica de las cadenas absorbentes de Markov. Nuestros cálculos reproducen el resultado estandard que dice que, a bajas
temperaturas, en el régimen de nucleación, 〈τ〉 = AeΓ/kBT . Sin embargo encontramos queA y Γ son distintos de los obtenidos para la
dinámica estandard de Glauber. Estos resultados son consistentes con estudios recientes que prueban que, al contrario a lo que se creia,Γ no
es simplemente la barrera de energı́a metastable sino que depende de la dinámica estoćastica utilizada.

Descriptores: Metaestabilidad; nucleación; modelo cińetico de Ising.
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Metastable states are very common in nature and occur in
many systems ranging from supercooled fluids and vapors,
quantum liquids, magnetic systems, to cosmological mod-
els. The decay of a metastable phase through nucleation
and growth of droplets of a stable phase is a common fea-
ture of these processes. Kinetic Ising models have proven
to be interesting and fruitful laboratories to study the decay
of metastable states through a nucleation process [1, 2]. It
is well known that in the regime of single droplet decay, the
low-temperature limit of the the average waiting time to es-
cape from a metastable phase, the known as lifetime〈τ〉, has
the form [3]

〈τ〉 = AeβΓ, (1)

whereβ = 1/kBT . For the standard Glauber dynamic [4],Γ
is equal to the energy difference between the saddle point and

the metastable state [5]. Until recently, it was believed that
this was a general result. However, recent work shows that
both the prefactorA andΓ strongly depend on the stochastic
dynamic selected [6].

In this paper we measure the lifetime of the metastable
state of a two-dimensional nearest-neighbor Ising model.

H = −
∑

<nn>

σiσj −H
∑

i

σi. (2)

The system is prepared in a metastable state by initially set-
ting all the spins up (σ = +1) and applying a static field of
strengthH directed opposite to the spins (downward). The
transition rates are given by the transition dynamic algorithm
(TDA) [7],

W (i → f) =
1

(1 + eβ(Et−Ei))(1 + e(β(Ef−Et))
(3)
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FIGURE 1. Γ factor calculated for the TDA dynamics with the one-
step Markov chain approximation and with the absorbing Markov
chain technique. For purposes of comparison we have included the
results for the Glauber dynamics. Both dynamics give different re-
sults in the regions2−∆<|H|<2 + ∆ and4−∆<|H|<4 + ∆.
Here∆ = 0.5

FIGURE 2. PrefactorA calculated for the TDA dynamics with
the one-step Markov chain approximation and with the absorbing
Markov chain technique. For purposes of comparison we have
included the results for the Glauber dynamics. Both dynamics
give different results in the regions2 − ∆ < |H| < 2 + ∆ and
4−∆ < |H| < 4 + ∆. TheA factor calculated with the Glauber
dynamic is discontinuous at|H| = 2, 4, and the one calculated
with the TDA atH = 2 − ∆, 2, 2 + ∆, 4 − ∆ and4 + ∆. Here
∆ = 0.5.

which is the product of the Glauber transition rates fromi
to an intermediate statet and from there tof . This kind of
dynamic is frequently applied to study diffusion process on
surfaces, where an energy barrier exists for the motion from
one site to another. These transition probabilities describe
explicitly the effect of an intermediate energy state in a diffu-
sion process, which in the classical picture is the saddle point
of the potential [8].

At very low temperatures, the critical droplet of a kinetic
Ising model is a square of sizel2×l2 with one row removed
and a single overturned spin on one of the longest sides,
wherel2 = integer[2J/|H|] + 1 [3].

Here, we calculate the average lifetime by two different
analytical methods. First, in terms of the shrinking and grow-
ing probabilities of a droplet, by calculating the first-passage
time from the metastable state to an absorbing state just be-
yond the saddle point, assuming that the path in the configu-
ration space corresponds to a one-step Markov process [10].

In the single droplet regime the time, it takes the system
to evolve from an initial state with no overturned spins to an
absorbing state withI overturned spins is [6,9],

〈τI〉=N

g0
+

I−1∑

l=1

N

gl


1+

l∑

k=1

eβ(El−El−k)
k−1∏

j=0

ns
l−j

ng
l−j−1


 . (4)

wheregi is the rate at which the cluster grows fromi to i + 1
overturned spins, andns

i ( ng
i−1 ) are the number of lattice

sites at which a single spin flip can shrink the cluster fromi
to i−1 (growth fromi−1 to i). If I is greater than the number
of overturned spins of the saddle point, then〈τ =〉 = 〈tauI〉.
In the limit of β →∞, Eq.(4) is dominated by the terms with
the largest exponential factor. When the external field is in
the range1 < |H| < 4, the lifetime of the metastable states
can be obtained by explicitly calculating the first four terms
(I = 4) of Eq.(4).

〈τ4〉 =
1
p1

+
1

4p2
(N + eβ(8−2|H|))

+
1

4p2
(N +

N

2
eβ(4−2|H|) +

1
2
eβ(12−4|H|))

+
1
p3

(N +
N

2
eβ(4−2|H|)

+
N

4
eβ(8−4|H|) +

1
4
eβ(16−6|H|)). (5)

Herepm is the rate of flipping a positive spin with5 − m
positive nearest-neighbors, or more generally the probability
of flipping a spin of classm in the classification scheme used
to define the n-fold way advanced dynamical Monte Carlo al-
gorithm [11,12]. These rates depend on the dynamic. For the
transition dynamic algorithm defined in Eq. (3), we have the
form,

pm =
1
2

eβEfi

(coshβEfi + coshβ∆)
(6)

whereEfi = (Ef − Ei)/2, Ei is the initial energy of the
spin in classm andEf is the energy after the spin has been
flipped. The term∆ is a measure of the barrier introduced by
the transition stateT ,

∆ = Efi − Et. (7)

For the purpose of this work we choose∆ = 0.5. We need to
calculate the low-temperature limit of Eq. (6).

Comparing the dominant terms of〈τ4〉 at the low temper-
ature limit with Eq.(1) we obtain the values ofA andΓ.

We also calculateΓ and the prefactorA using absorb-
ing Markov chains (AMC) with13 transient states at the
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limit T → 0, allowing for multiple paths to the critical
droplet [12].

In Fig. 1 we show the results for theΓ factor calculated
from both techniques for the TDA dynamics, and also for the
Glauber dynamics. Both methods give the sameΓ values for
the same dynamic. These results agree with previous studies
that indicate that the values found forΓ are independent of
the approximation used [6, 9], behaving piecewise linearly
with |H|. For the Glauber dynamics there are 3 regimes with
different slopes,1 < |H| < 2, 2 < |H| < 4 and|H| > 4.
For the TDA dynamics, there are 5 regimes where the slope
changes (∆ < 1), 1 < |H| < 2−∆, 2−∆ < |H| < 2 + ∆,
2 + ∆ < |H| < 4 − ∆, 4 − ∆ < |H| < 4 + ∆ and
|H| > 4 + ∆. The values ofΓ found for the two dynam-
ics are different in the regimes,2 − ∆ < |H| < 2 + ∆ and
4 −∆ < |H| < 4 + ∆. For both dynamics,Γ is zero in the
strong-field limit,|H| > 4 + ∆.

In Fig. 2 we show the results for the prefactorA. Again
we see that, except at|H| = 2, both techniques give basi-
cally the same values forA , and that these values differ from
those calculated for the Glauber dynamics in the regimes
2 − ∆ < |H| < 2 + ∆ and4 − ∆ < |H| < 4 + ∆. As
expected, the prefactor is discontinuous (for a discussion of
prefactor discontinuities see [9]). For the Glauber dynam-
ics the discontinuities appear at the values where|H|/2 is an
integer [12],|H| = 2 and4. For the TDA dynamics, they
appear at|H| = 2−∆, 2, 2 + ∆, 4−∆ and4 + ∆.

Our results further confirm the fact that the factorsΓ
andA of the low-temperature metastable lifetime of a kinetic
Ising model depend on the specific stochastic dynamic. In
particular,Γ for the TDA dynamics is not everywhere equal
to the energy barrier against nucleation.
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