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Metastable lifetime of a kinetic Ising model with a transition dynamic algorithm
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We calculate the average lifetinje) of the metastable state of a 2-d kinetic Ising model. The model evolves under what is called a transitio
dynamic (TDA), which assumes that the system in going from an initial to a final state, must pass through an intermediase chetteat

the transition rate has the forf/ (i — 7) = W(: — t)W (¢t — 7). The results are obtained in two different ways. First, by calculating
the first-passage time from the metastable to an absorbing state. Second, by the technique of absorbing Markov chains. Our calculz
reproduce the standard result obtained in the low-temperature nucleation reg)me,AeF/’“BT. However, we find thatd andI" differ

from the values calculated for the standard Glauber dynamics. These results are consistent with recent studies which indicate that, col
to common beliefT" is not simply the metastable energy barrier, but depends on the stochastic dynamics used.

Keywords: Metastable; nucleation; Kinetic Ising model.

Calculamos la vida mediér), del estado metastable de un modelctizo de Ising en 2-dimensiones. La evolrcdel sistema viene dada

por una dimica de transioin (TDA) que asume que el sistema para poder pasar de un estado inicial a uno final debe pasar por un est
intermediot, tal que la probabilidad de transici es de la formdV (i — j) = W(i — t)W(¢t — j). Los resultados son obtenidos de
dos formas distintas. Una dehlculo del tiempo que toma el sistema metaestable en pasar por primera vez a un estado absorbente.
otra utilizando laé&cnica de las cadenas absorbentes de Markov. Nuesimsgas reproducen el resultado estandard que dice que, a bajas
temperaturas, en eégimen de nucleagn, (r) = Ae'/#8T | Sin embargo encontramos quey T son distintos de los obtenidos para la
dinamica estandard de Glauber. Estos resultados son consistentes con estudios recientes que prueban que, al contrario a l[d'que se cre
es simplemente la barrera de erfiangetastable sino que depende de |adiita estoastica utilizada.

Descriptores: Metaestabilidad; nucleaim; modelo cigtico de Ising.

PACS: 64.60.Qb; 64.60.My; 02.50.Ga

Metastable states are very common in nature and occur ithe metastable state [5]. Until recently, it was believed that
many systems ranging from supercooled fluids and vaporghis was a general result. However, recent work shows that
guantum liquids, magnetic systems, to cosmological modboth the prefactod andI’ strongly depend on the stochastic
els. The decay of a metastable phase through nucleatiatynamic selected [6].

and growth of droplets of a stable phase is a common fea- In this paper we measure the lifetime of the metastable
ture of these processes. Kinetic Ising models have provestate of a two-dimensional nearest-neighbor Ising model.

to be interesting and fruitful laboratories to study the decay
of metastable states through a nucleation process [1, 2]. It H=- Z gi0j — HZJZ‘ @)
is well known that in the regime of single droplet decay, the
low-temperature limit of the the average waiting time to es-The system is prepared in a metastable state by initially set-
cape from a metastable phase, the known as lifetimehas  ting all the spins upg = +1) and applying a static field of

<nn> 7

the form [3] strengthH directed opposite to the spins (downward). The
() = AePT 1) transition rates are given by the transition dynamic algorithm
a ’ (TDA) [7],
wheres = 1/kgT. For the standard Glauber dynamic [#], . 1
b Wi f) = )

is equal to the energy difference between the saddle point and (1 + eB(Be=Ei)) (1 + BB —Ev))
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0 ‘ ' ' ' Here, we calculate the average lifetime by two different
1 analytical methods. First, in terms of the shrinking and grow-
8 . ing probabilities of a droplet, by calculating the first-passage
time from the metastable state to an absorbing state just be-
, yond the saddle point, assuming that the path in the configu-
3 — TDA 1-step Markov chain - .

o TDA AMC ration space corresponds to a one-step Markov process [10].
=~ t D *  Glauber 1 In the single droplet regime the time, it takes the system
af A% _ to evolve from an initial state with no overturned spins to an
R absorbing state withh overturned spins is [6, 9],
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H wherey; is the rate at which the cluster grows fraro i + 1

FIGURE 1. I' factor calculated for the TDA dynamics with the one- gverturned spins and (nY_, ) are the number of lattice
. . . . . 1 77—
step Markov chain approximation and with the absorbing Markov gjtes at which a single spin flip can shrink the cluster from
chain technique. For purposes of comparison we have included th(’f‘oi—l (growth fromi—1to4). If T is greater than the number
results for the Glauber dynamics. Both dynamics give different re-Of overturned spins of the sr;lddle point, then=) = (tau)
Its in the region@—A<|H|<2 + A and4—A<|H|<4 + A. L : o L

Sus In the region <|H|<2+Aan <|Hl<d+ In the limit of 5 — oo, EQ.(4) is dominated by the terms with

HereA =0.5 . . L
the largest exponential factor. When the external field is in
3 . , , , the rangel < |H| < 4, the lifetime of the metastable states
- DA Lsen Markow 1 can be obtained by explicitly calculating the first four terms
& -ste arkov chain ___
25k O DA AMC . (I = 4) of Eq.(4).
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HI Herep,, is the rate of flipping a positive spin with — m

FIGURE 2. PrefactorA calculated for the TDA dynamics with  positive nearest-neighbors, or more generally the probability
the one-step Markov chain approximation and with the absorbingof flipping a spin of classn in the classification scheme used

Markov chain technique. For purposes of comparison we havetg define the n-fold way advanced dynamical Monte Carlo al-
included the results for the Glauber dynamics. Both dynamicsqgorithm [11,12]. These rates depend on the dynamic. For the

give different results in the regions— A < [H| < 2+ Aand  yangition dynamic algorithm defined in Eq. (3), we have the
4— A < |H| < 4+ A. The A factor calculated with the Glauber form

dynamic is discontinuous df/| = 2,4, and the one calculated 1
with the TDA atH = 2 — A,2,2 + A,4 — A and4 + A. Here Pm = =
A =0.5. 2(

eBEsi
coshE; + coshBA)

o N whereEy; = (E; — E;)/2, E; is the initial energy of the
which is the product of the Glauber transition rates from gpin in classn andE; is the energy after the spin has been
to an intermediate stateand from there tof. This kind of  flipped. The term is a measure of the barrier introduced by
dynamic is frequently applied to study diffusion process onthe transition staté,
surfaces, where an energy barrier exists for the motion from
one site to another. These transition probabilities describe A = Ey; — E,. )
explicitly the effect of an intermediate energy state in a diffu-
sion process, which in the classical picture is the saddle poirftor the purpose of this work we choode= 0.5. We need to
of the potential [8]. calculate the low-temperature limit of Eq. (6).

At very low temperatures, the critical droplet of a kinetic Comparing the dominant terms ¢f,) at the low temper-
Ising model is a square of siZzgxl, with one row removed ature limit with Eq.(1) we obtain the values dfandT".
and a single overturned spin on one of the longest sides, We also calculatd" and the prefactor using absorb-
wherel, = integer[2J/|H|] + 1 [3]. ing Markov chains (AMC) with13 transient states at the

(6)
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limit 7' — 0, allowing for multiple paths to the critical In Fig. 2 we show the results for the prefactér Again
droplet [12]. we see that, except &f| = 2, both techniques give basi-

In Fig. 1 we show the results for tHefactor calculated cally the same values fot , and that these values differ from
from both techniques for the TDA dynamics, and also for thethose calculated for the Glauber dynamics in the regimes
Glauber dynamics. Both methods give the sdmaluesfor 2 - A < |H| < 2+ Aand4d — A < |H| <4+ A. As
the same dynamic. These results agree with previous studiexpected, the prefactor is discontinuous (for a discussion of
that indicate that the values found fbrare independent of prefactor discontinuities see [9]). For the Glauber dynam-
the approximation used [6, 9], behaving piecewise linearlyics the discontinuities appear at the values whérg'2 is an
with | H|. For the Glauber dynamics there are 3 regimes withinteger [12],|H| = 2 and4. For the TDA dynamics, they
different slopes] < |H| < 2,2 < |H| < 4and|H| > 4. appearatH|=2—-A,2,2+A,4—Aandd + A.

For the TDA dynamics, there are 5 regimes where the slope Our results further confirm the fact that the factdrs
changesf < 1), 1< |H|<2—-A,2-A<|H| <2+ A, andA of the low-temperature metastable lifetime of a kinetic
24+ A < |H <4-A,4-A < |H| <4+ A and Ising model depend on the specific stochastic dynamic. In
|H| > 4+ A. The values ofl" found for the two dynam- particular,I" for the TDA dynamics is not everywhere equal
ics are different in the regime8,— A < |H| < 2+ A and to the energy barrier against nucleation.

4— A < |H| <4+ A. For both dynamicdl is zero in the

strong-field limit,| H| > 4 + A.
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