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Selection rule and energetic stability.
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The deformation-dependence of clusterization in atomic nuclei is investigated. In particular, allowed and forbidden cluster-configurations
are determined for the ground, superdeformed, and hyperdeformed states of some light and heavy nuclei, based on a microscopic (real and
effectiveSU(3)) selection rule. For light nuclei the realU(3) symmetry is used to characterize the parent and cluster nuclei. In the case of
heavy nuclei our study is based on the application of the effectiveU(3) symmetry, which was first introduced for nuclei with large prolate
deformation [1]. The stability of the different cluster configurations from the viewpoint of the binding energy [2] is also investigated for
comparison.
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La dependencia de la clusterización de la deformación nuclear ha sido estudiada. En particular las configuraciones de cúmulos permitidas
y prohibidas de algunos núcleos ligeros y pesados ha sido estudiada utilizando una regla de selección microsćopica (U(3) real y efectiva).
En el caso de los ńucleos ligeros, la simetriaU(3) real ha sido utilizada para caracterizar el nucleo padre y los cúmulos. En el caso de los
núcleos pesados, nuestro estudio se basa en la aplicación de la simetriaU(3) efectiva, que fue introducida por primera vez para núcleos con
gran deformacíon prolata [1]. La estabilidad de las distintas configuraciones de cúmulos tambíen ha sido estudiada desde el punto de vista
de la preferencia energetica [2] a efectos comparativos.

Descriptores: Clusterizacion binaria y ternaria; Principio de Pauli; SimetriaU(3); preferencia energetica.

PACS: 21.60.Fw; 21.60.Gx

1. Introduction

The main objective of this contribution is to present our re-
sults on the study of the dependence of clusterization on the
deformation. Our approach is based on the assumption that
the preference of clusterization depends on two basic princi-
ples. One is related to maximizing the sum of the binding en-
ergies of the clusters (calledenergy-minimum principle[2,3])
and the other is determined by thePauli-exclusion principle.
They represent complementary constraints in the formation
of clusters. The Pauli-exclusion principle is in general dif-
ficult to implement microscopically for complex systems, it
gives large computational difficulties. In Ref. 4 an approx-
imate treatment to implement the Pauli-exclusion principle
was introduced for binary systems. Considering both prin-
ciples is important because even if one clusterization is pre-
ferred from the energetical point of view, it might be forbid-
den due to the exclusion principle, and vice versa. An over-
lap of preferred clusterizations using both principles might
therefore give information on the possible observable clus-
terizations.

In this contribution we present our results related to the
dependence of binary clusterizations on the deformation. We

will apply our method to light and heavy systems. In Sec. 2
we introduce the technique for determining the possible clus-
terizations for binary channels and discuss a possible exten-
sion to the ternary case. We also present a short review on
how to obtain the preferred clusterizations from the energetic
point of view. In Sec. 3 we present our results and finally in
Sec. 4 conclusions are drawn.

2. Selection of clusterizations

The microscopic part of our study is based on the applica-
tion of theU(3) selection rule. The structural selection rule
is based on theU(3) symmetry, what is known to be an ap-
proximate good symmetry of light nuclei [5].

TheU(3) selection rule reads [6]:

[n1, n2, n3]

= [n(1)
1 , n

(1)
2 , n

(1)
3 ]⊗ [n(2)

1 , n
(2)
2 , n

(2)
3 ]⊗ [nR, 0, 0] (1)

where[n1, n2, n3] is the set ofU(3) quantum numbers of the
parent nucleus, the superscript(i) stands for theith cluster,
andR indicates relative motion.
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The SU(3) symmetry is well realized in light nuclei.
However, in medium and heavy nuclei the SU(3) symme-
try is broken due to the spin-orbit interaction. In Ref. 7 it
was shown that in spite of the breaking of the symmetry one
can still define aneffectiveSU(3) irreducible representation
(irrep) related to an SU(3) group, calledeffectiveSU(3). In
practical terms, this effective irrep is a mixture of the SU(3)
irreps in such a way that observables like the quadrupole-
quadrupole interaction have matrix elements similar to a real
SU(3). For more details, please see Ref. 7. In Ref. 1 this idea
was applied to heavy nuclei with large prolate deformation
and a procedure to obtain effective quantum numbers was
outlined. Because we were interested in a systematic study
of clustering effects in heavy nuclei, where systems also can
have oblate deformation as well as small deformations (both
oblate and prolate) the procedure outlined in Ref. 1 was ex-
tended to oblate and to small deformations in Ref. 8. The
generalization for small deformations is based on an expan-
sion of single particle orbitals in terms of asymptotic Nilsson
states and then the application of the procedures of Refs. 1
and 8 for prolate and oblate systems respectively. To vali-
date our procedure we carried out two types of consistency-
checks. In the first one we compared the effective quantum
numbers obtained from our procedure with the realU(3)
quantum numbers in a series of light nuclei. In the case
of heavy nuclei there are no “real”U(3) quantum numbers
of reference. In this case the following self-consistency cri-
terium was applied: starting from a given deformation (βi),
taken from tables published in Ref. 9 we can determine the
effective SU(3) irrep that characterize the ground state of a
given nucleus. Based on Ref. 10, it is possible to deduce a
deformation (βf ) associated to the effective quantum num-
bers. Self consistency is obtained, if the two deformation
values coincide (βi ∼ βf ). Our results showed that both
in light and in heavy nuclei the procedure gives reliable re-
sults [8]. The number of quanta of the relative motion can be
determined using the Harvey prescription [11]. The prescrip-
tion says that in order to satisfy thePauli-exclusion principle
when the nucleons are rearranged to form the compound sys-
tem, the number of oscillator quanta can be increased only in
one direction (see for more details an example in Ref. 12).

In the application of the selection rule it is important to
have a quantitative measure of how far a given cluster irrep
(including the relative motion) is from the effective SU(3)
irrep of the parent nucleus. For that reason the quantity of
reciprocal forbiddennessis defined [13],i.e.

S =
1

1 + min(
√

(∆n1)2 + (∆n2)2 + (∆n3)2)
, (2)

where∆ni = |ni − nc
i,k|. Hereni refers to theU(3) rep-

resentation of the parent nucleus, whilenc
i,k stands for the

U(3) representation of channelc, obtained from the right-
hand-side of Eq. (1), with thek index distinguishing the dif-
ferent product-representations. ThenS approaches zero for
forbidden clusterizations, and becomesS = 1 for allowed
clusterizations.

The consideration outlined before concerned the micro-
scopic structure part of the problem. However, as was shown
in Ref. 2, the energy-minimum principle is also an important
consideration. The criterium of maximal stability requires
maximizing the value of the summed differences of the mea-
sured binding energies and the corresponding liquid drop val-
ues:

D(1, 2) = [B(1)−BL(1)] + [B(2)−BL(2)] (3)

whereB(i) is the experimental binding energy of the ith clus-
ter andBL(i) stands for the liquid drop value [2].

The individual clusters were determined using also the
so-calleddipole constraint[2] which exploits the fact that the
dipole transition strengths in heavy nuclei are small. When
Zk (Ak) is the charge (mass) of thek’th cluster andZT (AT )
is the total charge (mass) then we have the additional condi-
tion

ZT

AT
≈ Z1

A1
≈ Z2

A2
(4)

The procedures outlined here for binary clusterizations can
be generalized to ternary or multicluster configurations.

3. Applications

In what follows, we present some results for the case of
a light nucleus (36Ar) and of two heavy nuclei (252Cf,
232Th). Our interest in the36Ar case is related to recent
results where the existence of a superdeformed state was
confirmed experimentally [14]. States of large deformation
were studied theoretically in this nucleus using different ap-
proaches. Superdeformed states were predicted in [14, 15]
within cranked Nilsson-Strutinsky calculations and in large-
scale shell model calculations. They were interpreted as a
configuration of two protons and two neutrons that moved to
the pf major shell. There is also prediction for a hyperde-
formed state in Ref. 16.

The252Cf nucleus attracted much attention due to recent
experiments published in Ref. 17. The232Th case is of inter-
est because theoretical calculations [18] have showed that the
structure of the third minimum in this nucleus resembles a bi-
nuclear configuration involving a spherical heavy fragment
around132Sn and a well deformed lighter fragment around
100Zr.

3.136Ar

The states of36Ar, we have investigated are shown in Table I
together with their quantum numbers.

In determining theU(3) symmetry of the superdeformed
states we have followed two different methods. The largest
prolate deformation what can be obtained from 4-nucleon ex-
citation to thepf major shell belongs to the [32,12,12] rep-
resentation. It is worth mentioning that the same represen-
tation corresponds to theβ2 = 0.6 deformation parameter,
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which is generally considered to characterize the superde-
formed shape. On the other hand one can derive the effec-
tive, or quasi-dynamicalU(3) symmetry quantum numbers
corresponding to theβ2 ≈ 0.45 deformation (experimental
value, [14]), as it was proposed in [1]. In this way one gets
the [32,14,10]U(3) representation, which also corresponds
to 4~ω excitation.

TABLE I. The quantum numbers of the ground, superdeformed, and
hyperdeformed states of the36Ar nucleus.

State ~ω [n1, n2, n3]

Ground 0 [20,20,12]

Superd.(a) 4 [32,12,12]

Superd.(b) 4 [32,14,10]

Hyperd.(a) 12 [48, 8, 8]

Hyperd.(b) 6 [36,12,10]

FIGURE 1. Reciprocal forbiddenness for the36Ar binary clusteri-
zations. ND stands for the normal deformed (ground) state, while
SD and HD indicate super and hyperdeformed states, respectively.

FIGURE 2. Energetic stability of binary clusterizations in36Ar.

In relation to the possible hyperdeformed state in36Ar,
it was predicted from cranked Bloch-Brinkα-cluster model
calculation with ratio of major to minor axis 3:1 [16], and
a correspondence to some heavy-ion resonances was con-
juctioned. This state has aU(3) symmetry [48,8,8], noted
as “Hyperd.(a)” in Table I, and corresponds to 12~ω exci-
tation. The effectiveU(3) quantum numbers, determined
from the Nilsson-scheme for theβ2 ≈ 0.86 deformation
are [36,12,10] (“Hyperd.(b)”), corresponding to merely 6~ω
excitation. The differences in theU(3) quantum numbers of
the super and hyperdeformed states reflect the uncertainty of
the applied theoretical methods for the prediction of these ex-
tremely deformed states.

Our results for the possible binary clusterizations of36Ar
are shown in Figs. 1 and 2. An interesting finding is that cer-
tain allowed cluster combinations appear in all the normal,
super and hyperdeformed state (see Fig. 1). Our prelimi-
nary results show that also some ternary cluster combinations
have the same property and that these are strongly related
to the binary configuration. For example24Mg+8Be+4He,
20Ne+4He+12C, and16O+8Be+12C satisfy this property. (In
the first case if the two last clusters are united we obtain
the12C nucleus and similarly when the first two clusters are
united in the last two cases we obtain the24Mg. In this sense,
these ternary cluster configurations resemble the binary case
24Mg+12C).

3.2252Cf

The results are depicted in Table II, Figs 3, and 4. In this case
too, all possible binary clusterizations were studied.

252
98 Cf →A

Z X +252−A
98−Z Y. (5)

The procedure applied here is based on the use of effec-
tive U(3) quantum numbers to characterize both the parent
nucleus and the clusters. We have studied all possible binary
clusterizations (308 fission channels) with (8 ≤ Z ≤ 90).
The starting point is always the deformation of the nucleus.
Then we fill in the Nilsson orbitals from below at that defor-
mation value and determine the effective(λ, µ) using the
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TABLE II. The quantum numbers of the ground [9], superde-
formed, and hyperdeformed states of the252Cf nucleus.

State β2 [n1, n2, n3]

Ground 0.24 [414,321,303]

Superd. 0.60 [520,285,267]

Hyperd. 0.86 [600,260,245]

FIGURE 3. Reciprocal forbiddenness S versus theZlight of the
studied binary cluster configurations for the252Cf case. The values
of S correspond to mean values over channels that have the same
Zlight and differentAlight.

FIGURE 4. Energetic stability of binary clusterizations in252Cf.

relations of [1, 8]. The parameters for the Nilsson Hamilto-
nian where taken from [15].

TABLE III. Some selected ternary clusterizations of252Cf (for de-
tails see the text). D(1,2,3) is a generalization of (3).

C1 + C2 + C3 S D(1,2,3)

ND SD HD
208Pb+40Si+4He 0.0412 1.0000 0.0186 24 .78
208Pb+22O+22O 0.0343 1.0000 0.0222 24 .66

132Sn+70Ni+50Ca 0.0099 0.0178 0.0343 23 .80
78Ni+126Sn+48Ca 0.0100 0.0178 0.0343 23 .78
78Ni+90Kr+84Se 0.0099 0.0174 0.0329 20 .65
48Ca+132Sn+72Ni 0.0102 0.0186 0.0374 24 .77

Using ground state deformations for the parent and
daughter nuclei [9], all studied cluster configurations in ques-
tion turn out to be forbidden (Fig. 3, upper part). A clear ten-
dency towards cluster radioactivity (or very asymmetric fis-
sion) can be inferred from this figure. We have also addressed
the question if there are allowed clusterizations in case when
we change the deformation of the parent nucleus to superde-
formation (β2 ∼ 0.6) or hyperdeformation (β2 ∼ 0.86). The
obtained results are presented in the lower parts of Fig. 3. As
in the earlier calculations the clusters are considered to have
ground state deformations. It is interesting to see that in these
cases there are allowed clusterizations as well. In the case of
a superdeformed252Cf the regions of allowed clusterizations
correspond mainly to two particular regions in which:

a) both clusters have large prolate quadrupole deforma-
tion (region with Zlight∼ 36),

b) one cluster with prolate quadrupole deformation
and the other with oblate deformation (region with
Zlight ∼ 22).

For the hyperdeformed252Cf case more channels are open,
and from Fig. 3 (lower panel) a clear tendency to symmetric
clusterization can be inferred.

As in the36Ar case, we have also studied the criterium of
maximum stability for comparison. The results of our study
are presented in Fig. 4. It is clear from this figure that the pre-
ferred clusterizations of the ground state of252Cf concentrate
mainly in three regions aroundZ = 2, Z ∼ 18 andZ ∼ 50.
This result agrees only with our U(3) procedure for theZ = 2
case (theα clusterization is allowed in the U(3) framework).
The other two regions are not favored in the U(3) approach
if we consider252Cf in its ground state deformation (Fig. 3,
upper panel), butZ ∼ 18 is preferred if we assume252Cf in
a superdeformed state and theZ ∼ 50 is allowed in the case
of the hyperdeformed state.

As in the case of36Ar, we have just started to study pos-
sible ternary clusterizations of252Cf. Table III shows some
preliminary results of our study in the case when one cluster
is fixed as a double magic nucleus, and the other two clusters
are selected using the clusterization dictated by (3) (criterium
of maximum stability applied to the residual nucleus once the
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double magic nucleus is subtracted from the252Cf). In this
particular case our results showed that only clusterizations
related to208Pb double magic nucleus are allowed, and only
when 252Cf is assumed in a SD state. A more systematic
study is underway [19].

3.3232Th

One question of particular interest that can be addressed in
this framework is if the100Zr + 132Sn clusterization is an al-
lowed one. This clusterization is located at the maximum of
the mass distribution of the fission of232Th. Another rea-
son for studying this particular clusterization is that in [18] it
was shown that the structure of the third minimum in232Th
corresponds to a bi-nuclear configuration involving a spheri-
cal heavy fragment around132Sn and a well deformed lighter
fragment around100Zr.

In a first step we have studied if this clusterization
is allowed assuming that the parent nucleus and the clus-
ters have ground state deformations (232Th (β2 ∼ 0.2),
100Zr (β2 ∼ 0.36), 132Sn (β2 ∼ 0.0)). The U(3) selection
rule shows that this clusterization is not allowed. The stud-
ied clusterization remains forbidden even if we assume that
232Th is in a hypothetical superdeformed (SD,β2 ∼ 0.6) or
hyperdeformed (HD,β2 ∼ 0.86) state, keeping the clusters
in their ground state deformations.

In a second step we have studied if the100Zr + 132Sn
clusterization is allowed when we change the deformation of
the clusters. Considering the high stability against deforma-
tion of the double magic nucleus132Sn, we have changed the
deformation of100Zr. 100Zr can be considered soft against

deformation, and it is located in a region of shape coexis-
tence [20]. Assuming ground state deformation for232Th,
the clusterization remains forbidden when we change the de-
formation of100Zr. A change occurs when we assume that
the 232Th is in a SD or in a HD state. In these cases the
clusterizations are allowed when the100Zr has large oblate
deformation (β2 ≤ −0.4).

4. Conclusions

In this contribution we have shown that the two basic prin-
ciples which govern the nuclear clusterization, namely the
energy-minimum and the Pauli-exclusion principles play
complementary roles. Therefore, they do not necessarily re-
sult in the same preference of cluster configurations. The
most likely clusterizations are those, which are preferred
from both aspects.

Concerning the deformation-dependence of clusteriza-
tions, an interesting finding is that the same cluster-
configuration can be present in the ground state, as well as
the superdeformed and hyperdeformed states of a nucleus, if
one takes into account the deformation of the clusterizations
properly,i.e. without oversimplifying constraintse.g. on the
spherical or cylindrical symmetry in the description.
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