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We show that when an isolated doublet of unbound states of a physical system becomes degenerate, the eigenenergy surfaces h
algebraic branch point of rank one and branch cuts in its real and imaginary parts starting at the same exceptional point but extendir
opposite directions in parameter space. Associated with this singularity in parameter space, the scattering, (d@triand the Green’s
function,Gé” (k;,r"), have one double pole in the unphysical sheet of the complex energy plane. We characterize the universal unfoldin
deformation of a typical degeneracy point of two unbound states in parameter space by means of a universal 2-parameter family of funci
which is contact equivalent to the pole position function of the isolated doublet of resonances at the exceptional point and includes all s|
perturbations of the degeneracy condition up to contact equivalence. The rich phenomenology of crossings and anticrossings of energie
widths, as well as the sudden change in shape ofi{e)—matrix pole trajectories, observed in an isolated doublet of resonances when
one control parameter is varied, is fully explained in terms of the topological properties of the energy hypersurfaces close to the degene
point.

Keywords: Resonances; nonrelativistic scattering theory; multiple resonances; Berry’s phase.

Demostramos que, cuando un doblete aislado de estados no-ligados de un $stenes#f degenerado, las superfices de la autoéaerg
tienen un punto ramal de rango uno y cortes ramales en las partes real e imaginaria que empiezan en el mismo punto exceptiona
se extienden en direcciones opuestas en el espacio dm@@os. Asociado a esta singularidad en el espacio dengaos, la matriz

de disperdin, S(E), y la funcion de GreenG,(k;r,r"), tienen un polo doble en la hoja nisita del plano complejo de la eneg
Caracterizamos el despliegue universal o defororade un punto de degeneracide dos estados no ligaddgito, en el espacio de los
parametros, por medio de una familia universal de funciones que depende deans{as y que es equivalente por contacto a la imde
posicibn del polo del doblete aislado de resonancias en el punto excepcional e incluye todas las perturbacidines ¢etagecondiciones

de degeneraoh, hasta equivalencia por contacto. La rica fenomenaldg cruces y anticruces de eriaggy semianchuras, iasomo el
cambio repentino de la forma de las trayectoria de los polos de la n3¢ifiz, que se observa en un doblete aislado de resonancias cuando
un paametro de control se hace variar, se explica completamentrmmbs de las propiedades topgicas de las hipersuperficies de la
enerda cerca del punto de la degenetaci

Descriptores: Resonancias; Tefa de la disperéin; Resonancias dobles; Fases getivas y topdgicas.
PACS: 25.70.Ef; 03.65.Nk; 33.40.+f; 03.65.Bz

1. Introduction and, when a single parameter is varied, the two level mix-
ing leads to the well known phenomenon of energy level re-
In this paper, we will be concerned with some physical andoulsion and avoided level crossing. In their celebrated theo-
mathematical aspects of the mixing and degeneracy of tweem [2], J. von Neumann and E.P.Wigner explained that, in
unbound energy eigenstates in an isolated doublet of resdéhe absence of symmetry, true degeneracies or crossings re-
nances of a quantum system depending on two control pauire the variation of at least a number of parameters equal
rameters. to the codimension of the degeneracy which, in the general

Unbound decaying states are energy eigenfunctions of 82S€, is three. A few years later, E. Teller showed that “if
time reversal invariant Hamiltonian describing non dissipathe parameters ar&,}Y” and Z, the two degenerating lev-
tive physics in a situation in which there are no particles in-€!S correspond to the two sheets of an elliptic double cone
cident [1]. This boundary condition makes the correspondin the (X,Y, Z, E)) space near the degeneracy” [3], this is

ing energy eigenvalues comple§, = E,, — i(1/2)T",,, with the diabolic crossing scenario [4] of the levels. for a
E,>T, >0[1]. recent review on diabolical conical intersections, see D.R.

Commonly, unbound energy eigenstates are regarded aSYgrkonl [5]-

perturbation with the physics essentially unchanged fromthe |n the case of unbound states, the energy eigenvalues
bound states case, except for an exponential decay. But, Ugre complex, this fact opens a rich variety of possibili-
bound state physics differs radically from bound state physicges, namely, crossings and anticrossings of energies and
in the presence of degeneracies, that is, coalescence of eigegidths. Novel effects have been found which attracted con-
values, as will be shown below. siderable theoretical [6-8] and recently, also experimental
In the case of bound states of a Hermitian Hamiltonianinterest [9, 10]. Furthermore, a joint crossing of energies
depending on parameters, the energy eigenvalues are remid widths produces a true degeneracy of resonance energy
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eigenvalues in a physical system depending on only two re2. Resonance energy eigenvalue surfaces close
parameters [7] and gives rise to the occurrence of a double to degeneracy
pole of the scattering matrix in the complex energy plane.

In this communication, we will consider the resonance en-

A number of examples of double poles of the scatteringergy eigenvalues of a radial Séiginger Hamiltonianfz{”,

matrix brought about when the resonant states can be manigsith a potentialV (r; x1, x2) which is a short ranged func-
ulated by external control parameters, have been mentionatbn of the radial distance, r, and depends on at least two
in the literature. Lassila and Ruuskanen [11] pointed oukxternal control parameter:,z2). When the potential
that Stark mixing in an atom can display double pole decayy (r; z,,z5) has two regions of trapping, the physical sys-
Knight [12] examined the decay of Rabi oscillations in two tem may have isolated doublets of resonances which may be-
level system with double poles. Kylstra and Joachain [13, 14tome degenerate for some special values of the control pa-
discussed double poles of the S-matrix in the case of laserameters. For example, a double square barrier potential has
assisted electron-atom scattering. isolated doublets of resonances which may become degener-

) _ ) ) _ ate for some special values of the heights and widths of the
The crossing and anticrossing of energies and widths ofayriers [19, 20, 27].

two interacting resonances in a microwave cavity were care- |y the case under consideration, the regular and physi-
fully measured by P. von Brentano, who also discussed thgg| solutions of the Hamiltonian are functions of the radial
generalization of the von Neumann-Wigner theorem fromgistance;, the wave number;, and the control parameters
bound to unbound states [15-17]. (z1,22). When necessary, we will stress this last functional

: . . . dependence by adding the control parameterszs) to the
Examples of double poles in the scattering matrix of SIM-Giher arguments after a semicolon.

ple quantum mechanical systems have also been recently de- The enerav eigenvalues — (72 /2m) k2 of the Hamil-
scribed. The formation of resonance double poles of the scat- gy €19 & = (17/2m) by

tering matrix in a two-channel model with square well po- tonianHT“) are obtained from the zeroes of the Jost function,
tentials was described by Vanrooseal. [18]. Herrandez f(=k;x1, 22) [32], wherek, is such that
et al. [19] investigated a one channel model with a double F(=kn; 21, 22) = 0. 1)
d—barrier potential and showed that a double pole of the
S—matrix can be induced by tuning the parameters of theVhenk, lies in the fourth quadrant of the compléx-plane,
model. A generalization of the double barrier potential modelRek,, > 0 andI'mk,, < 0, the corresponding energy eigen-
to the case of finite width barriers was proposed and disvalue,&,,, is a complex resonance energy eigenvalue.
cussed by W. Vanroose [20]. The condition (1) defines, implicitly, the functions
kn(z1,22) as branches of a multivalued function [32] which
The problem of the characterization of the singularitieswill be called the wave-number pole position function. Each
of the energy surfaces at a degeneracy of unbound statgfanch k,, (21, =) of the pole position function is a con-
arises naturally in connection with the topological phase ofinuous, single-valued function of the control parameters.
unbound states which was predicted by Herdez, duregui  When the physical system has an isolated doublet of reso-
and Mondragn [21-23], and later and independently by nances which become degenerate for some exceptional val-
W.D. Heiss [24], and which was recently meassured by thQ,IES of the external parameter@lﬁ’x;), the Correspond-
Darmstadt group [25, 26]. The energy surfaces representingig two branches of the energy-pole position function, say
the resonance energy eigenvalues close to a degeneracygp?j(xhxz) and&, .1 (x1,z2), are equal (cross or coincide) at
unbound states in the scattering of a beam of particles byhat point. As will be shown below, at a degeneracy of res-
a finite double barrier potential was numerically computedonances, the energy hypersurfaces representing the complex
by Herrandez, duregui and Mondram [27]. Korsch and  resonance energy eigenvalues as functions of the real control

Mossman [28] made a detailed investigation of degeneracigsarameters have an algebraic branch point of square root type
of resonances in a symmetric douldlewell in a constant (rank one) in parameter space.

Stark field. Keck, Korsch and Mossman [29] extended and

generalized the discussion of the Berry phase of resonangel. Isolated doublet of resonances

states, from the case of unbound states of a Hermitian Hamil-

tonian given in [21-23] to the case of unbound states of nonL€t Us suppose that there is a finite bounded and connected

Hermitian Hamiltonians. region M in parameter space and a finite dom@lrin the
fourth quadrant of the complek—plane, such that, when

The general theory of Gamow or resonant eigenfunctiongz,, z2) € M, the Jost function has two and only two zeroes,

associated with multiple poles of the scattering matrix andk,, andk, 1, in the finite domairD € C, all other zeroes of

Jordan blocks in the spectral representation of the resolvent(—k; z1, x5) lying outsideD. Then, we say that the phys-

operator in a rigged Hilbert space was developed by Anical system has an isolated doublet of resonances. To make

toniou, Gadella and Pronko [30], A. Bohet al. [31] and this situation explicit, the two zeroes 6t{—k; x1, x2), corre-

Herrandez, duregui and Mondram [1]. sponding to the isolated doublet of resonances are explicitly
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factorized as of resonances. Solving eq.(2) ey ,+1, we get
1 2 1
f(=kjz1,20) = (k - i(kn + k‘n+1)) kpn1(21,22) = 9 (kn (21, 22) + kny1 (21, 22))
1
1 _ _ 2
T PAICEASC) /o =) koo O

When e physica sysem moves inparameter space 0172, L1 S1ee e agment o e suste oo
the ordinary poin{zy, z2) to the exceptional pointc;, z35), piex, Y b )

the two Simple zeroes, (1, ) andkn 1 (1, z2), coalesce Here and thereafter, the square root of any complex quantity

into one double zerd,(z3, z3) in the fourth quadrant of the I will be defined by
complexk—plane. 1

If the external parameters take values in a neighbourhood VF = |\/F| exp <Z2GT9F> , 0<argF <2r (6)
of the exceptional poinfzi,z3) € M andkeD, we may

write so that|v/F| = /|F| and theF— plane is cut along the real
axis.
Gnnt1(k; 01, 2) ~ gnpi1(ka, 27, 25) #0. (3) Equation (5) relates the wave number-pole position func-
Then tion of the doublet of resonances to the wave number-pole
' position functions of the individual resonance states in the
1 2 doublet.
k=3 (kn(w1,22) + kng1(21,72))

) 2.2. The analytical behaviour of the pole-position func-

-1 (kp (21, 22) — kni1 (21, 32))° tion at the exceptional point
F(—k; 21, 22) The derivatives of the functions
~ ’ . ’* x) 7 (4)
gn7n+1(kd,$1,$2) 1/2(kn($1,$2)+1€n+1($1,LL‘Q))

the  coefficient [gn ni1(ka; 23, 23)]71  multiplying
f(=k;xz1,22) may be understood as a finite, non-vanishing, _ 2
constant scaling factor. 1/4(kn (21, 22) = kny1 (21, 22))

The vanishing of the Jost function defines, implicitly, the are finite at the exceptional point. They may be computed
pole position functiork,, ,,+1(z1, z2) of the isolated doublet  from the Jost function with the help of the implicit function
| theorem [33],

[(6 (k)n(aﬁl,.’ﬂg) — k‘n+1 (3?1,$2))2> ] _ -8 [(8f(—k;$1,$2)) ] (7)
0 T 2 f(—k;zy,x ] 0 ’
1 T2 k=ky (6 L (9]2:72 = 2))T* o3| e o 2 ka
1 l(a(knm,m +kn+l<x1,x2>>) ] _ -
2 0x1 p [ 02 f(—k;z1,22 ]
P ( : aké )).L*.L* k—d

) { l(ff"f(’fw) ] - :
D210k Ik
T 22| k=ky [(W)x* 93*:|k k
102 =Rd
1 (83f(_k;1’1,332)> ] l(af(_k;xbm) 1 }
(@it Of (ki1 w) ®)
3[ o i), O0x; T2 | =k,

From these results, the first terms in a Taylor series expansion of the fune#iers,, (z1,x2) + knt1(z1, 22)) and
1/4 (kp (21, ©2) — kny1(z1,22))” about the exceptional poifit?, =), when substituted in eq.(5), give

7. N 1 * *
1 (21, 22) = k(@ @3) + Aka(wr, 22) + \/ 7 |4 @ =21 + V(@2 — )] (©)
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for (z1,z2) in a neighbourhood of the exceptional point which are copies of the plar(€;, £;) cut along a line where
(z%,2%). This result may readily be translated into a simi- the two branches of the function are joined smoothly. The cut
lar assertion for the resonance energy-pole position functiors defined as the locus of the points where the argument of the
Enn+1(z1,22) and the energy eigenvalues, (z1, z2) and
En+1(x1,x2), of the isolated doublet of resonances.

2.3. Energy-pole position function

Let us take the square of both sides of Eq. (5), multiplying
them by (A?/2m) and recallingt,, = (h?/2m)

approximation of (9), we get

571,,n+1(x17x2) = gd(TTan;) + Agd(xhl?)

+én,n+1 (9317 172), (10)

where

- 1
€n,n+1($17$2) = \/4

k2, in the

n’?

[(Z?- +i(I-

g

(11

The components of the real fixed vectofs and I are

the real and imaginary parts of the coefﬁciems(

1)

of (z; — xf) in the Taylor expansion of the function
1/4 (En(z1,2) — Enpr (1, 1‘2))2 and the real vect@is the

position vector of the poinfz;,z2) relative to the excep-
tional point(z}, z%) in parameter space.

- £i> xl—-xf)
e (2) - (o (12
= (Rec\ - (ImcW
Re G5 Im Cy
The real and imaginary parts of the function

én,n+1 ($17 1’2) are

R€€n,n+1($1, 332)

1
-4+
2V2

Im €n,nt1 ($1, T2

1
ii
2v/2

and

)

(14)

11/2
(15)

sign (Re€pn nt1) sign (Imepy ny1) = sign (f E) (16)

It follows from (14), thatReé,, ,,+1(x1, z2) is atwo branched

function of (£1,£2) which may be represented as a two-

square- root function in the right hand side of (14) vanishes.
Thereforethe real part of the energy-pole position func-

tion, &, n+1(z1,22), as a function of the real parameters

(xz1,z2), has an algebraic branch point of square root type

(rank one) at the exceptional point with coordinate$, =)

in parameter space, and a branch cut along a lidg;, that

starts at the exceptional point and extends in the posdive

rection defined by the unit vectér satisfying.

I-é=0 and R-&=-|R-&| (A7)

A similar analysis shows thathe imaginary part of the
energy-pole position functiodm &, »+1(z1,x2), as a func-
tion of the real parametergxy, z2), also has an algebraic
branch point of square root type (rank one) at the exceptional
point with coordinategx, x3) in parameter space, and also
has a branch cut along a line};, that starts at the excep-
tional point and extends in the negatidi&ection defined by
the unit vectoi, satisfying eqs.(17)

The branch cut linesf z and £, are in orthogonal sub-
spaces of a four dimensional Euclidean space with coordi-
nates(Reey, n+1,Imen nt1,61,62), but have one point in
common, the exceptional point with coordinates, «3).

The individual resonance energy eigenvalues are conven-
tionally asociated with the branches of the pole position func-

tion according to

Em(&r,€2) = Ea(0,0) + A& ny1(E1,Ea)

(m)_1 \/ 1/2
+oy VR4 (R-E
o) s |V G4 (-4 (78]
1/2
cmy L5 = R -
+ — | V(R-*+T-£2—(R-€)| , (18
iof s [ (62 (782 - (79 | s
withm =n,n + 1, and
(n) n+1 Regn - R€5n+1
=-op = 19
ORr On \Reé‘n —R€57L+1|’ ( )
O_En) _ 70_?_’_1 o IWLEH — Imgn+1 (20)

[ IméE, — Im&pi|

Along the line Lz, excluding the exceptional point
(21, 23),
Re&, (x1,22) = ReEpt1(x1,22) (21)
but

Imé&,(x1,x2) # Im&Epy1(x1,x2). (22)

sheeted surfacy, in a three dimensional Euclidean space Similarly, along the lineC;, excluding the exceptional point,

with cartesian coordinate$Reé,, »+1,&1,&2)-
branches ofReé,, ,,+1(£1,&2) are represented by two sheets

The two

Imé&,(x1,x2) = Im&py1(x1,x2), (23)

Rev. Mex. 5. S52 (1) (2006) 97-105
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but 1. It includes all possible small perturbations of the de-

generacy conditions
Re&, (x1,22) # Re&pi1 (1, 22). (24)

f(=Fk;&1,8&) =0,

Equality of the complex resonance energy eigenvalues (de-

generacy of resonances), <8f(l<:; &, &) > o (29)
En(@},a5) = Ensa (@], 73) = Eala], 73), ok
occurs only at the exceptional point with coordinates, x3) (W>
2 #0 (30)
in parameter space and only at that point. k> ka

In consequence, in the complex energy plane, the cross-
ing point of two simple resonance poles of the scattering ma-
trix is an isolated point where the scattering matrix has one
double resonance pole.

Remark: In the general case, a variation of the vector
of parameters causes a perturbation of the energy eigenval-
ues. In the particular case of a double complex resonance en-
ergy eigenvalu€,(z7, x3), associated with a chain of length Therefore fuous(—k; €1, &2) is a universal unfolding [34]
two of generalized Jordan-Gamow eigenfunctions [1], we aref the Jost functionf(—k;¢&1,&2) at the exceptional point
considering here, the perturbation series expansion of th&here the degeneracy of unbound states occurs.
eigenvalues,,, £,+1 about&, in terms of the small parame-

up to contact equivalence.

2. It uses the minimum number of parameters, namely
two, which is the codimension of the degeneracy [7].
The parameters afé&;, &2).

ter |£[, Egs. (18)-(20), takes the form of a Puiseux series

gn,nJrl((Eth) = gd(x;x;)

L[5 & .= ¢
+ §|1/2¢ T [@#-9+id- 9
+ A&y(wr22) + 0 (1g?)  (25)
with fractional powers¢|’/2, j = 0,1, 2, ... of the small pa-
rameter¢| [33, 35].
3. Unfolding of the degeneracy point
Let us introduce a functioﬁdoub(—k; &1, &2) such that

Faouo i €1.€2) = [k = (ka(0,0) + AVky(61.2)) ]

—

_i<(7€.§)+i(l~§)), (26)

and
2

AW ky(zy,29) = Z diVe;

i=1

(27)

Close to the exceptional point, the Jost functfdn-; 1, €2)
and the family of functiong s, (—k; &1, &2) are related by

1

mfdoub(—k;§1’§2)

f(=k;&1,62) = (28)

the term [gn_ynﬂ(kd,o,())}’l may be understood as a non-

vanishing scale factor.
Hence, the

The vanishing offdoub(fk;{l,gg) defines the approxi-
mate wave number-pole position function

k1 (61,62) = ka + AN ka1, &)
1/ o L a2
1{4 (R-S—HI-&)} (31)

and the corresponding energy-pole position function
Ennt1(&1, &) givenin eq.(10).

Since the functionsé, (&1,&,) and &,.1(€1, &) are
obtained from the vanishing of the universal unfolding
Faous(—k; €1, &) of the Jost functiorf (—k; &1, &) at the ex-
ceptional point, we are justified in saying théte family of
functionsé, (&1, &) and&,41(€1, &), given in egs.(18) and
(19-20), is a universal unfolding or deformation of a generic
degeneracy or crossing point of two unbound state energy
eigenvalues, which is contact equivalent to the exact energy-
pole position function of the isolated doublet of resonances
at the exceptional point, and includes all small perturbations
of the degeneracy conditions up to contact equivalence

4. Crossings and anticrossings of resonance
energies and widths

Crossings or anticrossings of energies and widths are exper-
imentally observed when the difference of complex energy
eigenvaluest, (&1,&) — Ent1(&1,&) = AE —i(1/2)Tis
measured as function of one slowly varying parameggr,
keeping the other constargt, = Eé’). A crossing of energies
occurs if the difference of real energies vanish&g] = 0,

two-parameters family of functions for some valu€; . of the varying parameter. An anticrossing

fdoub(—k:;gl,gg) is contact equivalent to the Jost function of energies means that, for all values of the varying parame-
f(=k; &1, &) at the exceptional point. It is also an unfold- ter,;, the energies diffeld E # 0. Crossings and anticross-

ing [34,36] of f(—k; &1, &2) with the following features:

ings of widths are similarly described.

Rev. Mex. 5. S52 (1) (2006) 97-105
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The experimentally determined dependence of the differFigs. 1, 2 and 3. The projections of the curwfé@(m) and
ence of complex resonance energy eigenvalues on one contt@}, 1 (;) on the planes$Ree, fl) and(Ime, &) are

parameters;, while the other is kept constant, Re[Con ()] = Reéon (€ ) =t 1 (34)
m\Tq 15 =n,
En(€1,8)) = En1 (6, 8)) = bnna1(61,87) (32 and

has a simple and straightforward geometrical interpretation,  Im[Ch,(m;)] = Imé&nm (&1, _é’)) m=n,n+1 (35)
it is the intersection of the hypersurfaé,enﬂ(ghgg) with
the hyperplane defined by the condition= 52 .

To relate the geometrical properties of this intersection
with the experimentally determined properties of crossings AE = E,, — E, 41 = (Reén - Reéfnﬂ)’
and anticrossings of energies and widths, let us consider a ¢

respectively. ‘
From Egs. (18)-(20), and keepigg = £, we obtain

s

. =()y .
point (&1,&,”) in parameter space away from the exceptional ("), /5 — p— . B2
point. To this point corresponds the pair of non-degenerate™ RT [+ (R-&)*+(I - )2+(R'§)} ~ (36)
resonance energy eigenvaldsss,, £5”) ande, 1 (&1, &), £2=€5"
represented by two points on the hypersurfagce 1 (1, §2). and
As the point(¢, 552)) moves on a straight line path in pa- AT = (T — Dost) = 2 [Imé&psr — Imé&y]
rameter space,
) E— E— Lo 1/2
b6 <y 6= @ = ofVa | {9 (R 6 @7
52255”

the corresponding pointsé, (&1, €5") and &1 (&1, &57)
trace two curving trajectorie!i’n(m) andC'nH(m) on the
€n.nt1(&1,€2) hypersurface Sincé, is kept constant at
the fixed vaIuef2 ), the trajectories (secuonsj’n(m) and

These expressions allow us to relate the tefls E) and
(I-¢) directly with observables of the isolated doublet of reso-
nances. Taking the product &E AT, and recalling eq.(16),

we get
Cn+1(7r1) may be represented as three-dimensional curves 9
in a space; with cartesian coordinateSRee, Ime, £1), see AEAT — — (f. g)‘ » (38)
522521
0.08
0.08
0.04
0.04
20.00
2 0.00
-0.04
-0.04
-0.08
0.08 0.08 -0.08
0.08 0.08
/m o 004
-0.08 -0.08 m, 004
FIGURE 1. The curves’, (m1) andCy41 (1) are the trajectories -0.08 -0.08

traced by the points,, (¢1, &) and€n+1(§1, Uy onthe hyper-  FIGURE 2. The curvesC,,(m2) and C,,11(m2) are the trajecto-
surfacet,, 11 (&1, é”) when the poin{¢:, 52 )) moves along the  ries of the points,, (€1, £3) and&, 11 (&1, &) on the hypersurface
straight line pathr; in parameter space. In the figure, the path én,n+1(§1,52) when the poin(¢:, £5) moves along a straight line
w1 runs parallel to the vertical axis and crosses the lineat a pathm, that goes through the exceptional paiéf, £5) in parame-
point (&1, c,§2 ) with §1.. < &7 andg2 < &. The projections  ter space. The projections 6f, () andC,, 1 (=) on the planes

of C,,(m1) andC,, 11 (1) on the plangIm&, 1) are sections of  (Re€, &1) and (Imé, &) are sections of the surfaces: and S;

the surfaceS;; the projections of’,, (1) and C,, .1 (1) on the respectively, and show a joint crossing of energies and widths. The
plane (Re&, €1) are sections of the surfacgs. The projections  projections ofC', (2) andC,+ 1 (m2) on the plané Re€, Im&) are

of C (m1) andC‘nH(m) on the plan€ Re€, Imé&) are the trajec-  two straight line trajectories of th&—matrix poles crossing at 90
tories of theS—matrix poles in the complex energy plane. In the inthe complex energy plane. At the crossing point, the two simple
figure,d — d* = &;. poles coalesce into one double poleXfE).
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of resonances, discussed above, has been experimentally es
tablished by P. von Brentano and his collaborators in a series
of beautiful experiments [15-17].

0.08

0.04

5. Trajectories of the S-matrix poles and

<0.00 changes of identity

The trajectories of th&—matrix poles (complex resonances
energy eigenvaluesy, (¢1, &) andé, 1 (&1, &), inthe com-
plex energy plane are the projections of the three-dimensional
trajectories (sectionsy’,, (r;) and C,,;1(m;) on the plane
0.08 04 (Ree, Ime), see Figs. 1, 2 and 3.

' An equation for the trajectories of th&—matrix poles
in the complex energy plane is obtalned by eliminating
betweenReé,, (51, ) andImé, (51,52 ), Egs. (18), (19)
FIGURE 3. The curvesC,(r3) and C,, 11 (w3) are the trajecto- and (20).

ries traced by the poin@, (€1, &) and€n+1(§1, 5_23 ) on the hy-

persurface,, 11 (&1, £5Y) when the point¢;, £§¥) moves along

-0.04

a straight line pathrs going trough the poin{(¢y, 0,52 ) with 0.00
§1,c > &1. The pathrs crosses the lin€ . The projections of ro@
Cyn(m3) and Cy1 (3) on the plang(Re&, &1) show a crossing, WL T

but the projections on the planésmé, &1) and (Re&, IméE) do

not cross. In the figure; = d — d*. el

-0.12 |

and taking the differences of the squares of the left hand sides I
of (36) and (37), we get o6 |

0.00

@pP -’ = (A8 ., @9 o

X T
At a crossing of energieA E vanishes, and at a crossing & o2

of widths AT vanishes. Hence, the relation found in eq.(38) —°

means tpag crossing of energies or widths can occur if and o '_ ]
only if (I - 5)5@5 vanishes '
2 - -
Fora VaniShian fc)g(w =0 = AFEAT, we find three 0.16 4
cases, which are distinguished by the S|g(11€>fgc)£<l) From 000 ' s ' '
egs. (36) and (37), L © 14
-0.04 |- 12 ]
L 2 T, 115
(R gc) (z) >0 ImplleSAE 75 0 and AT = 0, i.e. ool o2 05 o8 W”; 1.131'1 ]
energy antlcrossmg and width crossing | s 0s
012 ’ 05 i
2. (R Ec) «» = 0impliesAE = 0 and AT = 0, that | 14
is, Jomt energy and width crossings, which is also de- 016 | . . . o
generacy of the two complex resonance energy eigen- 18 20 22 Re k 24 26 28

values
FIGURE 4. Trajectories of the poles of the scattering mat
(R ff’) % < OimpliesAE = 0 and AT # 0, i.e. of an isolatedJ doublet of res%nances in a doublg barrliﬁe(rk?ooten-
energy CrOSSIng and width anticrossing tial [27], close to a degeneracy of unbound states. The control
parameters are the widtth of the inner barrier and the depth,
This rich physical scenario of crossings and anticrossingss, of the outer well. The trajectories are traced by the poles
for the energies and widths of the complex resonance erk,, (d, V") andk, 1 (d, V") on the complex:—plane when the
ergy eigenvalues, extends a theorem of von Neumann angbint (d, V") moves on the straight line path; V5 = V", The
Wigner [2] for bound states to the case of unbound states. top, middle and bottom figures show the trajectories correspond-
The general character of the crossing-anticrossing relaing to (% - £c) g <0, (R- §c) g =0, and(R - fc) >0,
tions of the energies and widths of a mixing isolated doubletespectively, wnt(gl, &)= (d— d , Vs — V3).
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A straightforward calculation gives

Re(€,)% — 2 cot ¢y (Re&, ) (Iméy)

~(Imé,)* + (R-€) =0 (40)
where
cot ¢ = };—11 (41)
and the constant vectéf’) is such that,
(f' 5() &g (42)

which is the previously found condition for the occurrence of
a crossing oAE or AT,

The discriminant of eq.(40}(cot? ¢; + 1), is positive.
Thereforeclose to the crossing point, the trajectories of the
S—matrix poles are the branches of a hyperbdifined by
Eqg. (40).

MONDRAGON, AND L. NELLEN
2. Critical trajectories (type 1), whehﬁfcﬂ&_g—m =0.
—62

There is a joint crossing of energies and widths.

The trajectories are the asymptotes of the hyperbola.

The two poles¢,, andé&,, 1, start from opposite ends

of the same straight line, and move towards each other
until they meet at the crossing point, where they co-
alesce to form a double pole of tl#e-matrix. From
here, they separate moving away from each other on a
straight line at 90 with respect to the first asymptote,
see Fig. 4b.

. Trajectories of type Ill, wheliR - 52)|52:5m < 0.

In this case, there is an anticrossing of energies and a
crossing of widths.

Therefore, one branch of the hyperbola, say, the tra-
jectory followed by the pole,,, lies to the left of a
vertical straight line, parallel to the imaginary axis and
going through the crossing poiéi. The other branch

of the hyperbola, the trajectory followed by the pole

The asymptotes of the hyperbola are the two straight lines

] En+1, lies to the right of the line parallel to the imag-
defined by

inary axis that goes through the crossing pdintsee
Fig. 4a.
ImED = tan ﬁReé'(j) (43)

2 It is interesting to notice that, a small change in the ex-
ternal control parametéé") produces a small change in the
initial position of the poles¢,, andé,, 1, but when the small

2 change ing_g’) changes the sign qfﬁ : fc)|£2=5—éi>, the tra-

2 jectories change suddenly from type | to type Il and vicev-
The two asymptotes divide the complex energy plane in fouf'sa. this very large and sudden change of the trajectories ex-
quadrants. The two branches of the hyperbola are in oppd:nanges aimost exactly the final positions of the p6jeand

site, that is, not adjacent, quadrants of the complex energ§+1, S€€ Fig. 4. This dramatic change has been termed
plane. a “change of identity” by W. Vanroose, P. Van Leuven F.

We verify that, if £, satisfies Eq. (40), so does Arickx and J. Broeckhove [18] who discussed an example

—&,=Ens1. Therefore, if the trajectory followed by the pole of this phenomenon in th& —matrix ,poles ina two-ch.annel
£, is one branch of the hyperbola, the trajectory followed bymodel, W. Vanroose [20] and E. Hémdez, A. duregui and
the pole&,,_; is the other branch of the hyperbola. Initially, A- Mondragn [19, 27] have also discussed these properties
the poles move towards each other from opposite ends of tH8 the case of the scattering of a beam of particles by a double
two branches of the hyperbola until they come close to thdarrier potential with two regions of trapping.
crossing point, then they move away from each other, each
pole on i.ts own branch of the hyperbqla. . 6. Summary and conclusions

We find three types of trajectories, which are distin-
guished by the sign ofF - 56)|£2:é§i>.

and

Im&UD = — cot — ReEID) (44)

We developed the theory of the unfolding of the energy eigen-
value surfaces close to a degeneracy point (exceptional point)
of two unbound states of a Hamiltonian depending on con-
trol parameters. From the knowledge of the Jost function, as
function of the control parameters of the system, we derived
a 2-parameter family of functions which is contact equivalent
Hence, one branch of the hyperbola, say, the trajectoryo the exact energy-pole position function at the exceptional
followed by the pole,,, lies above a horizontal straight point and includes all small perturbations of the degeneracy
line, parallel to the real axis, and going through theconditions. A simple and explicit, but very accurate, repre-
crossing poin€y. The other branch of the hyperbola, sentation of the eigenenergy surfaces close to the exceptional
the trajectory followed by the pol&, . 1, lies below the  point is obtained. In parameter space, the hypersurface rep-
horizontal line, parallel to the real axis, going through resenting the complex resonance energy eigenvalues has an
the crossing poin£,, see Fig. 4c. algebraic branch point of rank one, and branch cuts in its real

1. Trajectories of type I, whe(i? - £.) 5 >0,

et
In this case there is a crossing of energies and an ant
crossing of widths.
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and imaginary parts extending in opposite directions in pa- A detailed account of these and other results will be pub-
rameter space. The rich phenomenology of crossings and alished elsewhere [37, 38].

ticrossings of the energies and widths of the resonances of an

isolated doublet of unbound states of a quantum system, as

well as, the sudden change in the shape ofthenatrix pole ~ Acknowledgments

trajectories, observed when one control parameter is varied
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