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We show that when an isolated doublet of unbound states of a physical system becomes degenerate, the eigenenergy surfaces have an
algebraic branch point of rank one and branch cuts in its real and imaginary parts starting at the same exceptional point but extending in
opposite directions in parameter space. Associated with this singularity in parameter space, the scattering matrix,S`(E), and the Green’s
function,G(+)

` (k; r, r′), have one double pole in the unphysical sheet of the complex energy plane. We characterize the universal unfolding or
deformation of a typical degeneracy point of two unbound states in parameter space by means of a universal 2-parameter family of functions
which is contact equivalent to the pole position function of the isolated doublet of resonances at the exceptional point and includes all small
perturbations of the degeneracy condition up to contact equivalence. The rich phenomenology of crossings and anticrossings of energies and
widths, as well as the sudden change in shape of theS(E)−matrix pole trajectories, observed in an isolated doublet of resonances when
one control parameter is varied, is fully explained in terms of the topological properties of the energy hypersurfaces close to the degeneracy
point.
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Demostramos que, cuando un doblete aislado de estados no-ligados de un sistema fı́sico est́a degenerado, las superfices de la autoenergı́a
tienen un punto ramal de rango uno y cortes ramales en las partes real e imaginaria que empiezan en el mismo punto exceptional pero
se extienden en direcciones opuestas en el espacio de parámetros. Asociado a esta singularidad en el espacio de parámetros, la matriz
de dispersíon, S(E), y la funcíon de Green,G`(k; r, r′), tienen un polo doble en la hoja no fı́sica del plano complejo de la energı́a.
Caracterizamos el despliegue universal o deformación de un punto de degeneración de dos estados no ligados tı́pico, en el espacio de los
paŕametros, por medio de una familia universal de funciones que depende de dos parámetros y que es equivalente por contacto a la función de
posicíon del polo del doblete aislado de resonancias en el punto excepcional e incluye todas las perturbaciones pequeñas de las condiciones
de degeneración, hasta equivalencia por contacto. La rica fenomenologı́a de cruces y anticruces de energı́as y semianchuras, ası́ como el
cambio repentino de la forma de las trayectoria de los polos de la matrizS(E), que se observa en un doblete aislado de resonancias cuando
un paŕametro de control se hace variar, se explica completamente en términos de las propiedades topológicas de las hipersuperficies de la
enerǵıa cerca del punto de la degeneración.

Descriptores: Resonancias; Teorı́a de la dispersión; Resonancias dobles; Fases geométricas y topoĺogicas.

PACS: 25.70.Ef; 03.65.Nk; 33.40.+f; 03.65.Bz

1. Introduction

In this paper, we will be concerned with some physical and
mathematical aspects of the mixing and degeneracy of two
unbound energy eigenstates in an isolated doublet of reso-
nances of a quantum system depending on two control pa-
rameters.

Unbound decaying states are energy eigenfunctions of a
time reversal invariant Hamiltonian describing non dissipa-
tive physics in a situation in which there are no particles in-
cident [1]. This boundary condition makes the correspond-
ing energy eigenvalues complex,En = En − i(1/2)Γn, with
En > Γn > 0 [1].

Commonly, unbound energy eigenstates are regarded as a
perturbation with the physics essentially unchanged from the
bound states case, except for an exponential decay. But, un-
bound state physics differs radically from bound state physics
in the presence of degeneracies, that is, coalescence of eigen-
values, as will be shown below.

In the case of bound states of a Hermitian Hamiltonian
depending on parameters, the energy eigenvalues are real

and, when a single parameter is varied, the two level mix-
ing leads to the well known phenomenon of energy level re-
pulsion and avoided level crossing. In their celebrated theo-
rem [2], J. von Neumann and E.P.Wigner explained that, in
the absence of symmetry, true degeneracies or crossings re-
quire the variation of at least a number of parameters equal
to the codimension of the degeneracy which, in the general
case, is three. A few years later, E. Teller showed that “if
the parameters areX, Y and Z, the two degenerating lev-
els correspond to the two sheets of an elliptic double cone
in the (X,Y, Z,E) space near the degeneracy” [3], this is
the diabolic crossing scenario [4] of the levelsE±. for a
recent review on diabolical conical intersections, see D.R.
Yarkoni [5].

In the case of unbound states, the energy eigenvalues
are complex, this fact opens a rich variety of possibili-
ties, namely, crossings and anticrossings of energies and
widths. Novel effects have been found which attracted con-
siderable theoretical [6–8] and recently, also experimental
interest [9, 10]. Furthermore, a joint crossing of energies
and widths produces a true degeneracy of resonance energy
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eigenvalues in a physical system depending on only two real
parameters [7] and gives rise to the occurrence of a double
pole of the scattering matrix in the complex energy plane.

A number of examples of double poles of the scattering
matrix brought about when the resonant states can be manip-
ulated by external control parameters, have been mentioned
in the literature. Lassila and Ruuskanen [11] pointed out
that Stark mixing in an atom can display double pole decay.
Knight [12] examined the decay of Rabi oscillations in two
level system with double poles. Kylstra and Joachain [13,14]
discussed double poles of the S-matrix in the case of laser-
assisted electron-atom scattering.

The crossing and anticrossing of energies and widths of
two interacting resonances in a microwave cavity were care-
fully measured by P. von Brentano, who also discussed the
generalization of the von Neumann-Wigner theorem from
bound to unbound states [15–17].

Examples of double poles in the scattering matrix of sim-
ple quantum mechanical systems have also been recently de-
scribed. The formation of resonance double poles of the scat-
tering matrix in a two-channel model with square well po-
tentials was described by Vanrooseet al. [18]. Herńandez
et al. [19] investigated a one channel model with a double
δ−barrier potential and showed that a double pole of the
S−matrix can be induced by tuning the parameters of the
model. A generalization of the double barrier potential model
to the case of finite width barriers was proposed and dis-
cussed by W. Vanroose [20].

The problem of the characterization of the singularities
of the energy surfaces at a degeneracy of unbound states
arises naturally in connection with the topological phase of
unbound states which was predicted by Hernández, J́auregui
and Mondraǵon [21–23], and later and independently by
W.D. Heiss [24], and which was recently meassured by the
Darmstadt group [25, 26]. The energy surfaces representing
the resonance energy eigenvalues close to a degeneracy of
unbound states in the scattering of a beam of particles by
a finite double barrier potential was numerically computed
by Herńandez, J́auregui and Mondraǵon [27]. Korsch and
Mossman [28] made a detailed investigation of degeneracies
of resonances in a symmetric doubleδ−well in a constant
Stark field. Keck, Korsch and Mossman [29] extended and
generalized the discussion of the Berry phase of resonance
states, from the case of unbound states of a Hermitian Hamil-
tonian given in [21–23] to the case of unbound states of non-
Hermitian Hamiltonians.

The general theory of Gamow or resonant eigenfunctions
associated with multiple poles of the scattering matrix and
Jordan blocks in the spectral representation of the resolvent
operator in a rigged Hilbert space was developed by An-
toniou, Gadella and Pronko [30], A. Bohmet al. [31] and
Herńandez, J́auregui and Mondraǵon [1].

2. Resonance energy eigenvalue surfaces close
to degeneracy

In this communication, we will consider the resonance en-
ergy eigenvalues of a radial Schrödinger Hamiltonian,H(`)

r ,
with a potentialV (r; x1, x2) which is a short ranged func-
tion of the radial distance, r, and depends on at least two
external control parameters(x1, x2). When the potential
V (r;x1, x2) has two regions of trapping, the physical sys-
tem may have isolated doublets of resonances which may be-
come degenerate for some special values of the control pa-
rameters. For example, a double square barrier potential has
isolated doublets of resonances which may become degener-
ate for some special values of the heights and widths of the
barriers [19,20,27].

In the case under consideration, the regular and physi-
cal solutions of the Hamiltonian are functions of the radial
distance,r, the wave number,k, and the control parameters
(x1, x2). When necessary, we will stress this last functional
dependence by adding the control parameters(x1, x2) to the
other arguments after a semicolon.

The energy eigenvaluesEn =
(
~2/2m

)
k2

n of the Hamil-
tonianH

(`)
r are obtained from the zeroes of the Jost function,

f(−k;x1, x2) [32], wherekn is such that

f(−kn; x1, x2) = 0. (1)

Whenkn lies in the fourth quadrant of the complexk−plane,
Rekn > 0 andImkn < 0, the corresponding energy eigen-
value,En, is a complex resonance energy eigenvalue.

The condition (1) defines, implicitly, the functions
kn(x1, x2) as branches of a multivalued function [32] which
will be called the wave-number pole position function. Each
branchkn(x1, x2) of the pole position function is a con-
tinuous, single-valued function of the control parameters.
When the physical system has an isolated doublet of reso-
nances which become degenerate for some exceptional val-
ues of the external parameters,(x∗1, x

∗
2), the correspond-

ing two branches of the energy-pole position function, say
En(x1, x2) andEn+1(x1, x2), are equal (cross or coincide) at
that point. As will be shown below, at a degeneracy of res-
onances, the energy hypersurfaces representing the complex
resonance energy eigenvalues as functions of the real control
parameters have an algebraic branch point of square root type
(rank one) in parameter space.

2.1. Isolated doublet of resonances

Let us suppose that there is a finite bounded and connected
regionM in parameter space and a finite domainD in the
fourth quadrant of the complexk−plane, such that, when
(x1, x2) ∈M, the Jost function has two and only two zeroes,
kn andkn+1, in the finite domainD ∈ C, all other zeroes of
f(−k;x1, x2) lying outsideD. Then, we say that the phys-
ical system has an isolated doublet of resonances. To make
this situation explicit, the two zeroes off(−k; x1, x2), corre-
sponding to the isolated doublet of resonances are explicitly
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factorized as

f(−k; x1, x2) =

[(
k − 1

2
(kn + kn+1)

)2

−1
4

(kn − kn+1)
2

]
gn,n+1(k, x1, x2). (2)

When the physical system moves in parameter space from
the ordinary point(x1, x2) to the exceptional point(x∗1, x

∗
2),

the two simple zeroes,kn(x1, x2) andkn+1(x1, x2), coalesce
into one double zerokd(x∗1, x

∗
2) in the fourth quadrant of the

complexk−plane.
If the external parameters take values in a neighbourhood

of the exceptional point(x∗1, x
∗
2) ∈ M and kεD, we may

write

gn,n+1(k;x1, x2) ≈ gn,n+1(kd, x
∗
1, x

∗
2) 6= 0. (3)

Then,
[
k − 1

2
(kn(x1, x2) + kn+1(x1, x2))

]2

−1
4

(kn(x1, x2)− kn+1(x1, x2))
2

≈ f(−k; x1, x2)
gn,n+1(kd; x∗1, x

∗
2)

, (4)

the coefficient [gn,n+1(kd; x∗1, x
∗
2)]
−1 multiplying

f(−k; x1, x2) may be understood as a finite, non-vanishing,
constant scaling factor.

The vanishing of the Jost function defines, implicitly, the
pole position functionkn,n+1(x1, x2) of the isolated doublet

of resonances. Solving eq.(2) forkn,n+1, we get

kn,n+1(x1, x2) =
1
2

(kn(x1, x2) + kn+1(x1, x2))

+

√
1
4

(kn(x1 − x2)− kn+1(x1, x2))
2 (5)

with (x1, x2) ∈ M. Since the argument of the square-root
function is complex, it is necessary to specify the branch.
Here and thereafter, the square root of any complex quantity
F will be defined by

√
F = |

√
F | exp

(
i
1
2
argF

)
, 0 ≤ argF ≤ 2π (6)

so that|√F | =
√
|F | and theF− plane is cut along the real

axis.
Equation (5) relates the wave number-pole position func-

tion of the doublet of resonances to the wave number-pole
position functions of the individual resonance states in the
doublet.

2.2. The analytical behaviour of the pole-position func-
tion at the exceptional point

The derivatives of the functions

1/2(kn(x1, x2)+kn+1(x1, x2))

and
1/4

(
kn(x1, x2)− kn+1(x1, x2)

)2

are finite at the exceptional point. They may be computed
from the Jost function with the help of the implicit function
theorem [33],

[(
∂ (kn(x1, x2)− kn+1(x1, x2))

2

∂x1

)

x2

]

k=kd

=
−8[(

∂2f(−k;x1,x2)
∂k2

)
x∗1 ,x∗2

]

k=kd

[(
∂f(−k;x1, x2)

∂x1

)

x2

]

kd

, (7)

1
2

[(
∂ (kn(x1, x2) + kn+1(x1, x2))

∂x1

)

x2

]

kd

=
−1[(

∂2f(−k;x1,x2)
∂k2

)
x∗1 ,x∗2

]

k=dd

×
{[(

∂2f(−k; x1, x2)
∂x1∂k

)

x2

]

k=kd

− 1[(
∂2f(−k;x1,x2)

∂k2

)
x∗1 ,x∗2

]

k=kd

× 1
3

[(
∂3f(−k;x1, x2)

∂k3

)

x∗1 ,x∗2

]

k=kd

[(
∂f(−k; x1, x2)

∂x1

)

x2

]

k=kd

}
. (8)

From these results, the first terms in a Taylor series expansion of the functions1/2 (kn(x1, x2) + kn+1(x1, x2)) and
1/4 (kn(x1, x2)− kn+1(x1, x2))

2 about the exceptional point(x∗1, x
∗
2), when substituted in eq.(5), give

k̂n,n+1(x1, x2) = kd(x∗1, x
∗
2) + ∆kd(x1, x2) +

√
1
4

[
c
(1)
1 (x1 − x∗1) + c

(1)
2 (x2 − x∗2)

]
(9)
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for (x1, x2) in a neighbourhood of the exceptional point
(x∗1, x

∗
2). This result may readily be translated into a simi-

lar assertion for the resonance energy-pole position function
En,n+1(x1, x2) and the energy eigenvalues,En(x1, x2) and
En+1(x1, x2), of the isolated doublet of resonances.

2.3. Energy-pole position function

Let us take the square of both sides of Eq. (5), multiplying
them by

(
~2/2m

)
and recallingEn =

(
~2/2m

)
k2

n, in the
approximation of (9), we get

Ên,n+1(x1, x2) = Ed(x∗1, x
∗
2) + ∆Ed(x1, x2)

+ε̂n,n+1(x1, x2), (10)

where

ε̂n,n+1(x1, x2) =

√
1
4

[
(~R · ~ξ) + i(~I · ~ξ)

]

(11)

The components of the real fixed vectors~R and ~I are
the real and imaginary parts of the coefficientsC(1)

i

of (xi − x∗i ) in the Taylor expansion of the function
1/4 (En(x1, x2)− En+1(x1, x2))

2 and the real vector~ξ is the
position vector of the point(x1, x2) relative to the excep-
tional point(x∗1, x

∗
2) in parameter space.

~ξ =
(

ξ1

ξ2

)
=

(
x1 − x∗1
x2 − x∗2

)
(12)

~R =

(
Re C

(1)
1

Re C
(1)
2

)
, ~I =

(
Im C

(1)
1

Im C
(1)
2

)
. (13)

The real and imaginary parts of the function
ε̂n,n+1(x1, x2) are

Reε̂n,n+1(x1, x2)

= ± 1
2
√

2

[
+

√(
~R · ~ξ

)2

+
(
~I · ~ξ

)2

+ ~R · ~ξ
]1/2

(14)

Im ε̂n,n+1(x1, x2)

= ± 1
2
√

2

[
+

√(
~R · ~ξ

)2

+
(
~I · ~ξ

)2

− ~R · ~ξ
]1/2

(15)

and

sign (Reεn,n+1) sign (Imεn,n+1) = sign
(
~I · ~ξ

)
(16)

It follows from (14), thatReε̂n,n+1(x1, x2) is a two branched
function of (ξ1, ξ2) which may be represented as a two-
sheeted surfaceSR, in a three dimensional Euclidean space
with cartesian coordinates(Reε̂n,n+1, ξ1, ξ2). The two
branches ofReε̂n,n+1(ξ1, ξ2) are represented by two sheets

which are copies of the plane(ξ1, ξ2) cut along a line where
the two branches of the function are joined smoothly. The cut
is defined as the locus of the points where the argument of the
square- root function in the right hand side of (14) vanishes.

Therefore,the real part of the energy-pole position func-
tion, En,n+1(x1, x2), as a function of the real parameters
(x1, x2), has an algebraic branch point of square root type
(rank one) at the exceptional point with coordinates(x∗1, x

∗
2)

in parameter space, and a branch cut along a line,LR, that
starts at the exceptional point and extends in the positivedi-
rection defined by the unit vector̂ξc satisfying.

~I · ξ̂c = 0 and ~R · ξ̂c = −|~R · ξ̂c| (17)

A similar analysis shows that,the imaginary part of the
energy-pole position function,Im En,n+1(x1, x2), as a func-
tion of the real parameters(x1, x2), also has an algebraic
branch point of square root type (rank one) at the exceptional
point with coordinates(x∗1, x

∗
2) in parameter space, and also

has a branch cut along a line,LI , that starts at the excep-
tional point and extends in the negativedirection defined by
the unit vector̂ξc satisfying eqs.(17).

The branch cut lines,LR andLI , are in orthogonal sub-
spaces of a four dimensional Euclidean space with coordi-
nates(Reεn,n+1, Imεn,n+1, ξ1, ξ2), but have one point in
common, the exceptional point with coordinates(x∗1, x

∗
2).

The individual resonance energy eigenvalues are conven-
tionally asociated with the branches of the pole position func-
tion according to

Êm(ξ1, ξ2) = Ed(0, 0) + ∆En,n+1(ξ1, ξ2)

+ σ
(m)
R

1
2
√

2

[
+
√

(~R · ~ξ)2 + (~I · ~ξ)2 + (~R · ~ξ)
]1/2

+ iσ
(m)
I

1
2
√

2

[
+
√

(~R · ~ξ)2 + (~I · ~ξ)2 − (~R · ~ξ)
]1/2

, (18)

with m = n, n + 1, and

σ
(n)
R = −σn+1

R =
ReEn −ReEn+1

|ReEn −ReEn+1| , (19)

σ
(n)
I = −σn+1

I =
ImEn − ImEn+1

|ImEn − ImEn+1| (20)

Along the line LR, excluding the exceptional point
(x∗1, x

∗
2),

ReEn(x1, x2) = ReEn+1(x1, x2) (21)

but

ImEn(x1, x2) 6= ImEn+1(x1, x2). (22)

Similarly, along the lineLI , excluding the exceptional point,

ImEn(x1, x2) = ImEn+1(x1, x2), (23)
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but

ReEn(x1, x2) 6= ReEn+1(x1, x2). (24)

Equality of the complex resonance energy eigenvalues (de-
generacy of resonances),

En(x∗1, x
∗
2) = En+1(x∗1, x

∗
2) = Ed(x∗1, x

∗
2),

occurs only at the exceptional point with coordinates(x∗1, x
∗
2)

in parameter space and only at that point.
In consequence, in the complex energy plane, the cross-

ing point of two simple resonance poles of the scattering ma-
trix is an isolated point where the scattering matrix has one
double resonance pole.

Remark: In the general case, a variation of the vector
of parameters causes a perturbation of the energy eigenval-
ues. In the particular case of a double complex resonance en-
ergy eigenvalueEd(x∗1, x

∗
2), associated with a chain of length

two of generalized Jordan-Gamow eigenfunctions [1], we are
considering here, the perturbation series expansion of the
eigenvaluesEn, En+1 aboutEd in terms of the small parame-
ter |ξ|, Eqs. (18)-(20), takes the form of a Puiseux series

En,n+1(x1, x2) = Ed(x∗1, x
∗
2)

+ |ξ|1/2

√
1
4

[
(~R · ξ̂) + i(~I · ξ̂)

]

+ ∆Ed(x1, x2) + O
(
|ξ|3/2

)
(25)

with fractional powers|ξ|j/2, j = 0, 1, 2, ... of the small pa-
rameter|ξ| [33,35].

3. Unfolding of the degeneracy point

Let us introduce a function̂fdoub(−k; ξ1, ξ2) such that

f̂doub(−k; ξ1, ξ2) =
[
k −

(
kd(0, 0) + ∆(1)kd(ξ1, ξ2)

)]2

− 1
4

(
( ~R · ~ξ) + i(~I · ~ξ)

)
, (26)

and

∆(1)kd(x1, x2) =
2∑

i=1

d
(1)
i ξi (27)

Close to the exceptional point, the Jost functionf(−k; ξ1, ξ2)
and the family of functionŝfdoub(−k; ξ1, ξ2) are related by

f(−k; ξ1, ξ2) ≈ 1
gn,n+1(kd; 0, 0)

f̂doub(−k; ξ1, ξ2) (28)

the term[gn,n+1(kd, 0, 0)]−1 may be understood as a non-
vanishing scale factor.

Hence, the two-parameters family of functions
f̂doub(−k; ξ1, ξ2) is contact equivalent to the Jost function
f(−k; ξ1, ξ2) at the exceptional point. It is also an unfold-
ing [34,36] off(−k; ξ1, ξ2) with the following features:

1. It includes all possible small perturbations of the de-
generacy conditions

f(−k; ξ1, ξ2) = 0,
(

∂f(−k; ξ1, ξ2)
∂k

)

kd

= 0 (29)

(
∂2f(−k; ξ1, ξ2)

∂k2

)

kd

6= 0 (30)

up to contact equivalence.

2. It uses the minimum number of parameters, namely
two, which is the codimension of the degeneracy [7].
The parameters are(ξ1, ξ2).

Therefore,f̂doub(−k; ξ1, ξ2) is a universal unfolding [34]
of the Jost functionf(−k; ξ1, ξ2) at the exceptional point
where the degeneracy of unbound states occurs.

The vanishing off̂doub(−k; ξ1, ξ2) defines the approxi-
mate wave number-pole position function

k̂n,n+1(ξ1, ξ2) = kd + ∆(1)
n,n+1kd(ξ1, ξ2)

±
[
1
4

(
~R · ~ξ + i~I · ~ξ

)]1/2

(31)

and the corresponding energy-pole position function
Ên,n+1(ξ1, ξ2) given in eq.(10).

Since the functionsÊn(ξ1, ξ2) and Ên+1(ξ1, ξ2) are
obtained from the vanishing of the universal unfolding
f̂doub(−k; ξ1, ξ2) of the Jost functionf(−k; ξ1, ξ2) at the ex-
ceptional point, we are justified in saying that,the family of
functionsÊn(ξ1, ξ2) and Ên+1(ξ1, ξ2), given in eqs.(18) and
(19-20), is a universal unfolding or deformation of a generic
degeneracy or crossing point of two unbound state energy
eigenvalues, which is contact equivalent to the exact energy-
pole position function of the isolated doublet of resonances
at the exceptional point, and includes all small perturbations
of the degeneracy conditions up to contact equivalence.

4. Crossings and anticrossings of resonance
energies and widths

Crossings or anticrossings of energies and widths are exper-
imentally observed when the difference of complex energy
eigenvaluesEn(ξ1, ξ̄2) − En+1(ξ1, ξ̄2) = ∆E − i(1/2)Γ is
measured as function of one slowly varying parameter,ξ1,
keeping the other constant,ξ2 = ξ̄

(i)
2 . A crossing of energies

occurs if the difference of real energies vanishes,∆E = 0,
for some valueξ1,c of the varying parameter. An anticrossing
of energies means that, for all values of the varying parame-
ter,ξ1, the energies differ,∆E 6= 0. Crossings and anticross-
ings of widths are similarly described.
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The experimentally determined dependence of the differ-
ence of complex resonance energy eigenvalues on one control
parameter,ξ1, while the other is kept constant,

Ên(ξ1, ξ̄
(i)
2 )− Ên+1(ξ1, ξ̄

(i)
2 ) = ε̂n,n+1(ξ1, ξ̄

(i)
2 ) (32)

has a simple and straightforward geometrical interpretation,
it is the intersection of the hypersurfaceε̂n,n+1(ξ1, ξ2) with
the hyperplane defined by the conditionξ2 = ξ̄

(i)
2 .

To relate the geometrical properties of this intersection
with the experimentally determined properties of crossings
and anticrossings of energies and widths, let us consider a
point (ξ1, ξ̄

(i)
2 ) in parameter space away from the exceptional

point. To this point corresponds the pair of non-degenerate
resonance energy eigenvaluesEn(ξ1, ξ̄

(i)
2 ) andEn+1(ξ1, ξ̄

(i)
2 ),

represented by two points on the hypersurfaceε̂n,n+1(ξ1, ξ2).
As the point(ξ1, ξ̄

(i)
2 ) moves on a straight line pathπi in pa-

rameter space,

πi : ξ1,i ≤ ξ1 ≤ ξ1,f , ξ2 = ξ̄
(i)
2 (33)

the corresponding points,En(ξ1, ξ̄
(i)
2 ) and En+1(ξ1, ξ̄

(i)
2 )

trace two curving trajectories,̂Cn(π1) andĈn+1(π1) on the
ε̂n,n+1(ξ1, ξ2) hypersurface. Sinceξ2 is kept constant at
the fixed valueξ̄(i)

2 , the trajectories (sections)̂Cn(πi) and
Ĉn+1(πi), may be represented as three-dimensional curves
in a spaceE3 with cartesian coordinates(Reε, Imε, ξ1), see

FIGURE 1. The curvesĈn(π1) andĈn+1(π1) are the trajectories

traced by the pointŝEn(ξ1, ξ̄
(1)
2 ) andÊn+1(ξ1, ξ̄

(1)
2 ) on the hyper-

surfaceÊn,n+1(ξ1, ξ̄
(1)
2 ) when the point(ξ1, ξ̄

(1)
2 ) moves along the

straight line pathπ1 in parameter space. In the figure, the path
π1 runs parallel to the vertical axis and crosses the lineLI at a
point (ξ1,c, ξ̄

(1)
2 ) with ξ1,c < ξ∗1 and ξ̄

(1)
2 < ξ∗2 . The projections

of Ĉn(π1) andĈn+1(π1) on the plane(ImE , ξ1) are sections of
the surfaceSI ; the projections ofĈn(π1) and Ĉn+1(π1) on the
plane(ReE , ξ1) are sections of the surfaceSR. The projections
of Ĉn(π1) andĈn+1(π1) on the plane(ReE , ImE) are the trajec-
tories of theS−matrix poles in the complex energy plane. In the
figure,d− d∗ = ξ1.

Figs. 1, 2 and 3. The projections of the curvesĈn(πi) and
Ĉn+1(πi) on the planes(Reε, ξ1) and(Imε, ξ1) are

Re[Ĉm(πi)] = ReÊm(ξ1, ξ̄
(i)
2 ) m = n, n + 1 (34)

and

Im[Ĉm(πi)] = ImÊm(ξ1, ξ̄
(i)
2 ) m = n, n + 1 (35)

respectively.
From Eqs. (18)-(20), and keepingξ2 = ξ̄

(i)
2 , we obtain

∆E = En − En+1 =
(
ReÊn −ReÊn+1

)∣∣∣
ξ2=ξ̄

(i)
2

=
σ

(n)
R

√
2

2

[
+
√

(~R · ~ξ)2+(~I · ~ξ)2+(~R · ~ξ)
]1/2

∣∣∣∣∣
ξ2=ξ̄

(i)
2

(36)

and

∆Γ = (Γn − Γn+1) = 2 [ImEn+1 − ImEn]

=− σ
(n)
I

√
2

[
+
√

(~R · ~ξ)2+(~I · ~ξ)2−(~R · ~ξ)
]1/2

∣∣∣∣∣
ξ2=ξ̄

(i)
2

(37)

These expressions allow us to relate the terms(~R · ~ξ) and
(~I·~ξ) directly with observables of the isolated doublet of reso-
nances. Taking the product of∆E∆Γ, and recalling eq.(16),
we get

∆E∆Γ = −
(
~I · ~ξ

)∣∣∣
ξ2=ξ̄

(i)
2

(38)

FIGURE 2. The curvesĈn(π2) and Ĉn+1(π2) are the trajecto-
ries of the pointŝEn(ξ1, ξ

∗
2) andÊn+1(ξ1, ξ

∗
2) on the hypersurface

Ên,n+1(ξ1, ξ2) when the point(ξ1, ξ
∗
2) moves along a straight line

pathπ2 that goes through the exceptional point(ξ∗1 , ξ∗2) in parame-
ter space. The projections of̂Cn(π2) andĈn+1(π2) on the planes
(ReE , ξ1) and(ImE , ξ1) are sections of the surfacesSR andSI

respectively, and show a joint crossing of energies and widths. The
projections ofĈn(π2) andĈn+1(π2) on the plane(ReE , ImE) are
two straight line trajectories of theS−matrix poles crossing at 90◦

in the complex energy plane. At the crossing point, the two simple
poles coalesce into one double pole ofS(E).
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FIGURE 3. The curvesĈn(π3) and Ĉn+1(π3) are the trajecto-

ries traced by the pointŝEn(ξ1, ξ̄
(3)
2 ) andÊn+1(ξ1, ξ̄

(3)
2 ) on the hy-

persurfaceEn,n+1(ξ1, ξ̄
(3)
2 ) when the point(ξ1, ξ̄

(3)
2 ) moves along

a straight line pathπ3 going trough the point(ξ1,c, ξ̄
(3)
2 ) with

ξ1,c > ξ∗1 . The pathπ3 crosses the lineLR. The projections of
Ĉn(π3) and Ĉn+1(π3) on the plane(ReE , ξ1) show a crossing,
but the projections on the planes(ImE , ξ1) and(ReE , ImE) do
not cross. In the figure,ξ1 = d− d∗.

and taking the differences of the squares of the left hand sides
of (36) and (37), we get

(∆E)2 − 1
4

(∆Γ)2 =
(

~R · ~ξ
)∣∣∣

ξ2=ξ̄
(i)
2

(39)

At a crossing of energies∆E vanishes, and at a crossing
of widths∆Γ vanishes. Hence, the relation found in eq.(38)
means thata crossing of energies or widths can occur if and
only if (~I · ~ξ)

ξ̄
(i)
2

vanishes

For a vanishing(~I · ~ξc)ξ̄
(i)
2

= 0 = ∆E∆Γ, we find three

cases, which are distinguished by the sign of(~R·~ξc)ξ̄
(i)
2

. From
eqs. (36) and (37),

1. (~R · ~ξc)ξ̄
(i)
2

> 0 implies∆E 6= 0 and ∆Γ = 0, i.e.
energy anticrossing and width crossing.

2. (~R · ~ξc)ξ̄
(i)
2

= 0 implies∆E = 0 and ∆Γ = 0, that
is, joint energy and width crossings, which is also de-
generacy of the two complex resonance energy eigen-
values.

3. (~R · ~ξc)ξ̄
(i)
2

< 0 implies∆E = 0 and ∆Γ 6= 0, i.e.
energy crossing and width anticrossing.

This rich physical scenario of crossings and anticrossings
for the energies and widths of the complex resonance en-
ergy eigenvalues, extends a theorem of von Neumann and
Wigner [2] for bound states to the case of unbound states.

The general character of the crossing-anticrossing rela-
tions of the energies and widths of a mixing isolated doublet

of resonances, discussed above, has been experimentally es-
tablished by P. von Brentano and his collaborators in a series
of beautiful experiments [15–17].

5. Trajectories of the S-matrix poles and
changes of identity

The trajectories of theS−matrix poles (complex resonances
energy eigenvalues),̂En(ξ1, ξ2) andÊn+1(ξ1, ξ2), in the com-
plex energy plane are the projections of the three-dimensional
trajectories (sections)̂Cn(πi) and Ĉn+1(πi) on the plane
(Reε, Imε), see Figs. 1, 2 and 3.

An equation for the trajectories of theS−matrix poles
in the complex energy plane is obtained by eliminatingξ1

betweenReÊn(ξ1, ξ̄
(i)
2 ) andImÊn(ξ1, ξ̄

(i)
2 ), Eqs. (18), (19)

and (20).

FIGURE 4. Trajectories of the poles of the scattering matrix,S(k)
of an isolated doublet of resonances in a double barrier poten-
tial [27], close to a degeneracy of unbound states. The control
parameters are the widthd of the inner barrier and the depth,
V3, of the outer well. The trajectories are traced by the poles
kn(d, V̄

(i)
3 ) andkn+1(d, V̄

(i)
3 ) on the complexk−plane when the

point (d, V̄
(i)
3 ) moves on the straight line pathπi; V3 = V̄

(i)
3 . The

top, middle and bottom figures show the trajectories correspond-
ing to (~R · ~ξc)ξ̄

(i)
2

< 0, (~R · ~ξc)ξ̄
(i)
2

= 0, and(~R · ~ξc)ξ̄
(i)
2

> 0,

respectively, with(ξ1, ξ2) = (d− d∗, V3 − V ∗
3 ).
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A straightforward calculation gives

Re(Ên)2 − 2 cot φ1(ReÊn)(ImÊn)

−(ImÊn)2 + (~R · ξ̄(i)
c ) = 0 (40)

where

cot φ1 =
R1

I1
(41)

and the constant vector~ξ(i)
c is such that,

(
~I · ~ξc

)∣∣∣
ξ2=ξ̄

(i)
2

= 0 (42)

which is the previously found condition for the occurrence of
a crossing of∆E or ∆Γ.

The discriminant of eq.(40),4(cot2 φ1 + 1), is positive.
Therefore,close to the crossing point, the trajectories of the
S−matrix poles are the branches of a hyperboladefined by
Eq. (40).

The asymptotes of the hyperbola are the two straight lines
defined by

ImE(I) = tan
φ1

2
ReE(I) (43)

and

ImE(II) = − cot
φ1

2
ReE(II) (44)

The two asymptotes divide the complex energy plane in four
quadrants. The two branches of the hyperbola are in oppo-
site, that is, not adjacent, quadrants of the complex energy
plane.

We verify that, if En satisfies Eq. (40), so does
−En=En+1. Therefore, if the trajectory followed by the pole
En is one branch of the hyperbola, the trajectory followed by
the poleEn+1 is the other branch of the hyperbola. Initially,
the poles move towards each other from opposite ends of the
two branches of the hyperbola until they come close to the
crossing point, then they move away from each other, each
pole on its own branch of the hyperbola.

We find three types of trajectories, which are distin-
guished by the sign of(~R · ~ξc)|ξ2=ξ̄

(i)
2

.

1. Trajectories of type I, when(~R · ~ξc)|ξ2=ξ̄
(i)
2

> 0.

In this case there is a crossing of energies and an anti-
crossing of widths.

Hence, one branch of the hyperbola, say, the trajectory
followed by the poleEn, lies above a horizontal straight
line, parallel to the real axis, and going through the
crossing pointEd. The other branch of the hyperbola,
the trajectory followed by the poleEn+1, lies below the
horizontal line, parallel to the real axis, going through
the crossing pointEd, see Fig. 4c.

2. Critical trajectories (type II), when(~R·~ξc)|ξ2=ξ̄
(i)
2

= 0.

There is a joint crossing of energies and widths.

The trajectories are the asymptotes of the hyperbola.

The two poles,En andEn+1, start from opposite ends
of the same straight line, and move towards each other
until they meet at the crossing point, where they co-
alesce to form a double pole of theS−matrix. From
here, they separate moving away from each other on a
straight line at 90◦ with respect to the first asymptote,
see Fig. 4b.

3. Trajectories of type III, when(~R · ~ξc)|ξ2=ξ̄
(i)
2

< 0.

In this case, there is an anticrossing of energies and a
crossing of widths.

Therefore, one branch of the hyperbola, say, the tra-
jectory followed by the poleEn, lies to the left of a
vertical straight line, parallel to the imaginary axis and
going through the crossing pointEd. The other branch
of the hyperbola, the trajectory followed by the pole
En+1, lies to the right of the line parallel to the imag-
inary axis that goes through the crossing pointEd, see
Fig. 4a.

It is interesting to notice that, a small change in the ex-
ternal control parameter̄ξ(i)

2 produces a small change in the
initial position of the poles,En andEn+1, but when the small
change inξ̄(i)

2 changes the sign of(~R · ~ξc)|ξ2=ξ̄
(i)
2

, the tra-
jectories change suddenly from type I to type III and vicev-
ersa, this very large and sudden change of the trajectories ex-
changes almost exactly the final positions of the polesEn and
En+1, see Fig. 4. This dramatic change has been termed
a “change of identity” by W. Vanroose, P. Van Leuven F.
Arickx and J. Broeckhove [18] who discussed an example
of this phenomenon in theS−matrix poles in a two-channel
model, W. Vanroose [20] and E. Hernández, A. J́auregui and
A. Mondraǵon [19, 27] have also discussed these properties
in the case of the scattering of a beam of particles by a double
barrier potential with two regions of trapping.

6. Summary and conclusions

We developed the theory of the unfolding of the energy eigen-
value surfaces close to a degeneracy point (exceptional point)
of two unbound states of a Hamiltonian depending on con-
trol parameters. From the knowledge of the Jost function, as
function of the control parameters of the system, we derived
a 2-parameter family of functions which is contact equivalent
to the exact energy-pole position function at the exceptional
point and includes all small perturbations of the degeneracy
conditions. A simple and explicit, but very accurate, repre-
sentation of the eigenenergy surfaces close to the exceptional
point is obtained. In parameter space, the hypersurface rep-
resenting the complex resonance energy eigenvalues has an
algebraic branch point of rank one, and branch cuts in its real
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and imaginary parts extending in opposite directions in pa-
rameter space. The rich phenomenology of crossings and an-
ticrossings of the energies and widths of the resonances of an
isolated doublet of unbound states of a quantum system, as
well as, the sudden change in the shape of theS−matrix pole
trajectories, observed when one control parameter is varied
and the other is kept constant close to an exceptional point, is
fully explained in terms of the local topology of the eigenen-
ergy hypersurface in the vecinity of the crossing point.

A detailed account of these and other results will be pub-
lished elsewhere [37,38].
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