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We apply the sextic oscillator agy@independent potential in the Bohr Hamiltonian and present exact analytic results for the energy eigenva
ues and wavefunctions of the lowest few levels. Further properties, such as the flexible shape of the potential are also discussed. As illusti
a potential reproducing the spectroscopic properties of#hBa nucleus, the first candidate for the E(5) symmetry is constructed. Fits to
the energy spectrum of tH8?Ru, '®*Ru and'°®Ru isotopes are also presented, and it is shown that in this region the potential undergoe
changes characteristic for a transition from the spherical vibrator to the deformaestable domain. Possible generalizations of the model
are also pointed out.

Keywords: Nuclear shape; Quadrupole collectivity; Quasi-exactly solvable potentials.

En este trabajo aplicamos el oscilador sextico como un potencial independiente de la yagiablédamiltoniano de Bohr y presentamos re-
sultados andiicos para los valores propios y las funciones propias de los niveles de mendaeBerdiscuten igualmente otras propiedades
como la forma flexible del potencial. A manera de ilustbagise construye un potencial que reproduce las propiedades espgmtasc
del nicleo'3*Ba, siendo esta el primer candidato de sifaei(5). Se presentan ajustes al espectro étiemgde los i6topos!°?Ru, 1°*Ru

y 19°Ru y se muestra que en esta fegiel potencial sufre cambios caraésticos de la transién de vibrador egfrico al dominio dey
inestable. Se mencionan las posibles generalizaciones del modelo.

Descriptores: Forma del nucleo; colectividad cuadrupolar; potenciales con solucion cuasi-exacta.

PACS: 21.10.Re; 03.65.Ge

1. The Bohr Hamiltonian and various nuclear More recently further symmetries have also been associ-
shape phases ated with certain types df (3, ~y) potentials. First the E(5)
symmetry was proposed [3], which is expected to occur as
In one of the fundamental models in nuclear physics the nuthe nuclear shape evolves from the spherical totnastable
cleus is pictured as a liquid drop that undergoes collectivelomain, as one moves along an isotope chains for example.
oscillations. The Hamiltonian describing this phenomenorStarting from the spherical side the potential, which in this
contains a kinetic term and a potential that keeps the nucleusase is thought to depend only on theariable has a mini-
in the vicinity of stable configurations that correspond to var-mum at3 = 0, while in they-unstable domain the minimum
ious nuclear shapes. When only the quadrupole mode is coghould appear a > 0. In the transition between these two
sidered, the Hamiltonian reduces to an operator containingomains one expects that there is a potential shape in which
vibrational and rotational kinetic terms depending on the the two minima are nearly degenerate and are separated by
and~ shape variables, and a potential te¥3,~) that is  a small barrier only. In Ref. 3 this is defined as a critical

the function of the same variables in general [1] point, and the corresponding potential is approximated with
ﬁ2 1 9 ) a square well, which is flat in the allowed region and then

H= < S X N
< 319 6ﬂ 93 ﬂ 52 Sin 3+ 87 sin 3y oy abruptly reaches infinity. This potential is solvable exactly,

and it yields characteristic ratios of the excitation energies of
various states, and of the strength of electromagnetic tran-
Z ) +V(Br) . Q) sitions between them. These numbers corresponding to the
E(5) symmetry can then be compared with the experimen-
The minima of theV(ﬂ, 7) potential correspond to equi- tally observed data in order to locate nuclei associated with
librium nuclear shapes. In spherical nuclei the minimum is athis symmetry.
8 = 0, while in the case of deformed nuclgi(and~) have
finite equilibrium values. An interesting case is that of the
unstable nuclei, for which the potential is assumed to depen
only onj3. The most characteristic shapes also correspond tQ
various dynamical symmetries associated with the Interact
ing Boson Model [2], which focuses on the quadrupole exci-
tation of nuclei: the U(5), SU(3) and O(6) symmetries cor-
respond to vibrational, axially deformed rotor apdinstable
deformed nuclei, respectively.

sin? 7,2 k)

In order to describe this situation with the Bohr Hamil-
'g/)nian, the potential is assumed to beindependent
(8,v) = U(B), which allows the separation of the vari-
ables as

(8,7, 0:) = B2p(B)P(7 ) - &)
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Eventually this leads to a one-dimensional Sctinger-like  was considered. This is probably the best known example

equation for the QES potentials, and its conventional form in a radial
02 ( Nr+2) equation is [10]
T+ T+
7d7ﬁ2+ ( 62 +u(ﬂ)>¢€¢a (3) d2 (2571/2)(2573/2)
H=—-——+
da? x2

wheree = (2B/h?)E, u(B) = (2B/R*)U(j3), andr is a )
guantum number originating from the-dependent part of 4 <b2 —4a(s+ = + M)> z? + 2abz* 4 a%2%, (4)
the wavefunction, and plays a role in this five-dimensional 2

setting as thé orbital angular momentum does in the Case eres c [0, 00) and M is a non-negative integer. For any

of three_—dmgnsmnal problems. Its allowed values have bee\r/]alue of M, M + 1 solutions of (4) can be obtained in an al-
determined in Ref. 4.

. ebraic way. The (unnormalized) solutions are written in the
In the present paper we analyze the exact solutions o?

Eq. (3), and in particular, we propose the application of theOrm

sextic oscillator in the Bohr Hamiltonian. We do not deal oy, ovs_1 a 4 b,

with potentials that depend on thevariable also: in this Pn(2) = Pa(2”)(2%)" 7 exp (4$ — 3t > ’
case further assumptions have to be made in order to obtain

approximate solutions. For a review on the subject eag, n=012... (5
Ref. 5.

whereP,, is a polynomial of ordern, anda > 0 is required
for the proper normalization of the solutions. Foe 0 (4)
2. The sextic oscillator as ay-independent po-  reduces to the harmonic oscillator, aRg in (5) turns into
tential L.
_ . The simplest solutions are obtained fodf = 0 and
There are only a handful of radial potentials that possess anay — 1 [10]. For M = 0 only one nodeless.€. ground-
Iyt_|c_solut|on in the presence of centrifugal t_ype_term, Wh'Chstate) solution appears EI(()MZO) — 4bs, with the corre-
originates from the kinetic part of the H.amlltomar?. Such asponding wavefunction being
term, (r + 1)(7 + 2)32 also appears in the radial equa-
tion (3), so it is straightforward to apply those potentials in (M=0) gug 1 4 b
it, which are solvable for arbitrary angular momentum in o (2)~ (%) T exp (‘433 — a7 ) - 6
the three-dimensional radial Séldinger equation. The most
trivilal examples are the harmonic oscillator [6] and squareFor A/ = 1 two solutions appear, one nodeless, and an-
well [7] potentials, which are solvable in terms of generalizedother with one node for: > 0. These correspond to the
Laguerre ponnomiaIsLﬁ{”(z) and Bessel functiond, (z),  ground-state and the first excited state, respectively, at ener-
respectively. One further trivial example is the Coulomb po-giesE(()M:” = 4bs + A_(s) and E%M:U = 4bs + A1 (s),
tential (also solvable in terms (ﬁ%‘“)(z)), the application of ~Where
which appears less useful in the Bohr Hamiltonian due to its At (s) = 2b + 2(b? + 8as)*/? (7)
asymptotic behaviour. The Davidson and the Kratzer poten- ]
tials are straightforward generalizations of the harmonic os@'® the roots of the equa}uox? — 4bA — 32as = 0. The
cillator and Coulomb potentials in such away that@-type ~ corresponding wavefunctions are
term appears in them, which can be treated together with the ( A 2) ,
(x )S—

1
1

centrifugal term. In technical terms this means that equa- ¢{=Y(z) ~ (1 - =z
tion (3) is solved formally with non-integer values ofor [ 8s
in three dimensions). These latter two potentials have been a 4 b 4
applied in the Bohr Hamiltonian in Refs. 8 and 9. X eXp (413 o7 ) , (8)

This is the complete list of potentials for which the so-
lution can be given for any state with arbitraryand node and thex = A_(s) andA = A\, (s) choice has to be made
number. There are, however, some potentials for which exador n = 0 andn = 1, respectively [10]. (Note that > 0
solutions can be given for a limited number of states. Thesands > 0 imply A_(s) < 0, so the polynomial part of (8)
potentials are called quasi-exactly solvable (QES) [10], ands nodeless.) It has to be mentioned that the solutions for
they can be solved exactly up to a finite value of the prin-M = 0 andM = 1 belong todifferentsextic potentials it is
cipal guantum number (node number). The general soluthe same, as the coefficient of the quadratic term is different
tions of these potentials are written in terms of power serieshen. We shall see, however, that with appropriate combina-
which, however, can be reduced to polynomials for the firstions of s and M it is possible to solve sextic potentials that
few states with special choices of the potential parameters. differ only in the strength of the centrifugal term.

The first application of QES potentials in the Bohr Hamil- ~ The normalization of the wavefunctions can also be given
tonian was proposed in Ref. 11, where the sextic oscillatom closed form. For this one has to evaluate integrals of the
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- TABLE |. Explicit form of the lowest few energy eigenvalues and
(4) _ A a 4 9 wavefunctions forM/=0 and 1 withc¢ = 11/4 for = even and
= /x exp (‘fm — bz ) ¢ = 13/4 for 7 odd. Note thaty = 2b + 2(b* + 10a)*/? and
0 A+ = 20+ 2(b + 14a)'/?, while u; is defined in Eq. (14).

4 2
(A e oo (L) pan(s) @ e
2 2 4a >\ al/? 1 0 1 5b+ A N1oB%(1 — X_/106%)
2 1 1 1 Th+A+uy  Nuf(1—A_ /145
:1[‘ (A+1> (2@‘%[] (A_H, 1; b) , (10) 1 2 o i 96+ ’ nf (N 4/ .
2 2 4 72 2a 1208
' ' _ . 1 3 0 116+ ug Ni3f°
where Dp_(z) is the parabolic cylinder functon and ., , Bb+ Ay NaoB2(1 — A+ /108?)
U(a, B; z) is one of the forms of the confluent hypergeomet- - B 5 - )
ric function [12]. 2 1 1 b+ tug N2133(1 — Ay /146%)
Larger values ofM can also be considere@.§. for
M = 2 three different solutions are obtained for the three
roots of a cubic algebraic equation faj, but A/ = 0 and 5+ 2+M—1 1
M = 1 are sufficient to describe the most important collec- = M=L1=
tive states. . . ' N 4l .o+ . N
In order to apply the sextic oscillator in Eq. (3) itis neces- M=0,7=3 6 4 3 0 0 M=1,1=0
sary to identifys with 7/2 + 5/4 (to account for the centrifu- g _
gal term) and to set the coefficient of the quadratic term to a g 3+ {5_ —
constant value for each state. These requirements together s P M=0,71=2 4 2
a condition for the combination af and M in the following g ol |
way: 4:3
=
5+M+;=;(T+2M+;>Ec:const. (12) e 1_M:1’T=1_2 7]
+
In practical terms this means thaf, which runs from 0 to a 0+ M=1,t=0 0 —
finite positive integer value determining the number of solu- E=1
tions is uniquely related to the quantum number. In partic-

ular_, IncreaSI_ngM with one unit Corresponds_ to decreasing FIGURE 1. Schematic typical spectrum for the sextic oscillator
7 with 2. This also means that the constanh (11) must

be different for even and odd values of sincer + 2M is
even and odd in the two cases, respectively. This also implies [ et us now analyze the different potential shapes that
that the coefficient of the quadratic term also depends on thgan pe produced by different choices of the parameters in
parity OfT, however, the magnitude of this difference can bEEq (12) From (12) we find that the Shape of the poten_
minimized with respect to that of the quartic and sextic terms;jg| ¢,~ (3) depends on the sign 6f — 4ac™ andb, which set
with appropriate choice af andb. Forb® > 10a, for exam-  the coefficients of the quadratic and quartic terms. (The co-
ple, this deviation becomes marginal. efficient of the leading sextic term is always positive.) When
With all these considerations the sextic oscillator Hamil-32 ~ 44¢™ andb > 0 hold (.e. for b > 2(ac™)'/?), the poten-
tonian can be cast in the following form of (3) with(3)  tial has a minimum a8 = 0 and it increases monotonously
being with 3. Whenb? < 4ac™, irrespective of the sign of
_ ) o PP (i.e. for —2(ac™)'/? < b < 2(ac™)'/?), a minimum ap-
u™(B) = (b° —4ac™)B" + 2abB" + "5 +ug ,  (12)  pears ford > 0, while for b2 > 4ac™ andb < 0 (i.e. for
b < —2(ac™)'/?), first a maximum appears and then a min-
imum asg increases. In all three cases the exact location of
the extremal point(s) can be obtained from the real and posi-
tive solutions of

with indication of the relevant quantum numbers.

where the indexr = +/— is included to distinguish the po-
tential for even/odd-'s. We have also introduced a constant
ugy in order to control the relative position of theeven and

7-0dd part of the spectrum. 1

For illustration let us consider the case with= 0 and 1, (B5)? = —[—2b + (b* + 12ac™)/?]. (13)
which allows solutions with node number 0 and&l=£ 1 3a
and 2 in the conventional notation) and= 0, 1, 2 and 3. Due to the relatively small difference i~ andc—, the

Table | contains the explict form of the energy and radialr-even andr-odd potentials have the same types of extrema
wave function of the first few levels, while Fig. 1 displays at about the samg, except for some peculiar combinations
the schematic structure of the spectrum. of a andb. Assuming that there are no complications of this
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TABLE Il. Ratios of some energy eigenvalues and electric quadrupole transition strengths from the sextic oscillater 4iti00, b = 200,
the infinite square well [3] and thé* potential [13], together with the experimentally observed quantitie§*f@a.

E(4f2) E(O;O) E(67 5) B(E2;4i24»2f1) B(E2;2;r)0~>2f1) B(E2;Ot3~>2f2)
B(2] ) E(2] ) B2 ) B(E2;21 ,—07 ) B(E2;2] ,—07 ) B(E2;2] ,—07 )
sextic osc. 2.39 3.68 3.70 1.70 1.03 2.12
E(5) 2.20 3.03 3.59 1.68 0.86 2.21
ik 2.09 2.39 3.27 1.82 1.41 2.52
134Ba (exp.) 2.31 3.57 3.65 1.56(18) 0.42(12)

order to obtain théotal matrix elements, one has to calculate

TABLE IIl. Excitation energies (in keV) for the lowest few states also the components depending grand the Euler angles

of the!°?Ru, 1°*Ru and'°®Ru isotopes, and the parametersndb

;. This can be done following the techniques described in

obtained from a fit to the spectrum. Energies in parenthesis accounRef. 4. These parts introduce certain selection rules not only

for levels with ambiguoug™ assignment.

for the angular momenta, but also fori.e. A7 = £1.

J‘Ir 5 T IOQRU 104Ru 106Ru
2 1 1 475 358 270 . .
. Hlustration for sel nuclei
2 X 1103 803 202 3 ustration for selected nucle
4y 1106 888 (715) As an illustrative first application of the sextic oscillator as
0F 1 3 1837 a y-independent potential the low-lying spectrum and the
3F 1522 1242 (1092) B(E2) rates of the'**Ba nucleus, the first candidate for
4t (1799) the E(5) symmetry were approximated with (12), taking
2 .
= 40000 andb = 200 [11]. These parameters result in
+ a
61 1863 1556 (1296) a potential that has a shallow local minimumgat- 0 and
07 2 0 944 988 991 i i
3 a relatively flat bottom, so it has features that are expected
a [0] 1496 4190 from a nucleus with E(5) symmetry.
b 283 216 143 In Table Il we summarize the ratio of the most impor-

tant energy eigenvalues and those of the most characteris-

kind, we can now return to the question of renormalizingtic B(E2) transition rates obtained from the sextic oscillator

the minima of ther-even andr-odd potentials. Fob >
2(ac™)V/?, m = 4, — the minima of the two potentials will
beud andu, ats = 0, so they coincide ifij = u, holds.
Forb < 2(ac™)'/? we can equate the minima af"(3) and
u~(B) if we setuf = 0 and

ug = (b* = 11a)(4)* — (b* — 13a) (67 )?

+2ab[(83)" — (85)"] +a’[(83)° = (55)°],  (14)

with parameters = 40000, b = 200, the infinite square well
potential [3] and the numerically solvett potential [13] to-
gether with the corresponding experimental valuesftBa,
whenever available. It is seen that the energy ratios corre-
sponding to the E(5) symmetry systematically fall between
the values of theg* potential and the sextic oscillator. The
situation is less obvious for the ratio of tH&E2) values:
here the sextic oscillator and the infinite square well seem
to yield similar ratios, while the numbers obtained from the

where the37 are obtained from (13) with the choice of the " potential are systematically higher. This might be due
“+” sign. With this the two potentials have their minima at to the fact that the sextic oscillator potential goes to infinity

the same energy, but they take on different values at the orfsteeper than thg" potential, so the asymptotic behaviour of
gin_ Illustrations for possib|e potentia' Shapes and for théts WaVerncuonS can be C|Oser to that Of the Wa.VefunCUonS

dependence of the energy levelsoandb the reader should ©f the infinite square well.

consult Ref. 11.

For further examples we consider some even Ru isotopes

The electric quadrupole transition rates can also be detepearA = 104, which is also thought to be located at a phase
mined analytically by calculating the matrix elements of thetransition from the spherical to the-unstable domain [14].

transition operator [3, 7]
TE2) — tan, =t3 [Df% coSs 7y

+ 2*1/2(D(2,)2 + DLQZQ) siny| .

y (15)

The radial integrals that appear in thevariable in the ma-

In particular, we analyze th&#2—196Ry isotopes by fitting
thea andb parameters to the excitation energies of their low-
lying collective states. Table Il contains the energy of these
states (in keV) and the fitted parameterandb. All the in-
dicated states were considered with equal weight in the fits,
except for those with ambiguou$ assignments, which were
taken with half the weight of the others. Let us now comment

trix elements of(®2) can again be determined using (9). In on the results for each isotope separately.
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FIGURE 2. The low-lying experimental and calculated energy
spectrum of thé®?Ru nucleus (upper panel) and the corresponding
potential (lower panel). The scales in the lower panelare
(arbitrary unit) andy = E, (keV).

FIGURE 3. The same as Fig. 2 fdf*Ru. The solid and the dashed
lines correspond ta™ () andu™ (3), respectively.

atg3 = 0. The'%*Ru nucleus has been suggested as an exam-

For 102Ru the naive fit has resulted in a sma#igative  ple for a phase transition form the spherical to4henstable
value fora, which is clearly incompatible with a normaliz- domain [14]. As opposed to the case of the harmonic po-
able solution (5). The reason why a negativeas obtained tential for '92Ru, here the two potential curves (5) and
lies in the relative position of the levels, , and E; o: for  u~ () slightly differ.
12RUE, o — B 2 = 2(b*+10a)/? —2b (see Table I) should The trend of the: andb parameter continues for tA&Ru
be negative based on the experimental data, which would reycleus, as can be seen from Table Ill, and this is also re-
quire a negativer. Therefore we considered = 0, which  flected in Fig. 4. Nowb?> — 4ac is negative, and this corre-
corresponds to the harmonic limit. This nucleus, in fact, issponds to a potential with a local minimum/at> 0. (This
close to the harmonic vibrator, as can be seen from Fig. 2. s natural, as now the coefficient of the quadratic term is neg-
has to be noted that thie, , — E » energy difference is pos- ative, so the potential curve has negative derivative close to
itive for potentials with a dominant termt", N > 2[15,16],  the origin.) Theu(3) resembles even more to a flat-bottomed
and this is fully in line with our analytical results. potential expected at a phase transition. Based on this finding

In %“Ru B, o > E1 2, and we obtain a positive. The  alone,'’Ru could also be associated with an E(5) symmetry.
shape of the potential in Fig. 3 is still close to the har-It has to be noted, however, that this nucleus is less well-
monic limit, but it is flatter. This is due to the smaller (but known experimentally€.g. no B(E2) values are known)
still positive) coefficient of the quadratic term of the poten-than its neighbors, so there is less ground to compare its spec-
tial (b2 — 4ac). As discussed in the previous Section, such aroscopic properties with the key numbers associated with the
combination ofz andb results in a potential with a minimum E(5) symmetry.
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the flexible nature of the sextic oscillator and confirm its use-

fulness in the analysis of realistic nuclei. Work is in progress

(ev) to calculate further spectroscopic data, such as electromag-
3+ — netic transition rates.

2 | . 4. Summary and outlook

We have shown that the sextic oscillator proposed previously
— @ —24 for application in the Bohr Hamiltonian asyaindependent
—2 —2 potential is indeed capable of describing realistic nuclear
spectra and can also account for the fine effects associated
with them, such as phase transition through critical points.
This is due to its flexible shape that can reproduce poten-
Exp. Th. tials with minimum ats = 0 and > 0 alike, furthermore,
in the latter case a local maximum can also be obtained at
. 0 < Bmax < Pmin- INn addition to the energy eigenvalues and
the wavefunctions, thB(E2) rates can also be calculated an-
alytically in this model, and this makes the sextic oscillator
potential a valuable tool in the analysis of collective nuclear
phenomena.

The model can be extended further along various lines.
Allowing larger values forM in (4) higher states can also be
included in the spectrum. (Fdd = 2 these arg, 7 = 1,0;
1,1;1,2;1,3;2,0;2,1))

The flexible shape might be used to describe nuclei cor-
ks / responding to other symmetries (X(5)), where local min-
/4 ima and maxima are expected to occuruf3). For this
of a y-dependent potential term also has to be included in the
— Bohr Hamiltonian, so the exact analytic results have to be
combined with approximations usually applied in this situa-
tion [5,17].

" Finally, there are further quasi-exactly solvable potentials
with an z~2-type term, and these can also be applied in the
Bohr Hamiltonian.

4000

2000

-1000

-2000 1

FIGURE 4. The same as Fig. 3 fdf*Ru.

Based on the results for the three Ru isotopes discusseficknowledgments
here we can establish that in accordance with the expectations
the changes in the spectrum and in the corresponding poteiihis work was supported by the OTKA grant No. T37502
tial are in line with a transition from the spherical vibrator to (Hungary). The author thanks J.M. Arias for the valuable
the deformedy-unstable phase. The results also demonstratdiscussions on the topic.
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