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Exact analytic description of nuclear shape phase transitions
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We apply the sextic oscillator as aγ-independent potential in the Bohr Hamiltonian and present exact analytic results for the energy eigenval-
ues and wavefunctions of the lowest few levels. Further properties, such as the flexible shape of the potential are also discussed. As illustration
a potential reproducing the spectroscopic properties of the134Ba nucleus, the first candidate for the E(5) symmetry is constructed. Fits to
the energy spectrum of the102Ru, 104Ru and106Ru isotopes are also presented, and it is shown that in this region the potential undergoes
changes characteristic for a transition from the spherical vibrator to the deformedγ-unstable domain. Possible generalizations of the model
are also pointed out.
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En este trabajo aplicamos el oscilador sextico como un potencial independiente de la variableγ en el Hamiltoniano de Bohr y presentamos re-
sultados analı́ticos para los valores propios y las funciones propias de los niveles de menor energı́a. Se discuten igualmente otras propiedades
como la forma flexible del potencial. A manera de ilustración, se construye un potencial que reproduce las propiedades espectroscópicas
del ńucleo134Ba, siendo esta el primer candidato de simetrı́a E(5). Se presentan ajustes al espectro energético de los iśotopos102Ru, 104Ru
y 106Ru y se muestra que en esta región el potencial sufre cambios caracterı́sticos de la transición de vibrador esférico al dominio deγ
inestable. Se mencionan las posibles generalizaciones del modelo.

Descriptores: Forma del nucleo; colectividad cuadrupolar; potenciales con solucion cuasi-exacta.

PACS: 21.10.Re; 03.65.Ge

1. The Bohr Hamiltonian and various nuclear
shape phases

In one of the fundamental models in nuclear physics the nu-
cleus is pictured as a liquid drop that undergoes collective
oscillations. The Hamiltonian describing this phenomenon
contains a kinetic term and a potential that keeps the nucleus
in the vicinity of stable configurations that correspond to var-
ious nuclear shapes. When only the quadrupole mode is con-
sidered, the Hamiltonian reduces to an operator containing
vibrational and rotational kinetic terms depending on theβ
andγ shape variables, and a potential termV (β, γ) that is
the function of the same variables in general [1]
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The minima of theV (β, γ) potential correspond to equi-
librium nuclear shapes. In spherical nuclei the minimum is at
β = 0, while in the case of deformed nucleiβ (andγ) have
finite equilibrium values. An interesting case is that of theγ-
unstable nuclei, for which the potential is assumed to depend
only onβ. The most characteristic shapes also correspond to
various dynamical symmetries associated with the Interact-
ing Boson Model [2], which focuses on the quadrupole exci-
tation of nuclei: the U(5), SU(3) and O(6) symmetries cor-
respond to vibrational, axially deformed rotor andγ-unstable
deformed nuclei, respectively.

More recently further symmetries have also been associ-
ated with certain types ofV (β, γ) potentials. First the E(5)
symmetry was proposed [3], which is expected to occur as
the nuclear shape evolves from the spherical to theγ-unstable
domain, as one moves along an isotope chains for example.
Starting from the spherical side the potential, which in this
case is thought to depend only on theβ variable has a mini-
mum atβ = 0, while in theγ-unstable domain the minimum
should appear atβ > 0. In the transition between these two
domains one expects that there is a potential shape in which
the two minima are nearly degenerate and are separated by
a small barrier only. In Ref. 3 this is defined as a critical
point, and the corresponding potential is approximated with
a square well, which is flat in the allowed region and then
abruptly reaches infinity. This potential is solvable exactly,
and it yields characteristic ratios of the excitation energies of
various states, and of the strength of electromagnetic tran-
sitions between them. These numbers corresponding to the
E(5) symmetry can then be compared with the experimen-
tally observed data in order to locate nuclei associated with
this symmetry.

In order to describe this situation with the Bohr Hamil-
tonian, the potential is assumed to beγ-independent
V (β, γ) = U(β), which allows the separation of the vari-
ables as

Ψ(β, γ, θi) = β−2φ(β)Φ(γ, θi) . (2)
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Eventually this leads to a one-dimensional Schrödinger-like
equation

−d2φ

dβ2
+

(
(τ + 1)(τ + 2)

β2
+ u(β)

)
φ = εφ , (3)

whereε = (2B/~2)E, u(β) = (2B/~2)U(β), andτ is a
quantum number originating from theγ-dependent part of
the wavefunction, and plays a role in this five-dimensional
setting as thel orbital angular momentum does in the case
of three-dimensional problems. Its allowed values have been
determined in Ref. 4.

In the present paper we analyze the exact solutions of
Eq. (3), and in particular, we propose the application of the
sextic oscillator in the Bohr Hamiltonian. We do not deal
with potentials that depend on theγ variable also: in this
case further assumptions have to be made in order to obtain
approximate solutions. For a review on the subject see,e.g.
Ref. 5.

2. The sextic oscillator as aγ-independent po-
tential

There are only a handful of radial potentials that possess ana-
lytic solution in the presence of centrifugal type term, which
originates from the kinetic part of the Hamiltonian. Such a
term, (τ + 1)(τ + 2)β−2 also appears in the radial equa-
tion (3), so it is straightforward to apply those potentials in
it, which are solvable for arbitrary angular momentum in
the three-dimensional radial Schrödinger equation. The most
trivilal examples are the harmonic oscillator [6] and square
well [7] potentials, which are solvable in terms of generalized
Laguerre polynomialsL(α)

n (z) and Bessel functionsJν(z),
respectively. One further trivial example is the Coulomb po-
tential (also solvable in terms ofL(α)

n (z)), the application of
which appears less useful in the Bohr Hamiltonian due to its
asymptotic behaviour. The Davidson and the Kratzer poten-
tials are straightforward generalizations of the harmonic os-
cillator and Coulomb potentials in such a way that aβ−2-type
term appears in them, which can be treated together with the
centrifugal term. In technical terms this means that equa-
tion (3) is solved formally with non-integer values ofτ (or l
in three dimensions). These latter two potentials have been
applied in the Bohr Hamiltonian in Refs. 8 and 9.

This is the complete list of potentials for which the so-
lution can be given for any state with arbitraryτ and node
number. There are, however, some potentials for which exact
solutions can be given for a limited number of states. These
potentials are called quasi-exactly solvable (QES) [10], and
they can be solved exactly up to a finite value of the prin-
cipal quantum number (node number). The general solu-
tions of these potentials are written in terms of power series,
which, however, can be reduced to polynomials for the first
few states with special choices of the potential parameters.

The first application of QES potentials in the Bohr Hamil-
tonian was proposed in Ref. 11, where the sextic oscillator

was considered. This is probably the best known example
for the QES potentials, and its conventional form in a radial
equation is [10]
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wherex ∈ [0,∞) andM is a non-negative integer. For any
value ofM , M + 1 solutions of (4) can be obtained in an al-
gebraic way. The (unnormalized) solutions are written in the
form

φn(x) = Pn(x2)(x2)s− 1
4 exp

(
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4
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2
x2

)
,

n = 0, 1, 2, . . . (5)

wherePn is a polynomial of ordern, anda ≥ 0 is required
for the proper normalization of the solutions. Fora = 0 (4)
reduces to the harmonic oscillator, andPn in (5) turns into
L

(α)
n .

The simplest solutions are obtained forM = 0 and
M = 1 [10]. For M = 0 only one nodeless (i.e. ground-
state) solution appears atE

(M=0)
0 = 4bs, with the corre-

sponding wavefunction being
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4 exp
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)
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For M = 1 two solutions appear, one nodeless, and an-
other with one node forx > 0. These correspond to the
ground-state and the first excited state, respectively, at ener-
giesE

(M=1)
0 = 4bs + λ−(s) andE

(M=1)
1 = 4bs + λ+(s),

where
λ±(s) = 2b± 2(b2 + 8as)1/2 (7)

are the roots of the equationλ2 − 4bλ − 32as = 0. The
corresponding wavefunctions are
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and theλ = λ−(s) andλ = λ+(s) choice has to be made
for n = 0 andn = 1, respectively [10]. (Note thata ≥ 0
ands ≥ 0 imply λ−(s) ≤ 0, so the polynomial part of (8)
is nodeless.) It has to be mentioned that the solutions for
M = 0 andM = 1 belong todifferentsextic potentials ifs is
the same, as the coefficient of the quadratic term is different
then. We shall see, however, that with appropriate combina-
tions ofs andM it is possible to solve sextic potentials that
differ only in the strength of the centrifugal term.

The normalization of the wavefunctions can also be given
in closed form. For this one has to evaluate integrals of the

Rev. Mex. F́ıs. S52 (1) (2006) 75–81



EXACT ANALYTIC DESCRIPTION OF NUCLEAR SHAPE PHASE TRANSITIONS 77

type
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where Dp(z) is the parabolic cylinder function and
U(α, β; z) is one of the forms of the confluent hypergeomet-
ric function [12].

Larger values ofM can also be considered (e.g. for
M = 2 three different solutions are obtained for the three
roots of a cubic algebraic equation forλ), but M = 0 and
M = 1 are sufficient to describe the most important collec-
tive states.

In order to apply the sextic oscillator in Eq. (3) it is neces-
sary to identifys with τ/2+5/4 (to account for the centrifu-
gal term) and to set the coefficient of the quadratic term to a
constant value for each state. These requirements together set
a condition for the combination ofτ andM in the following
way:

s + M +
1
2

=
1
2

(
τ + 2M +

7
2

)
≡ c = const. (11)

In practical terms this means thatM , which runs from 0 to a
finite positive integer value determining the number of solu-
tions is uniquely related to theτ quantum number. In partic-
ular, increasingM with one unit corresponds to decreasing
τ with 2. This also means that the constantc in (11) must
be different for even and odd values ofτ , sinceτ + 2M is
even and odd in the two cases, respectively. This also implies
that the coefficient of the quadratic term also depends on the
parity of τ , however, the magnitude of this difference can be
minimized with respect to that of the quartic and sextic terms
with appropriate choice ofa andb. For b2 > 10a, for exam-
ple, this deviation becomes marginal.

With all these considerations the sextic oscillator Hamil-
tonian can be cast in the following form of (3) withu(β)
being

uπ(β) = (b2 − 4acπ)β2 + 2abβ4 + a2β6 + uπ
0 , (12)

where the indexπ = +/− is included to distinguish the po-
tential for even/oddτ ’s. We have also introduced a constant
uπ

0 in order to control the relative position of theτ -even and
τ -odd part of the spectrum.

For illustration let us consider the case withM = 0 and 1,
which allows solutions with node number 0 and 1 (ξ = 1
and 2 in the conventional notation) andτ = 0, 1, 2 and 3.
Table I contains the explict form of the energy and radial
wave function of the first few levels, while Fig. 1 displays
the schematic structure of the spectrum.

TABLE I. Explicit form of the lowest few energy eigenvalues and
wavefunctions forM=0 and 1 withc = 11/4 for τ even and
c = 13/4 for τ odd. Note thatλ± = 2b ± 2(b2 + 10a)1/2 and
λ̃± = 2b± 2(b2 + 14a)1/2, while u−0 is defined in Eq. (14).

ξ τ M Eξ,τ φξ,τ/ exp(−aβ4

4
− bβ2

2
)

1 0 1 5b + λ− N10β
2(1− λ−/10β2)

1 1 1 7b + λ̃− + u−0 N11β
3(1− λ̃−/14β2)

1 2 0 9b N12β
4

1 3 0 11b + u−0 N13β
5

2 0 1 5b + λ+ N20β
2(1− λ+/10β2)

2 1 1 7b + λ̃+ + u−0 N21β
3(1− λ̃+/14β2)

FIGURE 1. Schematic typical spectrum for the sextic oscillator
with indication of the relevant quantum numbers.

Let us now analyze the different potential shapes that
can be produced by different choices of the parameters in
Eq. (12). From (12) we find that the shape of the poten-
tial uπ(β) depends on the sign ofb2 − 4acπ andb, which set
the coefficients of the quadratic and quartic terms. (The co-
efficient of the leading sextic term is always positive.) When
b2 > 4acπ andb > 0 hold (i.e. for b > 2(acπ)1/2), the poten-
tial has a minimum atβ = 0 and it increases monotonously
with β. When b2 < 4acπ, irrespective of the sign ofb
(i.e. for −2(acπ)1/2 < b < 2(acπ)1/2), a minimum ap-
pears forβ > 0, while for b2 > 4acπ andb < 0 (i.e. for
b < −2(acπ)1/2), first a maximum appears and then a min-
imum asβ increases. In all three cases the exact location of
the extremal point(s) can be obtained from the real and posi-
tive solutions of

(βπ
0 )2 =

1
3a

[−2b± (b2 + 12acπ)1/2] . (13)

Due to the relatively small difference inc+ andc−, the
τ -even andτ -odd potentials have the same types of extrema
at about the sameβ, except for some peculiar combinations
of a andb. Assuming that there are no complications of this
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TABLE II. Ratios of some energy eigenvalues and electric quadrupole transition strengths from the sextic oscillator witha = 40000, b = 200,
the infinite square well [3] and theβ4 potential [13], together with the experimentally observed quantities for134Ba.

E(4+
1,2)

E(2+
1,1)

E(0+
2,0)

E(2+
1,1)

E(6+
1,3)

E(2+
1,1)

B(E2;4+
1,2→2+

1,1)

B(E2;2+
1,1→0+

1,0)

B(E2;2+
2,0→2+

1,1)

B(E2;2+
1,1→0+

1,0)

B(E2;0+
1,3→2+

1,2)

B(E2;2+
1,1→0+

1,0)

sextic osc. 2.39 3.68 3.70 1.70 1.03 2.12

E(5) 2.20 3.03 3.59 1.68 0.86 2.21

β4 2.09 2.39 3.27 1.82 1.41 2.52
134Ba (exp.) 2.31 3.57 3.65 1.56(18) 0.42(12)

TABLE III. Excitation energies (in keV) for the lowest few states
of the102Ru,104Ru and106Ru isotopes, and the parametersa andb
obtained from a fit to the spectrum. Energies in parenthesis account
for levels with ambiguousJπ assignment.

Jπ ξ τ 102Ru 104Ru 106Ru

2+
1 1 1 475 358 270

2+
2 1 2 1103 893 792

4+
1 1106 888 (715)

0+
2 1 3 1837

3+
1 1522 1242 (1092)

4+
2 (1799)

6+
1 1863 1556 (1296)

0+
3 2 0 944 988 991

a [0] 1496 4190

b 283 216 143

kind, we can now return to the question of renormalizing
the minima of theτ -even andτ -odd potentials. Forb >
2(acπ)1/2, π = +, − the minima of the two potentials will
beu+

0 andu−0 at β = 0, so they coincide ifu+
0 = u−0 holds.

For b < 2(acπ)1/2 we can equate the minima ofu+(β) and
u−(β) if we setu+

0 = 0 and

u−0 = (b2 − 11a)(β+
0 )2 − (b2 − 13a)(β−0 )2

+ 2ab[(β+
0 )4 − (β−0 )4] + a2[(β+

0 )6 − (β−0 )6], (14)

where theβπ
0 are obtained from (13) with the choice of the

“+” sign. With this the two potentials have their minima at
the same energy, but they take on different values at the ori-
gin. Illustrations for possible potential shapes and for the
dependence of the energy levels ona andb the reader should
consult Ref. 11.

The electric quadrupole transition rates can also be deter-
mined analytically by calculating the matrix elements of the
transition operator [3,7]

T (E2) = tα2µ = tβ
[
D

(2)
µ,0 cos γ

+ 2−1/2(D(2)
µ,2 + D

(2)
µ,−2) sin γ

]
. (15)

The radial integrals that appear in theβ variable in the ma-
trix elements ofT (E2) can again be determined using (9). In

order to obtain thetotal matrix elements, one has to calculate
also the components depending onγ and the Euler angles
θi. This can be done following the techniques described in
Ref. 4. These parts introduce certain selection rules not only
for the angular momenta, but also forτ , i.e. ∆τ = ±1.

3. Illustration for selected nuclei

As an illustrative first application of the sextic oscillator as
a γ-independent potential the low-lying spectrum and the
B(E2) rates of the134Ba nucleus, the first candidate for
the E(5) symmetry were approximated with (12), taking
a = 40000 and b = 200 [11]. These parameters result in
a potential that has a shallow local minimum atβ > 0 and
a relatively flat bottom, so it has features that are expected
from a nucleus with E(5) symmetry.

In Table II we summarize the ratio of the most impor-
tant energy eigenvalues and those of the most characteris-
tic B(E2) transition rates obtained from the sextic oscillator
with parametersa = 40000, b = 200, the infinite square well
potential [3] and the numerically solvedβ4 potential [13] to-
gether with the corresponding experimental values for134Ba,
whenever available. It is seen that the energy ratios corre-
sponding to the E(5) symmetry systematically fall between
the values of theβ4 potential and the sextic oscillator. The
situation is less obvious for the ratio of theB(E2) values:
here the sextic oscillator and the infinite square well seem
to yield similar ratios, while the numbers obtained from the
β4 potential are systematically higher. This might be due
to the fact that the sextic oscillator potential goes to infinity
steeper than theβ4 potential, so the asymptotic behaviour of
its wavefunctions can be closer to that of the wavefunctions
of the infinite square well.

For further examples we consider some even Ru isotopes
nearA = 104, which is also thought to be located at a phase
transition from the spherical to theγ-unstable domain [14].
In particular, we analyze the102−106Ru isotopes by fitting
thea andb parameters to the excitation energies of their low-
lying collective states. Table III contains the energy of these
states (in keV) and the fitted parametersa andb. All the in-
dicated states were considered with equal weight in the fits,
except for those with ambiguousJπ assignments, which were
taken with half the weight of the others. Let us now comment
on the results for each isotope separately.
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FIGURE 2. The low-lying experimental and calculated energy
spectrum of the102Ru nucleus (upper panel) and the corresponding
potential (lower panel). The scales in the lower panel arex = β
(arbitrary unit) andy = Ex (keV).

For 102Ru the naive fit has resulted in a smallnegative
value fora, which is clearly incompatible with a normaliz-
able solution (5). The reason why a negativea was obtained
lies in the relative position of the levelsE2,0 andE1,2: for
102RuE2,0−E1,2 = 2(b2+10a)1/2−2b (see Table I) should
be negative based on the experimental data, which would re-
quire a negativea. Therefore we considereda = 0, which
corresponds to the harmonic limit. This nucleus, in fact, is
close to the harmonic vibrator, as can be seen from Fig. 2. It
has to be noted that theE2,0−E1,2 energy difference is pos-
itive for potentials with a dominant termxN , N > 2 [15,16],
and this is fully in line with our analytical results.

In 104Ru E2,0 > E1,2, and we obtain a positivea. The
shape of the potential in Fig. 3 is still close to the har-
monic limit, but it is flatter. This is due to the smaller (but
still positive) coefficient of the quadratic term of the poten-
tial (b2 − 4ac). As discussed in the previous Section, such a
combination ofa andb results in a potential with a minimum

FIGURE 3. The same as Fig. 2 for104Ru. The solid and the dashed
lines correspond tou+(β) andu−(β), respectively.

atβ = 0. The104Ru nucleus has been suggested as an exam-
ple for a phase transition form the spherical to theγ-unstable
domain [14]. As opposed to the case of the harmonic po-
tential for 102Ru, here the two potential curvesu+(β) and
u−(β) slightly differ.

The trend of thea andb parameter continues for the106Ru
nucleus, as can be seen from Table III, and this is also re-
flected in Fig. 4. Nowb2 − 4ac is negative, and this corre-
sponds to a potential with a local minimum atβ > 0. (This
is natural, as now the coefficient of the quadratic term is neg-
ative, so the potential curve has negative derivative close to
the origin.) Theu(β) resembles even more to a flat-bottomed
potential expected at a phase transition. Based on this finding
alone,106Ru could also be associated with an E(5) symmetry.
It has to be noted, however, that this nucleus is less well-
known experimentally (e.g. no B(E2) values are known)
than its neighbors, so there is less ground to compare its spec-
troscopic properties with the key numbers associated with the
E(5) symmetry.

Rev. Mex. F́ıs. S52 (1) (2006) 75–81



80 G. LÉVAI

FIGURE 4. The same as Fig. 3 for106Ru.

Based on the results for the three Ru isotopes discussed
here we can establish that in accordance with the expectations
the changes in the spectrum and in the corresponding poten-
tial are in line with a transition from the spherical vibrator to
the deformedγ-unstable phase. The results also demonstrate

the flexible nature of the sextic oscillator and confirm its use-
fulness in the analysis of realistic nuclei. Work is in progress
to calculate further spectroscopic data, such as electromag-
netic transition rates.

4. Summary and outlook

We have shown that the sextic oscillator proposed previously
for application in the Bohr Hamiltonian as aγ-independent
potential is indeed capable of describing realistic nuclear
spectra and can also account for the fine effects associated
with them, such as phase transition through critical points.
This is due to its flexible shape that can reproduce poten-
tials with minimum atβ = 0 andβ > 0 alike, furthermore,
in the latter case a local maximum can also be obtained at
0 < βmax < βmin. In addition to the energy eigenvalues and
the wavefunctions, theB(E2) rates can also be calculated an-
alytically in this model, and this makes the sextic oscillator
potential a valuable tool in the analysis of collective nuclear
phenomena.

The model can be extended further along various lines.
Allowing larger values forM in (4) higher states can also be
included in the spectrum. (ForM = 2 these areξ, τ = 1,0;
1,1; 1,2; 1,3; 2,0; 2,1.)

The flexible shape might be used to describe nuclei cor-
responding to other symmetries (X(5)), where local min-
ima and maxima are expected to occur inu(β). For this
a γ-dependent potential term also has to be included in the
Bohr Hamiltonian, so the exact analytic results have to be
combined with approximations usually applied in this situa-
tion [5,17].

Finally, there are further quasi-exactly solvable potentials
with anx−2-type term, and these can also be applied in the
Bohr Hamiltonian.
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