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Elastic electron scattering by water molecules

J.L.S. Lino
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We report an application of the Schwinger variational principle with plane waves as a trial basis set. Differential cross sections are obtained
for e−- H2O from 10 to 50 eV. In these studies the exchange potential is evaluated by the Born-Ochkur model and our results are found to be
in reasonable agreement with experimental data and theoretical studies.
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Se analiza una aplicación del principio variacional de Schwinger desde la perspectiva de ondas planas para un conjunto base usando un
modelo Born-Ochkur. El proṕosito de este trabajo es mostrar la sección eficaz para e− - H2O en el intervalo de 10 - 50 eV. Los resultados se
comparamos con los experimentos.

Descriptores: Excitacíon molecular; dispersión eĺastica de electrones; principio variacional.
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1. Introduction

An electron collision with a water molecule is a fundamental
process in various fields such as radiation physics and avail-
able chemistry, atmospheric physics and astrophysics [1].
A water molecule can be used as a representative target in
the theory of electron collision with polyatomic molecules,
which are characterized by a multicentred nature and a long-
range force due to a dipole or other multipole moment. In
addition to the pioneering work of Bruche [2], measure-
ments of total cross sections have been reported by sev-
eral groups such as Sokolov and Sokolova [3], Sueokaet
al. [4], Szmytkovski [5], Zeccaet al. [6], and Nishimura and
Yano [7]. Differential cross sections for elastic scattering and
vibrational excitation were reported by Junget al. [8], Danjo
and Nishimura [9], Shyn and Cho [10] and Johnstone and
Newell [11]. On the theoretical side, there are several stud-
ies using more sophisticated treatments, including the static-
exchange-polarization model potential approach of Jain and
Thompson [12], the static-exchange Schwinger multichannel
method (SMC) of Brescansinet al. [13], the local modified
semi-classical exchange of Gianturco and Scialla [14], the
complex Kohn variational method of Rescigno and Lengs-
field [15], and the iterative Schwinger variational method
used by Machadoet al. [16]. In the present paper, elastic
electron scattering by H2O is studied using the Schwinger
variational principle with plane waves as a trial basis set
(SVP-PW) [17]. Recently, we have shown that the SVP-
PW for scattering theory is an effective approach to electron-
molecule collisions [18, 19]. The main limitation of the
Schwinger variational principle lies in what makes it a gen-
eral method: the expansion of the scattering function is done
in an L2 basis (Cartesian Gaussian functions) and this is
very effective only for short-range potentials (the Schwinger
method requires a good description of the scattering wave-
function only in the region where the potential is non-zero
and, as most nonlinear molecules have dipole moments, the

long range of such potentials can make it difficult to ade-
quately represent the trial function in an L2 basis only). Our
implementation of plane waves as a trial basis set can be de-
sirable to adequately represent, for example, the long range
regions (the attempt to deal with long range potentials using
a Schwinger-type method was originally proposed by Kol-
srud [20] and subsequently discussed more fully by Takat-
suka and McKoy [21] and Taoet al. [22] for electron scatter-
ing, and by Lino for positron scattering [23,24]).

In the present study we have investigated the SVP-PW to
e−- H2O in the region of collision below 50 eV. In addition
to the static interaction, we have here considered the effect
of including exchange by replacing the first Born approxima-
tion (FBA) used in the SVP-PW by FBA + g where “g” is the
Ochkur amplitude [25]. The present study has several goals:
first, to our knowledge, no theoretical study using the SVP-
PW with the Born-Ochkur approximation for e− - H2O, has
been presented; second, a fixed-nuclei treatment of electron
scattering by polar molecules is well known to lead to diver-
gent cross sections. This is an essential property of the dipole
potential and can usually be remedied by introducing the ro-
tational motion of the target molecule [15]. The usual strat-
egy for the dilemmas caused by the electron-target (polar) is
to use a hybrid treatment in which only the low order partial-
wave components of the T-matrix are determined from vari-
ational calculations, and the higher order terms are included
in the Born approximation via a closure formula [15]. As we
have recently shown [19], the SVP-PW typically uses the first
Born approximation (FBA) and this fact has evidently been
appreciated. We shall see that our conclusion regarding the
use of SVP-PW to the calculation of scattering cross sections
e−- H2O is encouraging.

The organization of this paper is the following. In Sec. 2
the theory is described, our calculated results and discussions
are presented in Sec. 3, and Sec. 4 summarizes our conclu-
sions.
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2. Theoretical formulation

Details of the Schwinger variational principle (SVP) of
electron-molecule collisions have been discussed else-
where [26], and only a brief outline will be given here. The
Hamiltonian for the collision can be written as

H = (HN + TN+1) + V = Ho + V (1)

where HN is the target Hamiltonian, TN+1 is the kinetic en-
ergy operator of the incident electron, and V is the interaction
potential between the incident electron and the target. The
total scattering wave function satisfies the Schrödinger equa-
tion

(E −H)Ψ(±)
~k

= 0 (2)

In the SVP for electron-molecule elastic scattering, the bilin-
ear variational form of the scattering is

[f(~kf ,~ki)] = − 1
2π
{〈S~kf

| V | Ψ(+)
~ki
〉

+〈Ψ(−)
~kf

| V | S~ki
〉 − 〈Ψ(−)

~kf
| V − V G

(+)
P V | Ψ(+)

~ki
〉} (3)

Here| S~ki
〉 is the input channel state represented by the prod-

uct of a plane wave~ki times| Φ0〉, the initial (ground) target
state.| S~kf

〉 has an analogous definition, except that the plane

wave points to~kf , V is the interaction between the incident
electron and the target,G(+)

P is the projected Green’s func-
tion, written as in Ref. 26:

G
(+)
P =

∫
d3k

| Φ0
~k〉〈~kΦ0 |

(E −H0 + iε)
, (4)

H0 is the Hamiltonian for the N electrons of the target plus the
kinectic energy of the incident electron, andE is total energy
of the system (target + electron). The scattering states| Ψ(+)

~ki
〉

and〈Ψ(−)
~kf

| are products of the target wave function| Φo〉
and one-particle scattering wave function. The initial step in
our SVP calculations is to expand the one-particle scattering
wave functions as a combination of plane waves. So, for elas-
tic scattering, the expansion of the scattering wave function
is done in a discrete form as

| Ψ(+)
~ki
〉 =

∑
m

am(~km) | Φ0
~km〉 (5)

| Ψ(−)
~kf
〉 =

∑
n

bn(~kn) | Φ0
~kn〉. (6)

The inclusion of these definitions in Eq. (3), and the ap-
plication of a stationarity condition [27] with respect to the
coefficients gives the working form of the scattering ampli-
tude:

[f(~kf ,~ki)] = − 1
2π

×
(∑

mn

〈S~kf
| V | Φ0

~km〉(d−1)mn〈~knΦ0 | V | S~ki
〉
)

, (7)

where

dmn = 〈Φ0
~km | V − V G

(+)
P V | Φ0

~kn〉. (8)

We have implemented a set of computational programs to
evaluate all matrix elements of Eq. (7). The G(+)

P is the
projeted outgoing-wave Green’s function and P is the target-
space unit operator

P =
∑

`

∫
| Φ`〉〈Φ` |= 1, (9)

where P is truncated and carries only energetically open
bound state channels [26]. The importance of the accurate
determination of Green’s function matrix elements in molec-
ular collision physics has been felt over the years. The cal-
culation of the VGV term presents the more expensive step
in the SVP-PW code and demands almost the entire compu-
tational time of the scattering calculations. As prescribed by
Lima et al. [26], the evaluation of the remaining terms in-
volving the Green’s functions can be done numerically in the
linear-momentum space as [26, 27] of the one-particle unit
operator; however, the matrix element

〈Φ0
~km | V G

(+)
P V | Φ0

~kn〉 (10)

used in Eq.(8) is done by direct numerical quadrature and can
be rewritten as

open∑

`

∞∫

o

dk
2k2

k2
` − k2

g`
~km

~kn
(k), (11)

where

g`
~km

~kn
(k)=

∫
dΩ~k〈Φo

~km|V |Φo
~k〉〈~kΦo|V |Φo

~kn〉, (12)

and the functiong`
~km

~kn
(k) is essentially an angular integra-

tion of first Born terms with different magnitude of~k’s (off-
shell terms). The difficulty in evaluating the Eq. (10), asso-
ciated with possible discontinuities, has been examined and
treated in a similar way to the subtraction method [26]. We
just add and subtract the expression

2k2

k2
` − k2

g`
~km

~kn
(k`)

to Eq. (11) where the subtracted term makes the integra-
tion smoother (since the numerator and the denominator of
the composed expression will vanish simultaneously fork’s
aroundk`) and the added term is evaluated analytically. The
convergence of this procedure could also be assessed by nu-
merical quadrature. In our implementation we use two dif-
ferent quadratures for~km and~kn to avoid situations where
| ~km − ~kn | are too small [28]. Our discrete representation
of the scattering wave function [given by Eqs. (5) and (6)] is
made only in two-dimensional space (spherical coordinates,
using Gaussian quadratures forθ andφ and the on-shell k
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value for the radial coordinate). When exchange effects are
to be considered in electron scattering, the first Born approx-
imation (FBA) used is replaced by

fBorn−Ochkur = fFBA + g, (13)

whereg is the exchange amplitude in the Ochkur approxi-
mation [25].

3. Applications

In this section, we test the SVP-PW procedure for the H2O
molecule. In the present work for the self consistent-field
(SCF), we have a chosen basis set as in Ref. 13. This basis
gives an SCF energy of -76.05 a.u. and a calculated dipole

FIGURE 1. Elastic DCS for e−- H2O scattering at 10 eV.
Present results (SVP-PW): solid line; iterative Schwinger varia-
tional method used by Machadoet al. [16]: dashed line; experi-
mental data [9,10]: black circle.

FIGURE 2. Elastic DCS for e−- H2O scattering at 15 eV.
Present results (SVP-PW): solid line; iterative Schwinger varia-
tional method used by Machadoet al. [16]: dashed line; theo-
retical studies of Okamotoet al. [30]: dotted line; experimen-
tal data [9,10]: black circle; experimental data of Danjo and
Nishimura [9]: triangle.

FIGURE 3. Elastic DCS for e−- H2O scattering at 20 eV. Present
results (SVP-PW): solid line; Schwinger multichannel method used
by Brescansinet al. [13]: dashed line; theoretical studies of
Okamotoet al. [30]: dotted line; experimental data [9,10]: tri-
angle.

FIGURE 4. Elastic DCS for e−- H2O scattering at 30 eV.
Present results (SVP-PW): solid line; iterative Schwinger varia-
tional method used by Machadoet al. [16]: dashed line; experi-
mental data of Danjo and Nishimura [9]: triangle.

moment of 0.78 a.u. compared with the experimental value
of 0.72 [29]. We have selected representative results on
differential cross sections, mostly where experimental data
and/or other calculations are available for comparison and
our calculations are performed within the framework of the
fixed-nuclei approximation.

In Fig. 1 we compare our calculated differential cross sec-
tions (DCS) for elastic e−- H2O scattering at 10 eV with the
measurements of Shyn and Cho [9], and the theoretical re-
sults of Machadoet al. [16], using the iterative Schwinger
variational method. As expected for a polar molecule, our
cross sections show very strong forward-peaking (our results
also show the backward enhancement in the DCS). Agree-
ment between our calculated cross sections and available ex-
perimental data is generally good. On the other hand, it
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FIGURE 5. Elastic DCS for e−- H2O scattering at 50 eV. Present
results (SVP-PW): solid line; experimental data of Danjo and
Nishimura [9]: triangle.

should be noted that, although the method used by Machado
et al. [16] is essentially equivalent to our SVP-PW, the dis-
crepancies between the two calculations at large scattering
angles can possibly be attributed to our Born-Ockur model
(sensitivity of exchange model potential). In Fig. 2 we com-
pare our calculated differential cross sections (DCS) for elas-
tic e− - H2O scattering at 15 eV with the measurements of
Danjo and Nishimura [9], Shyn and Cho [10] and theoretical
results of Okamoto, and Itikawaet al., using the combined
free-gas plus correlation- polarization [9, 30], and Machado
et al. [16]. As in Fig. 1, our results agree well with ex-
perimental data [9] and theoretical studies of Okamoto, and
Itikawa et al. [9, 30], and Machadoet al., using the itera-
tive Schwinger variational principle [16]. Again, we can see
some discrepancies at an intermediate angle. In Fig. 3 we

compare our calculated differential cross sections (DCS) for
elastic e−- H2O scattering at 20 eV with the measurements
of Danjo and Nishimura [9], the theoretical results of Bres-
cansin [13] using the Schwinger multichannel method, and
the studies of Okamotoet al. [9, 30]. Also, our results are
in good agreement with the experimental data of Danjo and
Nishimura [9] and results of Brescansinet al.[13] at interme-
diate angles, and studies of Okamotoet al. [9, 30]. In Fig. 4
we compare our calculated differential cross sections (DCS)
for elastic e−- H2O scattering at 30 eV with experimental
data [9], and the theoretical results of Machadoet al. [16],
using the iterative Schwinger variational method. Again, our
results are in good agreement with experimental data and the-
oretical results. The discrepancies at intermediate angles is
less significant at 30 eV. In Fig. 5 we compare our calculated
differential cross sections (DCS) for elastic e−- H2O scatter-
ing at 50 eV with experimental data [9]. As observed, our
results are in good agreement with experimental data [9].

4. Summary

We have used the Schwinger variational principle with plane
waves as a trial basis set to study elastic scattering of elec-
trons by H2O in the 10-50 eV energy range. Comparison be-
tween our calculated differential cross sections with selected
experimental and other theoretical results is encouraging and
shows that our formalism can be used for studying elastic
electron-polar-molecule collisions.
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