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We consider the Schrödinger equation for the rotational spectra of the most asymmetric molecules. The energy eigenfunctions are also
eigenfunctions of the square of the angular momentum vector and of one component of the angular momentum in the inertial frame. We
follow our point of view in which the properties of the angular momentum spectra are used to delete, without loss of generality, one constant
of motion and one of the Euler’s angles. Then, instead of using Euler’s angles, the Schrödinger equation and the energy eigenfunctions are
expressed in terms of spheroconal coordinates in which that equation may be separable.
The most asymmetric case is specially analyzed. The characteristic symmetries of this problem are used to reduce the number of differential
equations considered and the number of steps for a complete solution.
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Se considera la ecuación de Schr̈odinger de las moléculas ḿas asiḿetricas. Las eigenfunciones de la energı́a son tambíen funciones propias
del cuadrado del momento angular y de una componente del momento angular en el sistema inercial. Seguimos nuestro punto de vista en
que las propiedades del espectro del momento angular se usan para suprimir, sin pérdida de generalidad, una constante de movimiento y uno
de losángulos de Euler. La ecuación de Schr̈odinger y las eigenfunciones de la energı́a se expresan en función de coordenadas esferoconales
en las cuales dicha ecuación es separable.
Se analiza en especial el caso más asiḿetrico. Las simetŕıas caracterı́sticas de este caso se usan para reducir el número de ecuaciones
diferenciales a considerar y el número de pasos para una solución completa.

Descriptores: Molécula ḿas asiḿetrica; espectro rotacional; coordenadas esferoconales; ecuación de Laḿe.

PACS: 33.20Sn; 33.15.Mt: 33.20.-t; 31.15.Hz

1. Introduction

The study of the rigid body has a very old history that is still
far from finished because of the incomplete knowledge of the
analytical properties of the spectra of the quantum rigid body.
The torque-free rigid body has been solved in Classical [1]
and Quantum Mechanics [2], but the known solution is far
from explicit. Our task has been to make explicit many as-
pects of this problem and its solutions.

The hamiltonian of the rigid motion of a molecule may be
indicated by the same expression as that of classical kinetic
energy

H = LTI−1L/2 , (1)

providedL is interpreted as the angular momentum vector
operator in the fixed frame that has been generally expressed
in terms of Euler angles.

The components of the angular momentum vector opera-
tor as a function of the three Euler angles in the body frame
are

Lx = −i~
[
cos ψ

∂

∂θ
− cot θ sin ψ

∂

∂ψ
+

sin ψ

sin θ

∂

∂φ

]

Ly = −i~
[
− sinψ

∂

∂θ
− cot θ cosψ

∂

∂ψ
+

cos ψ

sin θ

∂

∂φ

]
(2)

Lz = −i~
∂

∂ψ
,

and the components of the angular momentum vector in the
inertial frame result in

Mx = −i~
[
cos φ

∂

∂θ
− cot θ sin φ

∂

∂φ
+

sin φ

sin θ

∂

∂ψ

]

My = −i~
[
sin φ

∂

∂θ
+ cot θ cosφ

∂

∂φ
− cosφ

sin θ

∂

∂ψ

]
(3)

Mz = −i~
∂

∂φ
.

These equations imply a definition of Euler angles where
the angle of the second rotation is measured from thex axis,
whereas it is they axis that is used in Ref. 6. It follows that
theα, β, γ, Euler angles of those authors correspond in our
notation toα = φ− π/2, β = θ, γ = ψ + π/2. These equa-
tions provide us with an easy comparison of corresponding
quantities.

The physical information in Quantum Mechanics is ob-
tained by solving the Schrödinger equation

HΨ = EΨ , (4)
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whereH is the hamiltonian operator,E is a real constant and
Ψ is a well-behaved complex function. Assuming a free top,
the Hamiltonian operator is equal to the kinetic energy oper-
ator (1).

Actually, the Schr̈odinger equation has an infinite number
of solutions which should be classified by the use of other op-
erators, commuting with the Hamiltonian. Commutators in
Quantum Mechanics correspond (except by a constant factor
i~) to the Poisson brackets of Classical Mechanics.

The useful operators commuting with the Hamiltonian
are theL2 and Mz operators. These two also commute
among themselves. We look for common eigenfunctions, by
solving the Schr̈odinger equation and asking the eigenfunc-
tions to be simultaneously solutions to the equations

L2Ψ = ~2`(` + 1)Ψ, MzΨ = ~mΨ, (5)

where` andm are integers, restricted by the condition

−` ≤ m ≤ `. (6)

These are very well-known properties of Angular Momentum
Theory [6].

The theory also includes the fact that operatorsMx±iMy

acting on a common solution of Eqs. (4) and (5) give a solu-
tion to the same equations with the same valueE and` but
in which the integerm is increased or reduced by one unit.
This useful property is used here to consider the common so-
lutions havingE and`, with m = 0.

The remaining functions withm 6= 0 can then con-
structed by successive application of those operators.

Substitution of the explicit form of operatorMz in Euler
variables (form = 0) implies that theΨ function will not be
a function of angleφ; theL operator is also simplified since
in this case derivatives with respect toφ can be deleted. The
angular momentum operator in the body frame becomes

Lx = −i~
[
cos ψ

∂

∂θ
− cot θ sin ψ

∂

∂ψ

]

Ly = −i~
[
− sin ψ

∂

∂θ
− cot θ cos ψ

∂

∂ψ

]
(7)

Lz = −i~
∂

∂ψ
.

These operators are essentially the same as those found
in the Quantum Mechanics of the hydrogen atom, except for
the sign and the transformationψ = π/2 − ϕ. The change
of sign is irrelevant, as operators appear in the equations in
quadratic form.

We ask theΨ function to satisfy the following two equa-
tions in terms of the newL operator (7):

(L2
x + L2

y + L2
z)Ψ = ~2`(` + 1)Ψ (8)

and

(L2
x/I1 + L2

y/I2 + L2
z/I3)Ψ = 2EΨ, (9)

and some simplification of the problem is obtained when one
takes a linear combination of these two equations to reduce
the number of independent parameters. We define

1/Ij = Q + Pej , (10)

and one imposes two restrictions on theej constants, namely

e1 + e2 + e3 = 0 (11)

e2
1 + e2

2 + e2
3 = 3/2, (12)

and the constantsQ andP are determined by the inertia mo-
ments as

3Q = 1/I1 + 1/I2 + 1/I3 (13)

9P 2/2 = (1/I1 − 1/I2)2 + (1/I3 − 1/I1)2

+ (1/I2 − 1/I3)2. (14)

The three parametersej can be written in terms of only
one parameterσ:

e1 = cos σ

e2 = cos(σ − 2π/3) (15)

e3 = cos(σ + 2π/3) (0 ≤ σ ≤ π/3),

where the valueσ = 0 corresponds to the prolate symmetric
top and the valueσ = π/3 to the oblate symmetric case. The
caseσ = π/6 is the most asymmetric.

The energy valueE becomes

2 E = Q~2`(` + 1) + 2 PE∗, (16)

whereE∗ is the constant eigenvalue of equation

2H∗Ψ = (e1L
2
x + e2L

2
y + e3L

2
z)Ψ = 2E∗Ψ. (17)

We look for simultaneous solutions to the Eq. (17) and (8).
In this system of equations, the three inertia moments

have been replaced by only one parameterσ.
Many authors use a different asymmetry parameterκ in-

troduced by Ray [7]. Our parameters are related to his by

e1 = cos σ =
3− κ

2
√

3 + κ2
(18)

and Ray’s energyE(κ) can be expressed in terms of our re-
duced energyE∗ as

E(κ) =
κ

3
~2`(` + 1) +

√
4
3

+
4
9
κ2 E∗. (19)

The use of different parameters follows the use in mathemat-
ics where the parameterse1, e2 ande3 are frequently found
according to the masterly works of Weierstrass in the theory
of elliptic functions.
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The equations are separable by using the spheroconal co-
ordinatesχ1, χ2, defined [8] in terms of Jacobi elliptic func-
tions

u=




sin θ sin ψ
sin θ cosψ

cos θ


=




dn(χ1, k1)sn(χ2, k2)
cn(χ1, k1)cn(χ2, k2)
sn(χ1, k1)dn(χ2, k2)


 , (20)

whereu is the unit vector that is rotated by the rotation matrix
in the constant vector




0
0
1




and wherek1 andk2 are defined by

k2
1 =

e2 − e3

e1 − e3
, k2

2 =
e1 − e2

e1 − e3
. (21)

In these coordinates, whenΨ is factored into the product

Ψ = Λ1(χ1)Λ2(χ2), (22)

Eq. (17) and (8) are separated into two Lamé’s equations [9]

d2Λj

dχ2
j

− [k2
j `(` + 1)sn2(χj , kj) + hj ]Λj = 0 (23)

(j = 1, 2),

written in terms of the separation constants

h1 = − 2E∗

~2(e1 − e3)
+

`(` + 1)e3

e1 − e3

h2 = −`(` + 1)− h1 . (24)

Lamé’s equation has been studied for a long time, and
many useful results are found in the last chapter of Whittaker
and Watson’s book of Analysis [9].

In particular, for̀ = 2n (an even integer), the functionΨ
can be written in terms of the unit vectoru in (50) as one of
four different classes of the form

∏

j

uTA(αj)u

uyuz

∏

j

uTA(αj)u

uzux

∏

j

uTA(αj)u (25)

uxuy

∏

j

uTA(αj)u,

with n + 1 functions of the first class andn functions of each
of the other three classes.

For ` = 2n + 1 (an odd integer), one hasn functions of
the class

uxuyuz

∏

j

uTA(αj)u

andn + 1 functions of each of the classes

ux

∏

j

uTA(αj)u

uy

∏

j

uTA(αj)u (26)

uz

∏

j

uTA(αj)u,

where matrixA(α) is defined in terms of their inverse matrix,

A−1(α) =




e1 0 0
0 e2 0
0 0 e3


− α




1 0 0
0 1 0
0 0 1


 , (27)

and where the parametersα are computed to satisfy Laḿe’s
differential equation.

Each term in the wave functions is a linear combination
of an` number of factors of components of the vectoru.

A direct calculation leads to

uTA(α)u =
{P1(χ1)− α}{P2(χ2)− α}
{e1 − α}{e2 − α}{e3 − α} , (28)

in terms of the functions

P1(χ1) = e3 + (e2 − e3)sn2(χ1, k1)

P2(χ2) = e1 + (e2 − e1)sn2(χ2, k2), (29)

and therefore theα’s are the roots of two polynomials in
terms of functionsP1(χ1) andP2(χ2).

The Hamiltonian is invariant with respect to a change
of sign of each of the components of vectoru. These
three changes of sign and the identity constitute the four-
component groupV that is basic [10] to the Quantum Me-
chanics of the rigid molecule. Each of these transformations
allows us to classify the classes of wave functions according
to the parity associated with the group elements [11].

The parity of the functions for̀ an even number is col-
lected in the Table I.

TABLE I. Classification of the eigenfunctions according to theV

group for eveǹ .

name Φ ux uy uz

symmetric
∏

j uTA(αj)u even even even

x type uyuz

∏
j uTA(αj)u even odd odd

y type uzux

∏
j uTA(αj)u odd even odd

z type uxuy

∏
j uTA(αj)u odd odd even
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TABLE II. Classification of the eigenfunctions according to theV

group for odd̀ .

name Φ ux uy uz

symmetric uxuyuz

∏
j uTA(αj)u odd odd odd

x type ux

∏
j uTA(αj)u odd even even

y type uy

∏
j uTA(αj)u even odd even

z type uz

∏
j uTA(αj)u even even odd

The parity of the functions for̀ an odd number become
Table II.

For the symmetric cases, the wave functions may be
chosen to be the spherical harmonicsY`M(θ, ψ), with
−` ≤M ≤ `, that are also found in the quantum solution
of the hydrogen atom. But, because the Hamiltonian is
quadratic in the angular momentum components one has,
for the symmetric cases, a double degeneracy in the en-
ergy levels that are conveniently labelled with the integer
±M. In those cases it is better to use the wave functions
(Y`,M ± Y`,−M)/

√
2, which are real functions and can be

written in the forms (25) and (26), and classified by means of
the elements of the groupV into four types associated with
the parity. This change of base functions was introduced by
Wang [12] in one of the pioneer works on quantum theory of
asymmetric molecules using matrix notation.

These wave functions in the oblate case (σ = π/3) are

Ψc
`M=

[
(2` + 1)(`−M)!

8π(` +M)!

]1/2

PM` (cos θ) cosMψ (30)

Ψs
`M=

[
(2` + 1)(`−M)!

8π(` +M)!

]1/2

PM` (cos θ) sinMψ, (31)

where0 < M≤ `, and

Ψ`0 =
[
(2` + 1)

4π

]1/2

P`(cos θ). (32)

These real functions are easily classified according to the
V group [11] as is shown in the Table III.

2. The most asymmetric molecule

The most asymmetric case occurs for the valueσ = π/6,
which is equidistant between the prolate and oblate symmet-
ric cases. For this casee2 = 0 and Ray’s parameter is also

TABLE III. Classification of the oblate functions according to the
V group.

Ψc
`M Ψs

`M Ψ`0

symmetric eveǹ, evenM odd`, evenM even`

x type odd̀ , oddM even`, oddM
y type eveǹ , oddM odd`, oddM
z type odd̀ , evenM even`, evenM odd`

κ = 0. The most asymmetric case is invariant under the trans-
formationσ → π/3−σ, and one can expect some simplifica-
tion vis-̀a-vis the general case. For example, the parameters
k1 andk2 become the same:

k2
1 = k2

2 = 1/2. (33)

We shall now study some properties of this case.
Making the change of variable

x = P1(χ1), (34)

Lamé’s equation (23) takes the algebraic form [9]

d2Λ
dx2

+
[

1/2
x− e1

+
1/2

x− e2
+

1/2
x− e3

]
dΛ
dx

− `(` + 1)x− 2E∗/~2

4(x− e1)(x− e2)(x− e3)
Λ = 0, (35)

which in the most asymmetric case becomes

2w(1− w2)
d2Λ(w)

dw2
+ (1− 3w2)

dΛ(w)
dw

−
(

`(` + 1)
2

w + b

)
Λ(w) = 0, (36)

where one makes the change of variablex =
√

3w/2 with
2E∗/~2 = −√3b.

Solutions to this differential equation are found to be of
eight types, seven of which are the product of a square root
times a polynomial inw, whereas one of the eight is just a
polynomial. See the Table IV, whereP (w) denotes different
polynomials.

Given one solution to this equationΛ(w) for particular
values of the integer̀, and the separation constantb, then
Λ(−w) is also a solution, with the same`, but separation con-
stant−b. This property causes a simplification in obtaining
the solutions to the Laḿe equation in this most asymmetric
case.

We found that for each of the types andy functions, the
separation constants withb 6= 0 come in a couple of the two
allowed values±b. The corresponding polynomial is differ-
ent only in the sign of the odd powers ofw. For these two
types of functionsy and s, one finds the possibility of the
value b = 0, occurring only once for each̀ value. If the
reminder after dividing̀ by 4 is 1 or 2, then the function co-

TABLE IV. Classification of the most asymmetric functions accord-
ing to theV group.

Λ(w), even` Λ(w), odd`

symmetric P (w)
√

w(1− w2)P (w)

x type
√

w(1− w)P (w)
√

1 + wP (w)

y type
√

1− w2P (w)
√

wP (w)

z type
√

w(1 + w)P (w)
√

1− wP (w)
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rresponding to this valueb = 0 is of typey. If the reminder
after dividing` by 4 is 3 or 0, then the function corresponding
to the valueb = 0 is of types. The polynomialsP (w) when
b = 0 are even functions, formed only by even powers ofw.

On the other hand functions of typex andz never corre-
spond to the null value ofb. Moreover, for any eigenfunction
of typex, with eigenvalueb and polynomialP (w), there ex-
ists an eigenfunction of typez with eigenvalue−b and poly-
nomialP (−w), having a sign difference for the coefficients
of the odd powers. These characteristics of the most asym-
metric case allow us to ignore the functions of typez since it
is implicit in its partner of typex.

Let us consider first the particular solution belonging to
the most asymmetrical Laḿe equation with a zero value for
constantb. In this case, the Laḿe functions could be writ-
ten in terms of Jacobi polynomials that obey the differential
equation [13]:

y(1− y)
d2fn(y)

dy2
+ [γ − y(1 + α)]

dfn(y)
dy

+n(n + α)fn(y) = 0. (37)

When` = 4n, (n = 0, 1, 2, . . .), andb = 0, the solution
to the Laḿe equation is of types. The associated equation (36
with b = 0) has also been considered in the context of Clas-
sical Mechanics as a particular case of Hill’s equation [14],
but without identifying it as a Jacobi equation with Jacobi
polynomials as solutions for it.

When` = 4n, (n = 0, 1, 2, . . .), the solution to Laḿe’s
equation (36 withb = 0) is of the form

Λ4n,0(w) = fn(1/4, 3/4, w2), (38)

When ` = 4n + 1, (n = 0, 1, 2, . . .), the solution of
Lamé’s equation (36 withb = 0) is of the form

Λ4n+1,0(w) =
√

wfn(3/4, 5/4, w2) . (39)

In the casè = 4n + 2 (n = 0, 1, 2, ...) , the solution of
Lamé’s equation (36 withb = 0) is of the form

Λ4n+2,0(w) =
√

1− w2fn(5/4, 3/4, w2) . (40)

And in the casè = 4n + 3 (n = 0, 1, 2, ...) , the solution
of Lamé’s equation (36 withb = 0) is of the form

Λ4n+3,0(w) =
√

w(1− w2)fn(7/4, 5/4, w2) . (41)

The most asymmetrical Laḿe’s functions can be con-
structed by means of the ladder operators [15] with` jumping
by four:
[
2w(1− w2)

d

dw
+ (` + 4)

(
w2 − ` + 2

2` + 5

)]
Λ`+4,0

=

√
(` + 1)(` + 2)(` + 3)(` + 4)

2` + 5
Λ`,0 (42)

and
[
2w(1− w2)

d

dw
− (` + 1)

(
w2 − ` + 3

2` + 5

)]
Λ`,0

= −
√

(` + 1)(` + 2)(` + 3)(` + 4)
2` + 5

Λ`+4,0, (43)

where normalization factors were assumed so as to make the
right hand side of these equations similar.

Below, we shall study the cases in whichb 6= 0 and there
are 6 types of functions occupying the upper positions in Ta-
ble IV, excluding the typez. We shall write the differential
equations for the polynomials without the root factor.

2.1. Types, even`

In the symmetric case, with even`, the differential equation
satisfied by the polynomial is the same (36):

2w(1− w2)
d2P (w)

dw2
+ (1− 3w2)

dP (w)
dw

+
(

`(` + 1)
2

w + b

)
P (w) = 0 . (44)

We substitute into it the polynomial

P (w) =
k∑

j=0

ajw
j (45)

setting the coefficients of all the powers ofw equal to zero.
We then find the following results:
1.1 The degree of the polynomial isk = `/2.
1.2 One hask + 1 homogeneous linear equations relating the
k + 1 coefficients of the polynomial. The matrix of this sys-
tem of linear equations is a function of the parameterb. The
non-trivial solution exists only when the determinant is zero;
this determinesk + 1 different values ofb. Each value pro-
vides a different polynomial. The coefficients of the polyno-
mial can be found by recurrence, starting fromb anda0.
1.3 The explicit forms of the equations for the coefficients are

ba0 + a1 = 0

(2m + 1)(m + 1)am+1 + bam

+ (`/2−m + 1)(`− 1 + 2m)am−1 = 0

(m = 1, 2, . . . , k − 1)

(`/2− k + 1)(2k − 1 + `)ak−1 + bak = 0. (46)

1.4 The matrix of the above system of equations is tridiag-
onal. The determinant of this matrix produces the eigenval-
uesb. The tridiagonal form of the matrix allows us to obtain
the determinant by recurrence [16], by means of a family of
polynomials inb. Each of these polynomials of degreej is
the determinant of the submatrix of dimensionj × j. We
definey0 = 1, y1(b) = b, and

yj+1(b) = byj(b)−Ajyj−1(b), (j = 1, 2, . . . , k) (47)
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whereAj is the product of two entries of the tridiagonal ma-
trix at both sides of the main diagonal at positions(j, j + 1)
and(j + 1, j)

Aj = j(2j − 1)
[
`(` + 1)

2
− (j − 1)(2j − 1)

]
. (48)

The characteristic polynomial for determining the values ofb
is yk+1(b).

In a similar way, one writes and solves the differential
equations for the other 5 types of polynomials. The differen-
tial equation is different in each case since the root factor has
been deleted. The set of linear equations for the coefficients
is also different. But in every case we use the same method
of solution, and in each case the matrix for the coefficients
of the polynomial is tridiagonal, and therefore the algebraic
equation for the eigenvalueb is obtained by a similar recur-
rence with differentAj constants.

2.2. Typey, even`

The substitution of the caseΛ(w) =
√

1− w2P (w) in (36)
gives the following equation for the polynomialP (w):

2w(1− w2)
d2P (w)

dw2
+ (1− 7w2)

dP (w)
dw

+
(

(`− 2)(` + 3)
2

w + b

)
P (w) = 0. (49)

By substituting into (49) the polynomial (45)

P (w) =
k∑

j=0

ajw
j (50)

and by setting the coefficients of all the powers ofw equal to
zero, we found that:
2.1 The degree of the polynomial isk = `/2− 1.
2.2 There arek+1 homogeneous linear equations relating the
k + 1 coefficients of the polynomial. The matrix of this new
system of linear equations is again a function of the parame-
ter b. The non-trivial solution exists only when the determi-
nant is zero; this determinesk + 1 different values ofb. Each
value provides a different polynomial, and as before the coef-
ficients of the polynomial are obtained by recurrence starting
from b anda0.
2.3 The explicit form of the equations for the coefficients is

ba0 + a1 = 0

(2m + 1)(m + 1)am+1 + bam

+ (`/2−m)(` + 1 + 2m)am−1 = 0

(m = 1, 2, ..., k − 1)

(`/2− k)(2k + 1 + `)ak−1 + bak = 0. (51)

2.4 This recurrence produces the family of polynomials of
degreej equal to the determinant of the submatrix of dimen-
sionj × j. We again definey0 = 1, y1(b) = b, and

yj+1(b) = byj(b)−Ajyj−1(b), (j = 1, 2, . . . , k) (52)

whereAj is the product of the two entries of the tridiago-
nal matrix on both sides of the main diagonal at positions
(j, j + 1) and(j + 1, j):

Aj = j(2j − 1)[
`(` + 1)

2
− j(2j + 1)]. (53)

The characteristic polynomial for determining the values ofb
is yk+1(b).

2.3. Typex, even`

The substitution of the caseΛ(w) =
√

w(1− w)P (w)
in (36) gives the following equation for the polynomialP (w):

2w(1− w2)
d2P (w)

dw2
+ (3− 2w − 7w2)

dP (w)
dw

+
(

(`− 2)(` + 3)
2

w + b− 3/2
)

P (w) = 0. (54)

In analogous way to the previous cases, take the polyno-
mial (45)

P (w) =
k∑

j=0

ajw
j (55)

to substitute in Eq. (54), set the coefficients of all the powers
of w equal to zero. The following results are obtained:
3.1 The degree of the polynomial isk = `/2− 1.
3.2 We havek +1 homogeneous linear equations relating the
k + 1 coefficients of the polynomial. The matrix of this sys-
tem of linear equations is a function of the parameterb. The
non trivial solution exists only when the determinant of the
system is equal to zero; this determinesk+1 different values
of b. Each value ofb provides a different polynomial. The
coefficients of the polynomial can be found by recurrence,
starting fromb anda0.
3.3 The explicit form of the equations for the coefficients is

(b− 3/2)a0 + 3a1 = 0

(2m + 3)(m + 1)am+1 + [b− 3/2− 2m]am

+ (`/2−m)(` + 1 + 2m)am−1 = 0

(m = 1, 2, ..., k − 1)

(`/2−k)(2k + 1 + `)ak−1 + (b− 3/2− 2k)ak = 0. (56)

3.4 The recurrence produces the family of polynomials of de-
greej equal to the determinant of the submatrix of dimension
j × j. We define herey0 = 1, y1(b) = b− 3/2, and

yj+1(b) = (b− 2j − 3/2)yj(b)−Ajyj−1(b),

(j = 1, 2, ..., k) (57)

whereAj is the product of the two entries of the tridiagonal
matrix at both sides of the main diagonal at positions(j, j+1)
and(j + 1, j)

Aj = j(2j + 1)
[
`(` + 1)

2
− j(2j + 1)

]
. (58)
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The characteristic polynomial to determine the values ofb is
yk+1(b).

2.4. Types, odd `

The substitution of the caseΛ(w) =
√

w(1− w2)P (w)
in (36) gives the following equation for the polynomialP (w):

2w(1− w2)
d2P (w)

dw2
+ (3− 9w2)

dP (w)
dw

+
(

(`− 3)(` + 4)
2

w + b

)
P (w) = 0. (59)

We substitute into it the polynomial (45)

P (w) =
k∑

j=0

ajw
j , (60)

setting the coefficients of all the powers ofw equal to zero.
We find the following results:
4.1 The degree of the polynomial isk = (`− 3)/2.
4.2 A number ofk + 1 = (` − 1)/2 homogeneous linear
equations relate thek +1 coefficients of the polynomial. The
matrix of this system of linear equations is a function of the
eigenvalueb. The non trivial solution exists only when the
determinant is zero; this leadsk + 1 different values ofb.
Each value determines a different polynomial. The coeffi-
cients of the polynomial can be found by recurrence, starting
from b anda0.
4.3 The explicit form of the equations for the coefficients is

ba0 + 3a1 = 0

(2m + 3)(m + 1)am+1 + bam

+ [`(` + 1)/2− (m + 1)(2m + 1)]am−1 = 0

(m = 1, 2, . . . , k − 1)

(`/2 + k + 1)(`− 2k − 1)ak−1 + bak = 0. (61)

4.4 A recurrence also produces a family of polynomials of
degreej equal to the determinant of the submatrix of dimen-
sionj × j. We again definey0 = 1, y1(b) = b, and

yj+1(b) = byj(b)−Ajyj−1(b) , (j = 1, 2, ..., k) (62)

whereAj is the product of the two entries of the tridiago-
nal matrix on both sides of the main diagonal at the entries
(j, j + 1) and(j + 1, j):

Aj = j(2j + 1)[
`(` + 1)

2
− (j + 1)(2j + 1)] . (63)

The characteristic polynomial that determines the values ofb
is yk+1(b).

2.5. Typey, odd `

The substitution of the caseΛ(w) =
√

wP (w) in (36) gives
the following equation for the polynomialP (w):

2w(1− w2)
d2P (w)

dw2
+ (3− 5w2)

dP (w)
dw

+
(

(`− 1)(` + 2)
2

w + b

)
P (w) = 0. (64)

Let us again make the substitution of the the polynomial

P (w) =
k∑

j=0

ajw
j (65)

in Eq. (64), setting the coefficients of all the powers ofw
equal to zero. We found the similar results:
5.1 The degree of the polynomial isk = (`− 1)/2.
5.2 One hask + 1 homogeneous linear equations relating the
k + 1 coefficients of the polynomial. The matrix of this sys-
tem of linear equations is a function of the parameterb. The
non trivial solution exists only when the determinant is zero;
this determinesk + 1 different values ofb. Each value pro-
duces a different polynomial. The coefficients of the polyno-
mial can be found by recurrence, starting fromb anda0.
5.3 The explicit form of the equations for the coefficients is

ba0 + 3a1 = 0

(2m + 3)(m + 1)am+1 + bam

+ [`(` + 1)/2−m(2m− 1)]am−1 = 0

(m = 1, 2, ..., k − 1)

(` + 2k)(`− 2k + 1)ak−1/2 + bak = 0 . (66)

5.4 A new recurrence provides a family of polynomials of
degreej, equal to the determinant of the submatrix of dimen-
sionj × j of the system: we again definey0 = 1, y1(b) = b,
and

yj+1(b) = byj(b)−Ajyj−1(b) , (j = 1, 2, ..., k) (67)

whereAj is the product of the two entries of the tridiago-
nal matrix on both sides of the main diagonal at positions
(j, j + 1) and(j + 1, j)

Aj = j(2j + 1)[
`(` + 1)

2
− j(2j − 1)] . (68)

The characteristic polynomial for determining the values ofb
is yk+1(b).

2.6. Typex, odd `

The substitution of the caseΛ(w) =
√

1 + wP (w) in (36)
gives the following equation for the polynomialP (w):

2w(1− w2)
d2P (w)

dw2
+ (1 + 2w − 5w2)

dP (w)
dw

+
(

(`− 1)(` + 2)
2

w + b + 1/2
)

P (w) = 0. (69)
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We substitute into it the polynomial (45)

P (w) =
k∑

j=0

ajw
j (70)

setting the coefficients of all the powers ofw equal to zero.
We find the following results:
6.1 The degree of the polynomial isk = (`− 1)/2.
6.2 One hask + 1 = (` + 1)/2 homogeneous linear equa-
tions relating thek + 1 coefficients of the polynomial. The
matrix of this system of linear equations is a function of the
parameterb. The non trivial solution exists only when the de-
terminant is zero; this determinesk + 1 different values ofb.
Each value provides a different polynomial. The coefficients
of the polynomial can be found by recurrence, starting from
b anda0.
6.3 The explicit form of the equations for the coefficients is

(b + 1/2)a0 + a1 = 0

(2m + 1)(m + 1)am+1 + [(b + 1/2) + 2m]am

+ (`− 2m + 1)(` + 2m)am−1/2 = 0

(m = 1, 2, ..., k − 1)

(`−2k+1)(2k + `)ak−1/2 + (b + 1/2 + 2k)ak = 0 . (71)

6.4 The recurrence produces the family of polynomials of de-
greej equal to the determinant of the submatrix of dimension
j × j. We definey0 = 1, y1(b) = b + 1/2, and

yj+1(b) = (b + 2j + 1/2)yj(b)−Ajyj−1(b),

(j = 1, 2, ..., k) (72)

whereAj is the product of the two entries of the tridiago-
nal matrix on both sides of the main diagonal at positions
(j, j + 1) and(j + 1, j):

Aj = j(2j − 1)[
`(` + 1)

2
− j(2j − 1)]. (73)

The characteristic polynomial for determining the values ofb
is yk+1(b).

Below theb values are tabulated for all the polynomials
up to` = 15 (See Tables V to VIII).

When writing the eigenvaluesb in the table of values, for
each value of̀ we find that they are ordered by the type of
a function corresponding to the classification of the groupV .
For` an even number, the greater value ofb is always of sym-
metric type (s). The order from largest to smallest iss, x, y,
z; which repeats cyclically. For̀an odd number, the greater
value ofb is of typez. The order is inverted toz, y, x, s,
which repeats itself cyclically.

Another interesting property of the spectra is observed
when we note that theb eigenvalues have almost a degener-
ation. As` becomes larger, theb eigenvalues are grouped in
couples of values that become closer in value. This happens
for the different types of groupV . Since this corresponds to

TABLE V. Eigenvaluesb according tò = 2− 7, and type of theV
group for the most asymmetric case.

` Type b

2 s ±1.7320508075689

2 x, z ±1.5

2 y 0

3 z, x ±3.949489742783

3 y ±3.8729833462074

3 x, z ±0.949489742783

3 s 0

4 s ±7.211102550928

4 x, z ±7.1904157598234

4 y ±2.6457513110646

4 z, x ±2.19041575982343

4 s 0

5 z, x ±11.49414663819150

5 y ±11.4891252930761

5 x, z ±5.36293051868569

5 s ±5.1961524227066

5 z, x ±1.368783880494185

5 y 0

6 s ±16.78391092456886

6 x, z ±16.78276990032108

6 y ±9.1651513899117

6 z, x ±9.11432541791537

6 s ±3.50718321108808

6 x, z ±2.83155551759430

6 y ±]0

7 z, x ±23.0755805845594

7 y ±23.0753326277447

7 x, z ±14.0138380013389

7 s ±14

7 z, x ±6.70803965346415

7 y ±6.4443016781448

7 x, z ±1.76978223668465

7 s 0

TABLE VI. Eigenvaluesb according tò = 8, 9, 10, and type of
theV group for the most asymmetric case.

` Type b

8 s ±30.3678275070123

8 x, z ±30.3677753371381

8 y ±19.8799558776245

8 z, x ±19.8764578561354

8 s ±11.0360795803739

8 x, z ±10.949286970928
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8 y ±4.33443817624644

8 z, x ±3.44060445193073

8 s 0

9 z, x ±38.6602918232738

9 y ±38.6602811125303

9 x, z ±26.7521663013226

9 s ±26.7513277147715

9 z, x ±16.4384418576797

9 y ±16.4128810481322

9 x, z ±8.00461661312847

9 s ±7.63979485960849

9 z, x ±2.1580492334976

9 y 0

10 s ±47.9528649646037

10 x, z ±47.9528628075232

10 y ±34.6267329990633

10 z, x ±34.6265398453568

10 s ±22.8721621755032

10 x, z ±22.8651867293832

10 y ±12.8448184810677

10 z, x ±12.7179634066876

10 s ±5.13682188750577

10 x, z ±4.02645371505514

10 y 0

TABLE VII. Eigenvaluesb according tò = 11, 12, 13, and type
of theV group for the most asymmetric case.

` Type b

11 z, x ±58.2455056491701

11 y ±58.245505221429

11 x, z ±43.5024224454497

11 s ±43.502379328453

11 z, x ±30.3184753280879

11 y ±30.3166758473324

11 x, z ±18.7890799018142

11 s ±18.7494797998074

11 z,x ±9.26422979269084

11 y ±8.79546969003276

11 x, z ±2.5367084226849

11 s 0

12 s ±69.5381933887331

12 x, z ±69.5381933049892

12 y ±53.3787715124891

12 z, x ±53.3787621276328

12 s ±38.7704174638424

12 x, z ±38.7699730516097

12 y ±25.7810284091082

12 z, x ±25.7695705527514

12 s ±14.6046016690127

12 x, z ±14.4345829402282

12 y ±5.91990928868307

12 z, x ±4.59441661644294

12 s 0

13 z, x ±81.83091588023716

13 y ±81.830915864016

13 x, z ±64.255565603662

13 s ±64.2555636029947

13 z, x ±48.2253783140692

13 y ±48.2252723291192

13 x, z ±33.7940412829763

13 s ±33.7909105594589

13 z, x ±21.0799222455574

13 y ±21.0243743697317

13 x, z ±10.4943386986705

13 s ±9.91952164290954

13 z, x ±2.90772914544503

13 y 0

TABLE VIII. Eigenvaluesb according tò = 14, 15, and type of
theV group for the most asymmetric case.

` Type b

14 s ±95.1236649296825

14 x, z ±95.123664926568928

14 y ±76.132683413936

14 z, x ±76.132682994804036

14 s ±58.6822486303082

14 x, z ±58.6822240700879

14 y ±42.8173767363793

14 z, x ±42.8165591447652

14 s ±28.620990959129427

14 x, z ±28.6041510322987

14 y ±16.3244223667596

14 z, x ±16.1087758357521

14 s ±6.68737187193915

14 x, z ±5.14797794636587

14 y 0

15 z, x ±109.4164347698555773

15 y ±109.41643476926258

15 x, z ±89.010046827009155

15 s ±89.0100467404952

15 z, x ±70.140462054122614

15 y ±70.14045649788885

15 x, z ±52.846648689261596

15 s ±52.8464429052577
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15 z, x ±37.19316897069773

15 y ±37.1883478499097996

15 x, z ±23.321012881185754

15 s ±23.2479042392256

15 z, x ±11.7000964582398

15 y ±11.0175745445891

15 x, z ±3.27245385545921

15 s 0

(almost) the same root for two polynomials, this root is ob-
tained by the Euclidean algorithm, also valid for polynomials,
producing as the first approximation for the largest value of
the eigenvaluesb the prediction

b =
`(2`− 1)

4
. (74)

This prediction gives a value smaller that the maximum
eigenvalue by 1%. The next couple is well aproximated by
the valuè (`− 3)/2 larger that the actual value by 1%.

3. Applicability of the Theory

In general, the cases of rotational spectrum of very asymmet-
ric molecules are not considered by most authors studying the

rotational spectrum. Referring to this case, H.W. Kroto has
written pages 99-100 of Ref. [11] “In the high asymmetric
case, as you might guess, the levels may not form an obvi-
ous simple pattern and the resulting spectrum can be quite a
mess.”

On the other hand, it is possible to find examples of sym-
metric oblate and prolate molecules, but not of exactly asym-
metric molercules. Looking at the table of Molecular Con-
stants involved in Microwave Spectrum [17], we found one
case that is close to the more asymmetric molecule. It is ethy-
lene oxide, when the hydrogen has been replaced by Deu-
terium C D3−C = O D, and the Carbon is the isotopeC12. It
is also called deuterated acetaldehyde.

For this molecule the inverses of the moments of inertia
are proportional to the numbers 20399, 15457, 11544, which
correspond to a value of theσ angle of26.16◦, near the30◦

value of the most asymmetric case.
It is evident that the most asymmetric case studied in this

paper will be only the first step in a perturbation theory start-
ing with the exact case of most asymmetric molecules, since a
very asymmetric molecule can only be approximated by this
case.

However, perturbation theory is very similar to the one
when the molecule is close to the symmetric oblate and pro-
late cases. See for example Sec. 3.10c of Ref. [11].

1. E. Pĩna,Rev. Mex. Fis.43 (1997) 205.

2. H.A. Kramers and G. P. Ittmann,Zs. f. Phys.53 (1929) 553. E.
Piña,J. of Molec. Struc. (THEOCHEM)493(1999) 159.

3. H. Goldstein, Classical Mechanics(Addison-Wesley, MA,
1980). E.T. Whittaker,A Treatise on the Analytical Dynamics of
Particles and Rigid Bodies(Cambridge University Press, Lon-
don, 1965).
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