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In the present paper we calculate the surface temperatures of the nine planets of the Solar System by means of the Gordon and Zarmi model
for dealing with the Earth’s wind energy as a solar-driven Carnot-like heat engine, incorporating the role of the greenhouse effect and internal
irreversibilities in the performance of this heat engine model. This oversimplified Carnot-like engine corresponds very approximately to
the global scale motion of wind in convective cells. Our numerical results for the surface temperatures are in good agreement with the
observed temperatures reported in the literature. Our calculations were made by means of two regimes of performance of the model: the
maximum power regime and the maximum ecological function regime. In particular, Venus and Earth temperatures were calculated with a
new approach by using the role of the tropopauses on the convective cells.

Keywords: Convective cells; finite-time thermodynamics; solar system.

En este artı́culo calculamos las temperaturas superficiales de los nueve planetas del sistema solar mediante el modelo de Gordon y Zarmi que
se usa para tratar con la energı́a de los vientos como una máquina tipo Carnot manejada por el Sol, incluyendo el papel del efecto invernadero
y de las irreversibilidades internas en el modo de operación del modelo de ḿaquina t́ermica. Esta ḿaquina tipo Carnot sobresimplificada
corresponde en buena aproximación con el movimiento a escala global de los vientos en celdas de convección. Nuestros resultados numéricos
para las temperaturas superficiales están en buen acuerdo con las temperaturas observadas reportadas en la literatura. Nuestros cálculos fueron
realizados mediante dos regı́menes de operación: el ŕegimen de potencia ḿaxima y el ŕegimen de funcíon ecoĺogica ḿaxima. En particular,
las temperaturas de Venus y de la Tierra fueron calculadas mediante un nuevo enfoque utilizando el papel de las tropopausas sobre las celdas
de conveccíon.

Descriptores: Celdas de convección; termodińamica de tiempos finitos; sistema solar.

PACS: 92.70.Cp; 44.40.+a; 44.90.+c

1. Introduction

In a recent paper [1], Fischer and Hoffmann have shown that
a simple endoreversible model (the so-called Novikov en-
gine) can reproduce the complex engine behavior of a quan-
titative dynamical simulation of an Otto engine including,
but not limited to, effects from losses due to heat conduc-
tion, exhaust losses and frictional losses. In that article, the
spirit of finite-time thermodynamics (FTT) is illustrated em-
phasizing the virtues and limitations of FTT-methodology.
However, the usefulness of FTT-models is shown beyond any
doubt. In fact, we can assert that the FTT-spirit is consistent
with the spirit of a Carnotian thermodynamics in the sense
of the search for certain kind of limits for thermodynamic

variables and functionals. The problem of thermal balance
between the planets of the solar system and the Sun under
an FTT approach has been treated by several authors [2-8].
In some of these articles the question of the conversion of
solar energy into wind energy is also discussed. When only
the global thermal balance between the Sun and a planet is
considered, one can roughly obtain the planet’s surface tem-
peratureTp. If the conversion of solar energy into wind en-
ergy is to be modeled, it is necessary to involve at least two
representative atmospheric temperatures in order to make the
creation of work possible, that is, to take the planet’s atmo-
sphere as a working fluid that converts heat into mechani-
cal work. This permits us to introduce the concept of atmo-
spheric “heat engine” in a natural way. In this context, pro-
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cess variables such as work rate, heat fluxes and efficiency for
instance [8] find a simple theoretical framework where ther-
modynamical restrictions play an important role. This is in
contrast with disciplines such as non-equilibrium thermody-
namics and hydrodynamics based on local differential equa-
tions where the transition from local to global variables is not
a trivial task [9]. In 1989, Gordon and Zarmi (GZ) [2] intro-
duced an FTT model taking the Sun-Earth-Wind system as
an FTT-cyclic heat engine where the heat input is solar radi-
ation, the working fluid is the Earth’s atmosphere, the energy
of the winds is the work produced and the cold reservoir to
which the engine rejects heat is the surrounding 3K universe.
By means of this oversimplified model, Gordon and Zarmi
were able to obtain reasonable values for the annual average
power in the Earth winds and for the average maximum and
minimum temperatures of the atmosphere, without resorting
to detailed dynamic models of the Earth’s atmosphere, and
without other effects (such as the Earth’s rotation, the Earth’s
translation around the Sun, ocean currents, etc.). Later, sev-
eral authors [3-6] extended the GZ model to take into ac-
count the wind energy dissipation and other such effects as
the inclination angle of the Earth’s axis with respect to the
ecliptic. Another extension of the GZ model was presented
in Refs. 7 and 8. In Ref. 7, the GZ model was used for at-
mospheric cycles with internal entropy production and under
a new criterion of merit named the ecological criterion [10],
which consists in the maximization of a function E that rep-
resents a good compromise between high power output and
low-entropy production. The functionE is given by

E = P − TexΣ, (1)

whereP is the power output of the cycle,Σ is the total en-
tropy production (system plus surroundings), andTex is the
temperature of the cold reservoir. This optimization criterion
for the case of the so-called Curzon-Ahlborn cycle [11], for
instance, leads to a cycle configuration such that for maxi-
mumE it produces around 75% of the maximum power and
only about 25% of the entropy produced in the maximum
power regime [12]. By means of this optimization criterion
in Ref. 7, reasonable values for the annual average power of
the winds and for extreme temperatures of the Earth’s atmo-
sphere were also found. In Ref. 8, an additional extension
of the GZ model was proposed by means of the inclusion of
a coefficientγ that takes into account the greenhouse effect.
This coefficient was introduced by De Vos [4] to consider
the attenuation of the heat flux emitted by the Earth in the
far-infrared spectrum. This coefficient can be taken as the
normalized greenhouse effect introduced by Raval and Ra-
manathan in Ref. 13, which is defined as the infrared radia-
tion trapped by atmospheric gases and clouds. In the present
paper, we apply the extended GZ model used in Ref. 8 to
calculate the surface temperature of nine planets of the solar
system. The article is organized as follows: In Sec. 2, we
briefly discuss the GZ model under two performance regimes
(maximum power regime (MPR) and maximum ecological
regime (MER)). In Sec. 3, we introduce the generalization

of the GZ model including the albedo effect, the greenhouse
effect and the internal irreversibilities of the cycle by means
of a parameter arising from the Clausius inequality [14, 15].
In this section, we apply the extended GZ model to calcu-
late the surface temperature of the nine planets of the solar
system. The model is used under both the maximum power
and the maximum ecological regimes. We also present an al-
ternative calculation of the surface temperature of Venus by
considering the very high greenhouse effect of this planet,
which has an atmosphere with a great concentration ofCO2.
This calculation uses a cold reservoir different from the sur-
rounding3K universe, consisting in an atmospheric structure
of the tropopause type. Finally, in Sec. 4, we present the con-
clusions.

2. Endoreversible GZ model for atmospheric
convection

As is well known [4], cosmic radiation, starlight and moon-
light can be neglected for the thermal balance of any of the
planets of the solar system and only the following quantities
have an influence: the incident solar influx or solar constant
Isc, the planet’s albedoρ, and the greenhouse effect of the
planet’s atmosphere crudely evaluated by means of a coeffi-
cientγ [4,13]. The endoreversible GZ model is based on the
annual average quantities and thus it does not represent actual
convective cells, but a kind of annual virtual cell that takes
into account the global thermodynamic restrictions over the
convection as a dominant energy transfer mechanism in the
air (which has a large Rayleigh number). Besides, this kind
of model must only be taken as that producing better upper
bounds than those calculated by means of classical equilib-
rium thermodynamics, which is the main purpose of FTT.

2.1. Maximum power regime

In Fig. 1, a schematic view of a simplified Sun-Earth-Winds
system as a heat engine cycle is depicted. This cycle consists
of four branches:

1. two isothermal branches, one in which the atmosphere
absorbs solar radiation at low altitudes and one in
which the atmosphere rejects heat at high altitudes to
the universe, and

2. two intermediate instantaneous adiabats [16] with ris-
ing and falling currents. In Ref. 17, it was shown that a
Curzon-Ahlborn FTT cycle in the endoreversible limit
with instantaneous adiabats is reached for large com-
pression ratios. In the GZ virtual cells, it is feasible to
consider that this condition is fulfilled.

According to GZ, this oversimplified Carnot-like engine
corresponds very approximately to the global scale motion of
wind in convective cells. Below, we use all of GZ model’s
assumptions. For example, the work performed by the
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FIGURE 1.Scheme of a simplified solar-driven heat engine (taken
from Ref. 2).

working fluid in one cycleW , the internal energy of the
working fluid U , and the yearly average solar radiation flux
qs are expressed per unit area of the Earth’s surface. The
temperatures of the four-branch cycle are taken as follows:
T1 is the working fluid temperature in the isothermal branch
at the lowest altitude, where the working fluid absorbs so-
lar radiation for half of the cycle. During the second half of
the cycle, heat is rejected via black-body radiation from the
working fluid at temperatureT2 (highest altitude of the cell)
to the cold reservoir at temperatureTex (the surrounding3K
universe). In the GZ model, the objective is to maximize the
work per cycle (average power) subject to the endoreversibil-
ity constraint [16], that is,

∆Sint =

t0∫

0

(
qs(t)− σ

[
T 4(t)− T 4

ex(t)
]

T (t)

)
dt = 0, (2)

where∆Sint is the change of entropy per unit area,t0 is
the time of one cycle,σ is the Stefan-Boltzmann constant
(5.67 × 10−8 W/m2k4), andqs, andT are functions of time

t, taken as [2]

T (t) =
{

T1; 0 ≤ t ≤ t0
2

T2; t0
2 ≤ t ≤ t0

}

qs(t) =





0; t0
2 ≤ t ≤ t0

Isc(1− ρ)
2

; 0 ≤ t ≤ t0
2



 ; (3)

in the same way,Tex = 3 K for 0 ≤ t ≤ t0, with Isc the
yearly average solar constant (1373 W/m2) andρ = 0.35 [2],
the effective average albedo of the Earth’s atmosphere. The
GZ model maximizes the work per cycleW , taken from the
first law of thermodynamics:

∆U=−W+

t0∫

0

{
qs(t)−σ

[
T 4(t)−T 4

ex(t)
]}

dt=0, (4)

by means of the Euler-Lagrange formalism and denoting av-
erage values as

T =
T1 + T2

2
, Tn =

Tn
1 + Tn

2

2
, qs = Isc

(1− ρ)
4

, (5)

wheren is an integer with valuesn = 3 or 4. The factor of
1/4 arises from a factor of1/2 to account for the day/night
difference, and a geometric factor of1/2 to account for the
Earth’s cross section, which is intercepted by solar radiation,
as opposed to the corresponding hemispherical surface area
of the Earth. From Eqs.(4) and (5), and taking into account
the constraint given by Eq.(2), GZ construct the following
LagrangianL:

L = T 4(t) + λ

[
qs(t)
T (t)

− σT 3(t)
]

, (6)

whereλ is a Lagrange multiplier. By using∂L(t)/∂T (t)=0,
GZ found the following values for the Earth’s atmosphere:
T1=277 K, T2=192 K and Pmax=Wmax/t0=17.1 W/m2.
These numerical values are not so far from “actual” values,
which areP ≈ 7W/m2 [18], T1 = 290 K (at ground level)
andT2 ≈ 195 K (at an altitude of around 75-90 Km). How-
ever, as GZ assert, their power calculation must be taken as
an upper bound due to several idealizations in their model. In
Ref. 7, another endoreversible case was analyzed, but using
as a cold reservoir the tropopause shell withTex = 200 K. In
this case, the following Lagrangean was used:

L = qs + σT 4
ex − σT 4

−α

[
qs

T1
− σ(T 3

1 + T 3
2 )

2
− σT 4

ex

(
1
T1

+
1
T2

)]
, (7)

with α a Lagrange multiplier; and by numerically solving
∂L(t)/∂T (t) = 0, we obtained

T1 = 293.387K, T2 = 239.267K,

which are excellent values for convective cells restricted to
the troposphere. If these temperature values are substituted
in the average power [7]

P = qs + σT 4
ex − σT 4, (8)
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the following value is immediately obtained:

P = 10.758 W/m2,

which is a good value for the wind power [18].

2.2. Ecological criterion

As De Vos and Flater [3] state, no mechanism guarantees that
the atmosphere maximizes the wind power. In fact, some au-
thors [19–21] have recognized that the Earth’s atmosphere
operates at nearly its maximum efficiency; thus, from an
FTT point of view, an ecological-type criterion seems fea-
sible. This is due to the properties of theE-function, which
at its maximum value represents an austere compromise be-
tween power and entropy production, additionally leading to
a high efficiency [10, 12]. This ecological criterion, as pre-
viously occurred with the concepts of power output and effi-
ciency [22], has also been used in the context of irreversible
thermodynamics [23,24]. In particular, in Ref. 7 the so-called
ecological criterion was applied to the GZ-model. This crite-
rion consists in maximizing Eq. (1). By means of the second
law of thermodynamics, first, we calculate∆Su, the total en-
tropy change per cycle (system plus surroundings),

∆Su =

t0∫

0

(
−qs(t) + σ

[
T 4(t)− T 4

ex

]

T (t)

)
dt; (9)

from Eqs. (3), we obtain

∆Su =

t0
2∫

0

[
−qs(t)

T1
+ σ

(
T 3

1 −
T 3

ex

T1

)]
dt

−
t0∫

t0
2

σ
(
T 4

2 − T 4
ex

)

Tex
; (10)

Thus, the total entropy production is given by [7],

Σ =
∆Su

t0
≈ − qs

T1
+

σ

2

[
T 3

1 +
T 4

2

Tex

]
, (11)

here, we have used the approximationqs À σT 4
ex

(223 W/m2 À 4.59 × 10−6 W/m2) with Tex = 3 K. So,
the ecological functionE for this case is

E = qs − σT 4 +
Texqs

T1
− σTex

2

[
T 3

1 +
T 4

2

Tex

]
. (12)

By using Eq. (12) and the constraint given by Eq. (2), we
proposed the following Lagrangean functionLE :

LE = qs − σT 4 +
Texqs

T1

−σTex

2

[
T 3

1 +
T 4

2

Tex

]
− α

[
qs

T1
− σT 3

]
, (13)

with α being the Lagrange multiplier. By substituting
the values of qs, σ and Tex and numerically solving
∂LE(t)/∂T (t) = 0, we find

T1 = 294.08 K, T2 = 109.54 K, P = 6.89
W
m2

,

which are reasonable values forT1 andP , but not forT2.
However, if we use as a cold reservoir, the tropopause
shell [28] withTex ≈ 200 K, we can now use the Lagrangean
function,

L = qs + σT 4
ex − σT 4 +

(
qs +

σT 4
ex

2

)
Tex

T1

− σTex

2

(
T 3

1 +
T 4

2

Tex

)
− σT 4

ex

2

− β

[
qs

T1
− σ(T 3

1 + T 3
2 )

2
+ σT 4

ex

(
1
T1

+
1
T2

)]
, (14)

with β a Lagrange multiplier. By using again the Euler-
Lagrange formalism, we numerically obtain

T1 = 303 K, T2 = 219 K, P = 7
W
m2

,

which are very good values, forT1, T2 and P . Besides,
these values are restricted to typical values in the troposphere,
where the climatic phenomena occur. It is important to note
that the power values (6.89 W/m2) and (7 W/m2) calculated
by means of the ecological function in this section did not
consider the greenhouse effect (γ - coefficient). When this
quantity is taken into account, the values ofP are greater than
(7 W/m2) [8]. These scenarios lead to greater upper bounds
for the wind’s power, permitting an energy excess for other
relevant dissipative processes such as ocean currents and bi-
ological structuring.

3. Nonendoreversible GZ model including
greenhouse effect for the planets of the so-
lar system

In this section we include the greenhouse effect in the GZ
model, performing in both maximum power and maximum
ecological function regimes. Internal irreversibilities are also
included through a parameter measuring the degree of depar-
ture from the reversible regime. This extended GZ model is
applied to the nine planets of the solar system.

3.1. Maximum power regime

Within the context of FTT thermal engine models, some au-
thors [14,15], [25–27] have included the role of internal irre-
versibilities in thermal cycles through a lumped parameterR
arising from the Clausius inequality,

∆Sw1 + ∆Sw2 ≤ 0, (15)
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with ∆Sw1 being the entropy change of the working fluid
along the upper isothermal branch and∆Sw2 the correspond-
ing entropy change along the lower isothermal branch. For
the endoreversible case, the sum of∆Sw1 and∆Sw2 is zero;
but when internal irreversibilities are taken into account,

∆Sw1 + ∆Sw2 < 0. (16)

To convert Eq. (16) to a constraint, the inequality is trans-
formed into an equality by means of

∆Sw1 + R∆Sw2 = 0, (17)

whereR is given by [14,15]

R =
∆Sw1

| ∆Sw2 | < 1; (18)

thus, in terms ofR, the thermodynamic restriction Eq. (2)
becomes

∆SR =

t0∫

0

(
qs (t)− σ (1− γ)R

[
T 4(t)− T 4

ex(t)
]

T (t)

)
dt

= 0, (19)

where we have included the greenhouse coefficientγ [4]
through the factor(1 − γ) affecting the flow released into
space. From Eqs. (3) and (5), Eq. (19) can be written as

qs

T1
− σR

2
[
(1− γ)T 3

1 + T 3
2

]
= 0. (20)

By means of Eq. (20) as the new constraint we propose
the following Lagrangean:

L′R = qs − σ

2
[
(1− γ)T 4

1 + T 4
2

]

−λ′
{

qs

T1
− σR

2
[
(1− γ)T 3

1 + T 3
2

]}
, (21)

whith λ′ being a Lagrangean multiplier. By means of the ex-
tremal conditions, we obtain the following equations:

T 5
1 − T2T

4
1 −

2qs

σR(1− γ)
T2 = 0, (22)

T 4
1 −

1
(1− γ)

T1T
3
2 −

2qs

σR(1− γ)
= 0 (23)

By numerically solving equations (22) and (23), we ob-
tain, for T1 (the surface temperature), the values shown in
Table I for the nine planets of the solar system. The values
for ρ andγ, Isc andTexp, were taken from Refs. 4 and 19. In
columnTcal, we show the values forT1 obtained by means of
the extended GZ model operating under the maximum power
regime. In all of the cases of Table I,R = 1 was considered,
that is, all theT1-values are for an endoreversible model. It is
important to note that, for these calculations, the greenhouse
effect was only considered in the first half of the GZ-cycle,
that is, in the lowest isothermal branch. In Ref. 8, it was
shown that this scenario is more appropiate for the inclusion
of the greenhouse effect. In Table I, we also include some
cases (Venus, Earth, Saturn, Uranus and Pluto) where calcu-
lations for R < 1 are also shown to improveTcal (T1)

TABLE I. Surface temperatures of the nine planets under a maxi-
mum power regime, taking the greenhouse effect only in the lower
part of the atmosphere.

Planets ρ γ ISC R Tcal Texp(
W
m2

)
(K) (K)

Mercury 0.058 0.0 9200 1 489 450

Venus 1 727.4

0.71 0.997 2600 0.97 732.9 740

0.93 740.7

Earth 1 289.5

0.35 0.2 1373 0.97 290.2 288

0.95 293.2

Mars 0.17 0.0 600 1 239.6 220-240

Jupiter 0.5 0.4 50 1 125.2 120

Saturn 1 87.6

0.94 88.9

0.6 0.4 15 0.90 89.4 95

0.88 90.5

0.75 95.1

Uranus 1 158.6

0.7 0.4 4 0.98 58.89 59

0.95 59.2

Neptune 0.7 0.4 2 1 49.2 48

Pluto 1 43.5

0.9 44.8

0.5 0.1 1 0.8 46.1 50

0.7 47.6

0.65 49.2

in comparison withTexp. In those cases, a certain degree of
internal irreversibility is considered through the lumped pa-
rameterR. As can be seen in Table I, through the GZ-model
the surface temperatures of the solar system planets can be
recuperated in an appropiate way.

3.2. Maximum ecological function regime

We now use the ecological function given by Eq. (1) as an
objective function. In this case, by means of the considera-
tions used in Sect. 3.1, we used the following Lagrangean
function [8]:

L
′
ER = qs − σ

2
[
(1− γ)T 4

1 + T 4
2

]
+

Texqs

T1

− σRTex

2

[
(1− γ)T 3

1 +
T 4

2

Tex

]

− α′
{

qs

T1
− σR

2
[
(1− γ)T 3

1 + T 3
2

]}
, (24)
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which under Euler-Lagrange formalism∂L(t)/∂T (t) = 0
leads to the equations

T 5
1 +

[
3Tex

4
R− (1 + R)T2

]
T 4

1

−2qs

3σ

(
1 + R

R

)(
1

1− γ

)
T2

+
Texqs

2σ

(
1

1− γ

)
= 0, (25)

T 4
1 +

1
(1− γ)

T1T
3
2 −

2qs

σR

(
1

1− γ

)
= 0. (26)

In Table II, we show the Earth’s surface temperature with-
out the inclusion of the greenhouse effect [γ = 0 in Eqs.(25)
and (26)] and the surface temperatures for the rest of the so-
lar system planets, by considering some cases withR < 1.
In Tables III and IV, we show as particular cases the calcu-
lations of surface temperatures of the Earth and Venus for
both maximization regimes MPR and MER, respectively. In
both cases,Tex = 3K andR = 1 were used, and several
values ofγ were considered. In the cases of the Earth and
Venus, their atmospheres have atmospheric shells known as
tropopauses with temperatures approximately constant (for
the EarthTtp ≈ 200K and for VenusTtp ≈ 165K [28])
which are the limit of their tropospheres where climatic phe-
nomena occur. The Earth’s tropopause has a width of approx-
imately2 Km and is at an altitude of12 Km on the average.
The Venus tropopause is at an altitude of85−110 Km. If the
approximationqs À σT 4

ex is not used, then the correspond-
ing Lagrangean function for the MPR is given by Eq. (14)
and, by using the Euler-Lagrangean formalism, we obtain the
following equations:

TABLE II. Surface temperatures of the nine planets under a maxi-
mum ecological function regime, taking the greenhouse effect only
in the lower part of the atmosphere.

Planets ρ γ ISC R Tcal Texp

(W/m2) (K) (K)

Mercury 0.058 0.0 9200 1 519 450

Venus 0.86 740

0.71 0.992 2600 1 725.8 740

0.993 0.95 742.1

Earth 0.35 0.0 1373 1 294.0 288

Mars 0.17 0.0 600 1 254.0 220-240

Jupiter 0.5 0.4 50 1 135.0 120

Saturn 0.6 0.4 15 1 94.0 95

Uranus 0.7 0.4 4 1 63.6 59

Neptune 0.7 0.4 2 1 53.2 48

Pluto 1 46.2 50

0.5 0.1 1 0.95 46.8

0.75 49.4

0.71 50

T 5
1 T 4

2 − T 4
1 T 5

2 +
T 4

ex

3
(
T 5

1 − T 5
2

)

− 2qs

3σR(1− γ)
T 5

2 = 0, (27)

T 4
1 T2 +

T1T
4
2

(1− γ)
−

[
T 4

ex +
2qs

σR(1− γ)

]
T2

− T 4
ex

(1− γ)
T1 = 0. (28)

In Table V, we show the surface temperatures of the Earth
and Venus for several scenarios of the greenhouse effect, tak-
ing as cold reservoirs the tropopause shells atTex ≈ 200K
andTex ≈ 165K, respectively. It is remarkable how, for high
values ofγ in the case of Venus, the surface temperature is
practically recuperated by the GZ model. For the same cases,
that is,Tex 6= 3K, but maximizing the following Lagrangean

TABLE III. Surface temperatures of Earth and Venus under a max-
imum power regime, taking the greenhouse effect only in the lower
part of the atmosphere.

EARTH Tex(K) γ Tcalc(K) Texp(K)

0 277.2

ρ = 0, 35 0.20 289.3

3 0.25 293.3 ≈ 288

qs = 223 W
m2 0.30 297.2

0.35 301.4

0.40 306.1

VENUS γ Tcalc(K) Texp(K)

0.0 378

ρ =0.59 0.96 665

3 0.97 698 ≈ 740

qs = 195 W
m2 0.98 748

0.99 841

TABLE IV. Surface temperatures of the Earth and Venus under a
maximum ecological function regime, taking the greenhouse effect
only in the lower part of the atmosphere.

EARTH Tex(K) γ Tcalc(K) Texp(K)

0 294

ρ = 0.35 0.20 309

3 0.25 314 ≈ 288

qs = 223 W
m2 0.30 319

0.35 324

VENUS γ Tcalc(K) Texp(K)

0 401

ρ =0.59 3 0.94 731 ≈ 740

0.95 756

qs = 195 W
m2 0.96 787
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TABLE V. Surface temperatures of the Earth and Venus under a
maximum power regime, taking the greenhouse effect only in the
lower part of the atmosphere withTex 6= 3K.

EARTH Tex(K) γ Tcalc(K) Texp(K)

0 293.4

ρ = 0.35 0.20 303.8

200 0.25 307.8 ≈ 288

qs = 223 W
m2 0.30 310.4

VENUS γ Tcalc(K) Texp(K)

0 296

ρ =0.59 0.97 697

165 0.975 728 ≈ 740

qs = 195 W
m2 0.976 738

LER = qs + σT 4
ex −

σ

2
[
(1− γ)T 4

1 + T 4
2

]
+ σ(1− γ)T 4

ex

+
(

qs +
σ(1− γ)RT 4

ex

2

)
Tex

T1
− σR

2
(
T 4

ex + 2T 4
2

)

− σR

[
(1− γ)T 3

1

2
− ωET 4

ex

(
1− γ

T1
+

1
T2

)]

− ωE

[
qs

T1
− σR((1− γ)T 3

1 + T 3
2 )

2

]
, (29)

we get the following equations:

T 5
1

+
[
3R

4
T 4

1 +
RT 4

ex

4
− qs

2σ(1− γ)

]
(Tex − ωE) = 0, (30)

T 5
2 + RT 5

2 −
3R

4
ωET 4

2 −
RT 4

ex

4
ωE = 0 (31)

(1− γ)T 4
1 T2 + T1T

4
2

−
(

2qs

σR
+ (1− γ)T 4

ex

)
T2 − T 4

exT1 = 0, (32)

In Table VI, we show the numerical results for the Earth
and Venus under the MER for severalγ-values.

4. Conclusions

Although real heat engines are complex devices, realistic
upper bounds can be placed on their performance via rela-
tively simple thermodynamic models, as is the case of FTT-
models [29]. This fact has been recently emphasized by Fis-
cher and Hoffmann through a very illustrative case [1]. Sim-
ple FTT-models have been used to describe some global at-
mospheric properties, such as surface temperatures and wind
power of the planets of solar system. A simple and elegant

TABLE VI. Surface temperatures of the Earth and Venus under a
maximum ecological function regime, taking the greenhouse effect
only in the lower part of the atmosphere withTex 6= 3K.

EARTH Tex(K) γ Tcalc(K) Texp(K)

0 301.5

ρ = 0.35 0.10 308.1

200 0.15 311.8 ≈ 288

qs = 223 W
m2 0.20 315.9

VENUS γ Tcalc(K) Texp(K)

0 306

ρ =0.59 0.99 704

165 0.992 730.9 ≈ 740

qs = 195 W
m2 0.993 747

model for atmospheric convective cells was proposed by Gor-
don and Zarmi [2]. In this model, an atmospheric “heat
engine” of the Carnot-type performing at maximum power
regime was used. However, as De Vos and Flater state [3], no
mechanism guarantees that the atmosphere will maximize the
wind power. In fact, some authors [19–21] have recognized
that the Earth’s atmosphere operates at close to its maximum
efficiency; thus, from an FTT point of view, an ecological-
type criterion seems feasible. In this article, we have used
the so-called ecological optimization criterion. In addition,
we have extended the GZ model to involve the greenhouse
effect and internal irreversibilities through a lumped param-
eter arising from the Clausius inequality. With this GZ ex-
tended model, we have calculated the surface temperatures
of the nine planets of the solar system under both maximiza-
tion regimes, the MPR and the MER, respectively. Another
change we proposed in the GZ model was the use of the
tropopause shells of the Earth and Venus as alternative cold
reservoirs. With this proposal, the surface temperatures of
these planets were considerably improved.

In summary, with the extended GZ model we have rea-
sonably reproduced the surface temperatures of the nine plan-
ets of the solar system. It is remarkable that surface temper-
atures strongly depend on the greenhouse coefficient, as can
be seen in Tables III-VI. This result is consistent with other
of our results reported in Ref. [8], where we show that wind
power increases with the size of the greenhouse effect. This
effect has been recently calculated by Emmanuel [30] for hur-
ricanes over the last thirty years.
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