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In this paper we propose a simple method to identify the unknown parameters and to estimate the underlying variables from a given chaotic
time series{x3(tk)}k=n

0 of the three-dimensional R̈ossler system (RS). The reconstruction of theRS from its x3− variable is known to
be considerably more difficult than reconstruction from its two other variables. We show that the system is observable and algebraically
identifiable with respect to the auxiliary outputln(x3), hence, a differential parameterization of the output and its time derivatives can be
obtained. Based on these facts, we proceed to form an extended re-parameterized system (linear-in-the -parameters), which turns out to be
invertible, allowing us to estimate the variables and missing parameters.

Keywords: Chaotic systems; inverse problem; estimation of parameters and variables.

Este articulo se presenta un método sencillo para recuperar el los parámetros del modelo y para recuperar las variables no disponibles del
sistema cáotico de Rossler, a partir de el conocimiento de una serie de tiempo{x3(tk)}k=n

0 . Es muy bien sabido, que reconstruir este
sistema a partir de la variablex3 es mas dif́ıcil que tratar de reconstruirlo a partir de las otras variables. Usando el hecho que este sistema es
identificable y algebraicamente observable con respecto a la transformación ln(x3), se procede a obtener una parametrización diferencial de
la salida. Esta parametrización puede ser invertible bajo ciertas condiciones. Permitiéndonos estimar parámetros y variables desconocidas
del modelo.

Descriptores: Sistemas cáoticos; problema inverso; estimación de paŕametros y variables.

PACS: 02.60.Lj; 05.45.Gg, 05.45.Pq; 05.45+b

1. Introduction

In the last two decades, considerable attention has been paid
to the reconstruction of chaotic attractors from one or more
available variables (see the pioneering works by Taken [1],
Packardet al. [2] and Saueret al. [3]). This is an interesting
and challenging topic that allows us to test the accuracy of
some empirically derived models [4, 5]. This inverse prob-
lem consists in recovering the underlying variables and un-
known parameters from a partial knowledge of a particular
chaotic system. There are two ways to approach this prob-
lem. The first approach is based on embedding a time series
of the observed variables in a phase space. Roughly speaking,
the vector state is constructed with the time delayed values of
the measured scalar quantity [6–11]. The other approach ex-
ploits control theoretical ideas, such as inverse system design
and system identification, generally using Kalman’s filters,
Luenberger’s observers and high gain observers [12–19].

According to the second approach, we recover (approxi-
mately) the set of non-available parameters and the remaining
states of theRS, based on the knowledge of a recorded time
series, which is the sampling variablex3 from theRS i. We
emphasize that the observability index of theRSwith respect
to variablex3 is the smallest of the three states. A small in-
dex indicates little information content, which implies great
difficulties [20]. That is, identification of theRS from x3-
variable poses more problems than utilizing any of the other

two variablesx1 andx2. So, we approach the identification
problem using the algebraic properties of observability and
identifiability of theRS. These properties allow us to find a
differential parametrization of the recorded data and a finite
number of its time derivatives. Then, based on this parame-
terization, we show that it is possible to recover the missing
states and the unknown parameters. This approach requires
the time derivatives (from first to third) of the data set, which
are solved with a digital differentiator [21].

The rest of this paper is organized as follows. Section 2
is devoted to studying some important algebraic properties of
theRS. In Sec. 3, we establish the framework of the identi-
fication problem and introduce a digital filter for estimation
of the time derivatives of the recorded data set. Section 4
presents the results of the simulations. Section 5 is devoted
to giving some conclusions. Finally, in the Appendix we pro-
vide a proof of the proposition.

2. Problem Definition

Consider theRSwhich is defined by a set of three differential
equations,

.
x1 = −(x2 + x3),
.
x2 = x1 + ax2,

.
x3 = b + x3(x1 − c), (1)
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where the coefficientsa,b, an c are adjustable constants.
Originally, this system, introduced by Otto Rössler, arose out
of work in chemical kinetics [22]. This system presents a
chaotic behavior in a large neighborhood of{a = b = 0.2,
c = 5}, and it is considered to exhibit one of the simplest
possible strange attractors [23].

It is well known that statex3 shows a highly complex
behavior, which consists of a set of spikes with irregular
amplitudeii, so that a convenient nonlinear coordinate trans-
formation for numerical purpose is presented as:

z1 = x1, z2 = x2, z3 = ln x3,

with x3 6= 0. Hence, in this new coordinate system, (1) be-
comes

.
z1 = −z2 − exp(z3),
.
z2 = z1 + az2,

.
z3 = −c + z1 + b exp(−z3). (2)

This system, referred to as transformedRS, has only one non-
linear term,exp(z3). Evidently it is easier to study and an-
alyze than the original system (1), which involves two vari-
ables in the nonlinear termx3x1.
Remark 1: Because the estimation of the states{x1 , x2}
from variablex3 has a very small observability index, then,
intuitively, it is not possible to recover (with high accuracy)
the underlying states around a valley or a crest of the recorded
signal x3; that is, an information portion is lost. This in-
convenience is partially solved (numerically) using the non-
linear transformationz3 = ln x3, which has the advantage
of smoothing the variablex3 peaks. Therefore, it is easier
to estimate and synchronize, numerically, the statesx1 and
x2. [25].
The problem addressed in this paper consists in determining
the unknown parametersa, b andc, from a given recorded set
{x3(tk)}k=niii

0 ; tk ∈ =} where= is a discrete set of obser-
vation times

= = (t1, t2, . . . , tn); tj+1 − tj = T

j = {1, 2, . . . , n− 1}. (3)

Lainscseket al. [5] recover a global model from thex3− vari-
able, by means of an Ansatz library. They employ embedding
methodology as a tool to derive a model in space spanned by
the state variable of the time-series itself, while generic func-
tions of the other two state variables are formed. One disad-
vantage of their method is the use of the Genetic Algorithm
to obtain the inverse of some nonlinear transformations. In
contrast, we solve the problem in a straightforward way by
using some algebraic properties, which we discuss in the next
section.

2.1. Some Algebraic properties

We introduce two useful properties that the transformedRS
satisfies [18].

Definition 1: Consider an undetermined system of ordinary
differential equations

G
(
t,X,

.

X,P
)

= 0, (4)

where X T = (xi)i=n
1 ∈ Rn is a state vector andP

T ∈ Rl is a constant parameter vector. Suppose that there
exists a smooth, local and one to one correspondence be-
tween solutionX(t) of system(4) and an arbitrary function
y(t) = h(t,X(t)) ∈ R; then, statexi is said to be alge-
braically observable with respect toy(t) if it satisfies

xi =
fi(y, . . . , y(m), P )
gi(y, . . . , y(s), P )

,

wherefi, gi and h are smooth maps, y(k) is thekth deriva-
tive of y, l, m ands are integers, withm ≤ s. Variabley is
the output. If xi is observable for everyi = 1, . . . , n, then
we say that the system is completely observable.
Definition 2: Under the same conditions as Definition 1. If
we can find a smooth mapW : Rj → Rl such that

0 = W (y, ẏ, . . . , y(j), P ),

then the parameter vectorP is said to be algebraically iden-
tifiable with respect to the outputy.
That is, a system is algebraically observable if there exists a
suitable variabley (output) such that all the variables can be
differentially parameterized solely in terms ofy and its re-
spective time derivatives. Moreover, if vectorP is a root of a
differential parametric function ofy, we say that the system
is algebraically identifiable.

Indeed, we show that system (2) satisfies the previous
definitions when the outputy = z3. Clearly, variablesz1

andz2 can be rewritten as

z1 = c− b exp(−y) +
.
y;

z2 = − exp(y)− b exp(−y)
.
y − ..

y,

hence, system (2) is algebraically observable with respect to
the selected output. Moreover, from the third equation of (2),
we obtain

y(3) = −c− (1 + exp(y))
.
y + a(exp(y) +

..
y)

+b
(
1 + a

.
y +

.
y
2 − ..

y
)

exp(−y). (5)

Finally, we conclude that system (2) is identifiable with re-
spect to the outputy, because the above differential parame-
terization of the outputy can be written as

0 = W (y,
.
y,

..
y, y(3), p)

with p
4
= [a, b, c].
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3. Model parameter estimation

The differential parameterization (5) can be rewritten as:

S(t) = −c + aFa(t) + bFb(t) + abFab(t) (6)

where

S(t)=y(3)(t)+(1+ey(t))
.
y(t); Fa(t)=ey(t)+

..
y(t),

Fb(t)=(1+
.
y
2(t)−..

y(t))e−y(t); Fab(t)=
.
y(t)e−y(t). (7)

This makes it possible to build an extended re-parameterized
linear system of the output and its time derivatives,
which is formed evaluating (6) at different times
{tk, tk−1,tk−2, tk−3} ⊂ =. This yields

Φ[tk : tk−3]Q = Σ[tk : tk−3] (8)

where

Φ[tk : tk−3]=




−1 Fa(tk−3) Fb(tk−3) Fab(tk−3)
−1 Fa(tk−2) Fb(tk−2) Fab(tk−2)
−1 Fa(tk−1) Fb(tk−1) Fab(tk−1)
−1 Fa(tk) Fb(tk) Fab(tk)


, (9)

and

Q =




c
a
b
ab


 ; Σ[tk : tk−3] =




S(tk−3)
S(tk−2)
S(tk−1)
S(tk)


 . (10)

Now, the following proposition allows us to estimate vector
Q, by computing a simple inverse matrix, under the following
basic assumptions:

A.1) The set of equations (1) has a chaotic behaviour,
where the trajectories of theRS are asymptotic to a compact
attractorA.

A.2) The time derivatives (from first to third) of the output
are always available.
Proposition 1: Consider the system (1) under assumptions
A.1andA.2. Then, the inverse of matrix (9) exists almost for
any time.
Proof: (the proof is given in the Appendix).
Remark 2: In order to simplify the following identifica-
tion method, we prefer to consider the relaxed case when
the system exhibits a chaotic behavior, instead of the case
when its behavior is periodical or quasiperiodical. If we con-
sidered the second case, then it would be necessary to use
the Poincaŕe maps, which leads to a highly sophisticated and
elaborated analysis. Also, a characteristic of the attractor of
theRS is that the signalx3 is positive and is formed by a set
of spikes with irregular amplitude. Consequently, the time se-
riesy(tk) = ln(x3(tk)) is well defined in the attractorA. A2
will be relaxed by numerical calculation of the derivatives of
the recorded signal{y(tk)}k=n

0 (from first to third); this can
be done sincey(tk) = ln(x3(tk)); hence, the time derivatives
of y can be computed using finite derivatives, as we show in
the next section.

Remark 1: Another possibility for solving the problem is the
least-squares method. For instance, a convenient quadratic
function may be:

M(p)=
k=n∑

0

[−c+aFa(tk)+bFb(tk)+abFab(tk)−S(tk)]2 .

with tk ∈ =. In other words, finding the vectorp is equiva-
lent to minimizingM(p) for p ∈ R3. However, it is evidently
more efficient to recover the unknown parametersa, b, andc
by means ofProposition 1.

3.1. Numerical Differentiators

A suitable method for estimating the time derivatives on
a discrete set of recorded data was developed in Ref. 21.
The method consists in approximating a window of data
{y(tk−W ), . . . , y(tk)} by means of an interpolating polyno-
mial

ỹ(t) =
k=N∑

0

ak(t− (k −W )T )k, (11)

where the coefficients{a0, . . . , aN} are computed from the
least squares solution of




1 0 .... 0
1 T .... TN

: : : :
1 WT (WT )N







a0

a1

:
aN


 =




y(tk−W )
:
:

y(tk)


 . (12)

N is the order of the interpolating polynomial,W + 1 is the
window points number, andT is the sampling time. Thus,
the time derivatives of̃y at times are

ỹ(j)(s) =
k=N∑

0

ak
dj

dtj
{
(t− (k −W )T )k

}∣∣
t=s

, (13)

with tk−W≤s≤tk. Notice that it is convenient to implement
centered differentiators, because the set{tj , y(tj)}N

j=k−W

is available. Hence, it is possible to estimate the time
derivatives in the center of the moving window given by
s = kT −WT/2.

We select the spline-based interpolating polynomial to
approximate the selected set of data windows, since a lower-
order polynomial can be more accurate than higher-order
polynomialsiv. In practice, decreasing the window size al-
lows a higher-frequency noise to pass. For a very smallT ,
the window size should be increased to capture more infor-
mation about the signaly in order to smooth out the calcu-
lated derivatives. For higher noise levels, we need to increase
the window size in order to filter out most of the noise. This
works up to a certain limit, after which the error becomes in-
dependent of the window size [15]. Also, an advantage of
this method over other differentiators is its convenient tran-
sient behaviour.
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4. Numerical Simulations

The proposed identification scheme, (8) to (10), in conjunc-
tion with the selected spline interpolate method, (11) to (13),
is illustrated with some numerical simulations. For genera-
tion of the chaotic time series, we used a fourth-order Runge-
Kutta algorithm, with a precision of6 decimal numbers, from
t = 0 to t = 5 seconds. The step size in the numerical
method was set to5 × 10−4seconds. The parameter values
were set asa = 0.25, b = 0.3 and c = 8, and the ini-
tial conditions were set asx1(0) = 4.56, x2(0) = −1.69
and x3(0) = 0.07. The parameter values of the spline
were selected asN = 5 and W = 6. The evaluation of
the time derivatives was implemented at the moving time
s = (k − 3)T. The estimation process was started after
t ≥ 0.5 seconds.

Figures 1 to 3 show the error evolution of each output’s
time derivatives, defined byej = y(j) − ỹ(j); for j = 1, 2, 3,
for the time samplingT = 0.06 [s] andT = 0.025 [s], re-
spectively. The behaviour of the method’s solution is con-
sistent with the motion,i.e. a better performance is obtained
with smaller sampling time.

FIGURE 1. Error evolution of the first output’s time derivative, for
two time samplings.

FIGURE 2. Error evolution of the second output’s time derivative,
for two time samplings.

FIGURE 3. Error evolution of the third output’s time derivative, for
two time samplings.

Figures 4 to 6 show the numerical values of the parame-
tersa, b, andc, for the same time samplingT = 0.06 [s] and
T = 0.025 [s].

The obtained parameters are quite reasonable, particu-
larly for time samplingT = 0.025 [s]. However, to have
a better estimation of the parameters, the window size must
be increased in order to avoid the ill-condition of the least-
squares method.

The second experiment was the same as the first one, ex-
cept for the following abrupt variations in the values of the
parameters: ift ≤ 2.5[s], then{a = 0.25, b = 0.3, c = 8},
or else{a = 0.25, b = 0.25, c = 6} for a sampling time
T = 0.02[s].

Figure 7 shows the values of the parameters obtained by
the numerical simulation in the second experiment. Notice
that in the time interval2.5 ≤ t ≤ 2.8 the estimation fails,
because the abrupt variations in the parameters were intro-
duced whent = 2.5[s].

FIGURE 4. Estimation of parametera.

FIGURE 5. Estimation of parameterb.

FIGURE 6. Estimation of parameterc.

FIGURE 7. Estimation of the parameter set when an abrupt varia-
tion is introduced in the model.
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5. Conclusions

The differential algebraic approach allows us to recover the
parametric model of theRS from the knowledge of a given
time series{x3(tk)}n

k=0. We exploit the algebraic properties
of observability and identifiability that R̈ossler’s model ful-
fills with respect to the auxiliary outputy = ln(x3). This
facts permits us to obtain a differential parameterization to
the output and its time derivatives (from first to third). The
differential parameterization to the output contains the infor-
mation necessary for determining the remaining states and
the unknown parameters. So, we evaluate in different times
this parameterization to form an extended over-parameterized
linear system, which turns out to be invertible with respect to
the new parameters. The identification approaches in com-
bination with the spline method (to evaluate the time deriva-
tives) are illustrated by numerical simulations.
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Appendix

Proof of proposition 1:
The proof follows from the well-known Poincaré-

Bendixon theorem and the following Lemma [19].
Lemma: If the real set of functions{Φi(t)}m

i=1 are linearly
independent in a time intervalti < t < tf , then the following
matrix 



Φ1(t1) ..... Φm(t1)
: :
: :

Φ1(tm) Φm(tm)




is nonsingular forti ≤ t1 < t2 < . . . < tm ≤ tf .

Let us begin to prove the proposition. Suppose that the
set of real functions{1, Fa(t), Fb(t), Fab(t)} is linearly de-
pendent on a time intervalI = [ti, tf ] (ti is the time when the
trajectories of theRS lie in the attractorA. In practice,ti is
very small), where the functionsFa(t), Fb(t) andFab(t) are
given in (7). There are nonzero constantsc1, c2, c3, andc4,
such that

c2

(
ey(t) +

..
y(t)

)
+ c3

(
1 +

.
y
2(t)− ..

y(t))e−y(t)
)

+c1 + c4
.
y(t)e−y(t) = 0, (14)

sincey = ln(x3), so that
.
y =

.
x3/x3 and

..
y = (

..
x3 − .

x
2
3)/x2

3,
which are well defined byA1. Substituting the latter three re-
lations into (14), we have, after some manipulation, the fol-
lowing differential equation:

..
x3 =

2c3
.
x

2
3 + c4x3

.
x3 − c2x3

.
x

2
3 + c3x

2
3 + c1x

3
3 + c2x

4
3

c3 − c2x3
.

It should be noticed thatc3 − c2x3 must be different from
zero, because the entiny

..
x3 is well defined. Hence,x3

is a solution of a second order differential equation in the
time interval I. But this is a contradiction because by
the Poincaŕe-Bendixon theorem [6], it is well known that a
second order differential equation cannot exhibit a chaotic
behaviour (recallingA1). Therefore, the real functions
{1, Fa(t), Fb(t), Fab(t)} are linearly independent in a time
intervalI.

Of course, we need to select the time series{x3(tk)}n
k=0

with tk ∈ = = (t1, t2, ..., tn), such that[t1, tn] ⊂ I. It is
necessary to taken = 4 (see 6).

i. Other authors describe theRS by using the statesx,y andz.
Here, we use the variablesx1,x2 andx3 , because we use the
symboly to refer to the observed variable (available variable).

ii. Much of this behavior is described by one-dimensional logistic
map, that is,the chaotic behavior ofx3 can be approximated to
the mapx3,k+1 = λx3,k (1−x3,k); with x0 > 0 . Besides, the
initial conditionx3(0) > 0 leads tox3(t) > 0 for all t > 0,
hence,z3(t) is well-defined [24,25].

iii. {x3(tk)}k=n
0 is the single noise-free time series observed from

system (1).

iv. Above all if the data set{tj , y(tj)}N
j=k−W includes local

abrupt changes in the values ofy(t) for a steady change in the
value oft, then high-order interpolating polynomial produces
more oscillations around the abrupt changes.
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