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Fuerza termoelectromotriz en semiconductores bipolares: nuevo punto de vista
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Presentamos un nuevo método para calcular la fuerza termoelectromotriz en semiconductores bipolares dentro de la aproximación lineal a
la teoŕıa, tomando en cuenta los portadores de carga fuera del equilibrio generados en la muestra tras aplicar un campo de temperatura. Por
primera vez se define con precisión cúales son los portadores de carga fuera del equilibrio y cómo debe escribirse la ecuación de Poisson para
tomarlos en cuenta. También por primera vez se toḿo en cuenta el término proporcional al cambio de temperatura local producido por el
gradiente de temperatura aplicado en la expresión para la recombinación voluḿetrica para calcular la fuerza termoelectromotriz, dando por
resultado quéesta y la resistencia del semiconductor dependen no sólo de los paŕametros tradicionales como las conductividades eléctricas y
potencias termoeléctricas de electrones y huecos, sino también de las tasas de recombinación voluḿetrica y superficial.

Descriptores:Fuerza termoelectromotriz (Termo-fem); efecto Seebeck; potencia termoeléctrica; feńomenos de contacto entre metal y semi-
conductor; tasas de recombinación; condicíon de cuasineutralidad.

We present a new method for calculating the thermoelectromotive force in bipolar semiconductors within the linear approximation to the
theory, taking into account the non-equilibrium charge carriers generated in the sample when the temperature field is applied. For the first
time it is precisely defined which are the non-equilibrium charge carriers and how to write the Poisson equation to take them into account. For
the first time it is taken into account the term that is proportional to the local change in temperature produced by the gradient of temperature,
in the expression for the recombination rate to calculate the thermoelectromotive force given the result that this and the semiconductor’s
resistance do not depend solely on traditional parameters such as electric conductivities and thermoelectric powers of electrons and holes,
but do depend also on surface and bulk recombination rates as well.

Keywords: Thermoelectromotive force (Termo-emf); Seebeck effect; Thermoelectric power; contact phenomena between metal and semi-
conductor; recombination rates; quasineutrality condition.
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1. Int roducción

En ãnos recientes han habido varias publicaciones [1–4] que
presentan nuevas ideas haciendoénfasis en la importancia
que tienen los portadores de carga fuera del equilibrio en los
fenómenos de transporte. En ellas se construyó un procedi-
miento general auto-consistente para resolver los problemas
que surgen mediante una secuencia de pasos [1, 4].

En un primer paso se consideró la situacíon más simple,
la del estado de equilibrio termodinámico. En estas condicio-
nes, un semiconductor arbitrario, homogéneo, en el que las
concentraciones de electrones y huecos sonn0 y p0 (en ge-
neral se cumplen0 6= p0), seŕa neutro eĺectricamente y no
habŕa campo interno inducido (built-in electric field). La dis-
tribución de temperatura es uniforme,T0 = constante. Los
niveles de potencial quı́mico para electronesµ0

n y huecosµ0
p

son constantes en el espacio (µ0
n,p = constante), y se cumple

µ0
n + µ0

p = −εg, dondeεg es la brecha de energı́a. Es de-
cir, como debeŕıa seguirse de la condición de equilibrio ter-
modińamico, el nivel del potencial electroquı́mico permanece
sin cambio en el espacio y es común a todos los subsistemas
de portadores de carga.

En un segundo paso se consideró el contacto metal-
semiconductor-metal en equilibrio termodinámico. Este es-
tado est́a caracterizado por la temperatura comúnT0 y el po-
tencial electroqúımico en coḿun, ϕ̃ = ϕ − µ0

s/e; aqúı, ϕ es

el potencial eĺectrico generado como resultado de la redistri-
bución de carga entre el semiconductor y el metal debido a
la diferencia de funciones de trabajo, yµ0

s = µ0
n. Normal-

mente se desprecia esta redistribución de carga en el metal
pues se lleva a cabo en las capas atómicas ḿas superficiales
y podŕıamos decir que la carga está concentrada en la super-
ficie. Mientras tanto, en el semiconductor la redistribución
de carga depende de la correlación entre la longitud de la
muestra2a y el radio de Debyer2

d = T0/4πe2(n0 + p0)
(por simplicidad se toma la constante dieléctrica igual a 1).
Cuandor2

d ¿ a2, tenemos cuasineutralidad [5]. La distri-
bución espacial de carga se reduce a una capa delgada en la
superficie del semiconductor, cumpliéndose:δn = δp = 0
en todo el volumen, y los potenciales quı́micosµ0

n,p(T0) per-
manecen constantes. El concepto de potencial de contacto
ϕ0 pierde sentido en el caso general, y existe sólo cuando
r2
d ¿ a2 [5] (Fig. 1). Cuando no tenemos cuasineutralidad,

r2
d ≥ a2, habŕa una distribucíon espacial de carga cuyo an-

cho es del orden del radio de Debye [5]. En este caso, en
equilibrio, tenemos una distribuición no uniforme de poten-
cial qúımico µ0

n,p(x) = µ0
n,p(T0) + δµ0

n,p(x) y de potencial
eléctricoϕ0(x); es decir, aparecerá un campo eléctrico inter-
no inducido (built-in electric field) (Fig. 2).

En el siguiente paso se consideró que tras aplicar el gra-
diente de temperatura,éste produce gradientes de concentra-
ción en los portadores de carga, porque tenemos diferentes
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tasas de generación t́ermica en diferentes puntos. Y como
consecuencia los potenciales quı́micos cambiaŕan:

µn,p(x) = µ0
n,p(x) + δµn,p(x).

Sin embargo, esta situación es de “equilibrio local” entre
electrones y huecos y el cambioδϕ0 en el potencial eléctri-
co seŕa cero (no tenemos distribución espacial de carga). Por
tanto, el gradiente del potencial electroquı́mico seŕa diferente
de cero y la situación no es de equilibrio real. En otras pa-
labras, en este paso tenemos un nivel de Fermi general no
homoǵeneo para electrones y huecos y se cumple

δµn(x) = −δµp(x).

Puesto que∇ϕ̃ 6= 0, habŕa corrientes de difusión. Estas
corrientes produciŕan una redistribución de electrones y hue-
cos en el espacio y, consecuentemente, un cambio en la dis-
tribución del potencial eléctrico, tendientes a crear un mis-
mo potencial electroquı́mico para electrones y huecos que no
dependa de las coordenadas, que sea constante, definiéndose
aśı un cuasiequilibrio.

FIGURA 1. Distribucíon de la concentración de electrones en el se-
miconductor cerca de las superficies de contacto con el metal en
x = ∓a, conχs < χm. Valores t́ıpicos de esta concentración son
del orden den0 = 1016cm−3, mientras que cerca de la superficie
δn = 1012cm−3. Los signos (+) y (–) indican la distribución de
carga cuando tenemos cuasineutralidad (rd → 0).

FIGURA 2. Distribucíon del potencial eléctrico cuando no tenemos
cuasineutralidad para varias longitudes del semiconductor. En el
caso2a. À rd, ϕ0(x) → ϕ0 = potencial de contacto [4].

Por otro lado, como en el metal la concentración de elec-
trones es muy alta, su radio de Debyerd es del orden de la se-
paracíon entre dośatomos, y no tendremos redistribución de
carga; o dicho de otra manera, en el metal sı́ tenemos cuasi-
neutralidad y la redistribución espacial de carga se reduce a
su superficie. Es importante señalar que el gradiente de tem-
peratura no afecta al potencial quı́mico ni a la concentración
de electrones en el metal, pues, como es sabido, no dependen
de la temperatura.

En el siguiente paso, cuando comienza el proceso dinámi-
co, aparece el términoα1

n,p∇T en las expresiones para las
corrientes eĺectricas, dondeα1

n,p son las potencias termo-
eléctricas de electrones y huecos. Este término es la fuerza
termodińamica que mueve a electrones y huecos en el se-
miconductor, y comoαm ¿ α1

n,p, la contribucíon del me-
tal resulta despreciable. Es necesario considerar los procesos
de recombinación electŕon-hueco, donde se utiliza la expre-
sión [6, 7]

R = Rn = Rp =
δn

τn
+

δp

τp
, (1)

para la tasa de recombinación voluḿetrica (o recombinación
masiva), siendoδn y δp los portadores de carga fuera del
equilibrio generados por el términoα1

n,p∇T . Sólo hasta este
paso se tomaron en cuenta los procesos de recombinación y
podemos entonces calcular la fuerza termoelectromotriz.

El método funciona, pero resulta ser un procedimiento
muy largo. Adeḿas, en todos los trabajos sólo se resuelve el
caso en que se tiene cuasineutralidad. Nosotros usamos un
procedimiento ḿas directo, y por tanto, ḿas simple, y resol-
vemos el caso dińamico,J0 6= 0, sin cuasineutralidad. Ḿas
directo porque consideramos las concentraciones de portado-
res de carga totales fuera del equilibrio:

δñ = n− n0 y δp̃ = p− p0,

tomando en cuenta cada uno de los portadores de carga gene-
rados en cada paso del procedimiento anterior, en el cualδn y
δp se refeŕıan exclusivamente a los portadores de carga fuera
del equilibrio generados por el términoα1

n,p∇T (δn y δp son
tan śolo parte de los portadores de carga fuera del equilibrio
incluidos enδñ y δp̃).

2. Principales ecuaciones del problema

Consideremos el modelo de un circuito termoeléctrico con-
sistente en un semicondutor bipolar homogéneo e iśotropo en
forma de paralelepı́pedo y cerrado por un metal de conduc-
tividad eĺectricaσm, longitudL y seccíon transversal unita-
ria. La resistencia del circuito externo (incluyendo la resis-
tencia del volt́ımetro) esRm = L/σm. El contacto metal-
semiconductor a la izquierda, enx = −a, se mantiene a la
temperaturaT1; a la derecha enx = +a, est́a a la tempe-
raturaT2 < T1. Expresamos la temperatura en unidades de
enerǵıa, i.e., tomamos la constante de Boltzmann igual a la
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unidad. Las caras laterales están aisladas térmicamente, por
lo que el problema es unidimensional. Suponemos que la di-
ferencia de temperaturas∆T = T1 − T2 es suficientemente
pequẽna [∆T/T0 ¿ 1, T0 = (T1 + T2)/2], para considerar
al problema como lineal. También suponemos, por simplici-
dad, que los contactos entre el metal y el semiconductor son
isot́ermicos, es decir, que en el punto de contacto la tempera-
tura del metal es igual a la temperatura del semiconductor. En
la aproximacíon de una temperatura todos los subsistemas de
part́ıculas (electrones, huecos y fonones) que participan en el
transporte de calor tienen la misma temperatura. (Fig. 3).

Bajo estas condiciones, el campo de temperatura queda
representado por la función

T (x) = T0 − ∆T

2a
x. (2)

En el estado estacionario la fuerza termoelectromotriz es
generada en el circuito y la corriente termoeléctrica constante
J0 fluye a trav́es deél. Es bien sabido que en semiconducto-
res bipolares la densidad de corriente totalJ0 simplemente
es

J0 = jn + jp, (3)

donde

jn = −σn

(
dϕ̃n

dx
+ α1

n

dT

dx

)

y jp = −σp

(
dϕ̃p

dx
+ α1

p

dT

dx

)
(4)

son las corrientes parciales de electrones y huecos;
σn, σp son las conductividades eléctricas voluḿetricas;
y ϕ̃n,p = ϕ∓ µn,p/e son los potenciales electroquı́micos
(cuasi-niveles de Fermi) de electrones y de huecos;ϕ es el
potencial eĺectrico causado por la redistribución de cargas
eléctricas en el campo térmico. Las ecuaciones de continui-
dad para las corrientes parciales de electronesjn y de hue-
cosjp son

djn

dx
= eRn,

djp

dx
= −eRp, (5)

dondeRn,p son las tasas de recombinación voluḿetrica.

De acuerdo con la ecuación∂ρ/∂t = −divJ (consecuen-
cia de las ecuaciones de Maxwell) en el caso estacionario ob-
tenemos [7]

divJ0 = div(jn + jp) = 0, (6)

siendoρ la densidad de carga.

FIGURA 3. Circuito para medir la fuerza termoelectromotriz.RS
es la resistencia del semiconductor yRm la resistencia de los alam-
bres conectores ḿas la resistencia del aparato de medida.

Hay que notar que las Ecs. (5) y (6) son independientes,
por lo que las tasas de recombinación voluḿetricas de elec-
trones y huecos (Rn, Rp) deben ser iguales [6, 7]:

Rn = Rp = R =
1
τ
· 1
n0 + p0

×
[
p0δñ + n0δp̃− en0p0

T0
(α0

p − α0
n)

∆T

2a
x

]
. (7)

α0
n,p queda definido por [8]

α0
n,p = ∓1

e

(
µ0

n,p(T0)
T0

− 3
2

)
, (8)

y

τ−1 = α(T0) · (n0 + p0),

siendoα(T0) el factor de captura a la temperaturaT0.
Este es un momento muy importante. En esta ecuación,

n0 y p0 se refieren a las concentraciones de electrones y hue-
cos despúes de establecer el equilibrio termodinámico en el
sistema metal-semiconductor-metal a la temperaturaT0, lo
que significa que

n(x) = n0(x) + δñ(x) y p(x) = p0(x) + δp̃(x).

En este mismo estado de equilibrio termodinámico, cuan-
do la condicíon decuasineutralidadse cumple, estas concen-
traciones no dependen de las coordenadas, es decir,

n0(x) = n0(T0) y p0(x) = p0(T0)

se mantienen constantes a lo largo del semiconductor, donde

n0(T0) = νn(T0) exp
[
µ0

n(T0)
T0

]

y

p0(T0) = νp(T0) exp

[
µ0

p(T0)
T0

]
.

Aqúı,

νn,p(T0) =
(

1
4

) (
2mn,pT0

π~2

)(3/2)
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es la densidad de estados en el fondo de la banda de conduc-
ción y en la cima de la banda de valencia, ymn,p son las
masas efectivas de electrones y huecos.

Lo mismo ocurre con el potencial de contacto

ϕ0 =
µ0

n(T0)− µm −∆εc

e
= constante.

Aqúı µm se refiere al potencial quı́mico del metal y∆εc es la
diferencia de energı́a entre los fondos de las bandas de con-
duccíon del metal y del semiconductor. Dentro deél, el poten-
cial eĺectrico esϕ0

s = ϕ0 cuando dentro del metal el potencial
eléctrico esϕ0

m = 0, peroϕ0
m(x = ∓a) 6= ϕ0

s(x = ∓a).
Pero si la condicíon decuasineutralidadno se cumple,

tambíen en el estado de equilibrio termodinámico, tendremos
inhomogeneidades en las concentraciones; es decir, estas de-
pendeŕan de las coordenadas:

n0(x) = n0(T0) + δn0(x) = n0(T0) +
n0(T0)

T0
δµ0

n(x)

y

p0(x) = p0(T0) + δp0(x) = p0(T0) +
p0(T0)

T0
δµ0

p(x).

Consecuentemente, cambiarán los potenciales eléctricos
y qúımicos:

ϕ0(x) = ϕ0 + δϕ0(x),

µ0
n(x) = µ0

n(T0) + δµ0
n(x),

µ0
p(x) = µ0

p(T0) + δµ0
p(x)

y se cumpliŕa

δµ0
n + δµ0

p = 0.

Apareceŕan fluctuaciones en el potencial eléctrico que se
compensaŕan con las fluctuaciones del potencial quı́mico [4]:

δϕ0(x) = −ϕ0
Ch(x/rd)
Ch(a/rd)

y δµ0
n(x) = −eϕ0

Ch(x/rd)
Ch(a/rd)

,

pero ahora tendremosϕ0
m(±a) = ϕ0

s(±a).
Deseamos volver a subrayar queδñ y δp̃ en (7) incluyen

a todos los portadores de carga fuera del equilibrio, mientras
queδn y δp en (1) se refiereńunicamente a los portadores
de carga fuera del equilibrio generados por el gradiente de
temperatura (generados por el términoα1

n,p∇T ).
Las ecuaciones de continuidad (5) deben ser suplemen-

tadas con las condiciones de frontera necesarias. Puesto que
los huecos no pueden pasar a través de los contactos metal-
semiconductor, las condiciones de frontera para ellos son [2]

jp|x=∓a = ∓eRS , (9)

dondeRS es la tasa de recombinación superficial. Las con-
diciones de frontera para la corriente de electrones, tomando
en cuenta (3), son de la forma

jn|x=∓a = J0 ± eRS . (10)

De manera similar a la tasa de recombinación voluḿetri-
ca, debemos escribir para la tasa de recombinación superficial
la expresíon

RS(±a) = S · 1
n0 + p0

[
p0δñ(±a) + n0δp̃(±a)

∓en0p0

T0
(α0

p − α0
n)

∆T

2

]
, (11)

siendoS la velocidad de recombinación superficial. Eĺultimo
término est́a relacionado con las dos diferentes temperaturas
aplicadas en las superficies del semiconductor.

Hemos de hacer notar que la corriente totalJ0, en los
contactos metal-semiconductor, satisface la siguiente condi-
ción [9]

j0
±σS

n

=
[
ϕs(±a)− µS

n(±a)
e

]

−
[
ϕm(±a)− µm

e

]
+

∆εc

e
. (12)

Aqúı, σS
n es la conductividad eléctrica superficial;ϕs(±a),

ϕm(±a) son los potenciales eléctricos en las superficies del
semiconductor y del metal, respectivamente;µS

n(±a) es el
potencial qúımico de los electrones en la superficie del semi-
conductor yµm es el potencial qúımico del metal.

Finalmente, el potencial eléctricoϕs(x) lo determinamos
a partir de la ecuación de Poisson

d2ϕs(x)
dx2

= −4πρ(x), (13)

dondeρ(x) es la densidad de carga volumétrica;

ϕs(x) = ϕ0(x) + δϕ(x); ρ(x) = ρ0(x) + δρ(x),

conρ0 la densidad de carga en equilibrio y

δρ(x) = δñ(x)− δp̃(x) + γ
∆T

2a
x.

Al calcular estaúltima expresíon estamos considerando
que, cuando los cuasiniveles de Fermi están lejos del nivel de
enerǵıa de las impurezas, podemos despreciarδnd, que es la
concentracíon de estados de impurezas ocupados [7] (sólo
en este caso la expresión es v́alida). La constanteγ queda
definida por

γ =
1
T0

[
(n0 + p0)

(
∂µn

∂T

)

T=T0

−n0µ
0
n − p0µ

0
p

T0
+

3
2
(n0 − p0)

]
. (14)

La continuidad del potencial eléctrico enx = ±a debe
servir como condicíon de frontera para la Ec. (13),

ϕs(∓a) = ϕm(∓a). (15)
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Si tomamos nuestro nivel de referencia para el potencial en
x = −a y hacemosϕ(−a) = 0, tendremos que enx = +a
el valor del potencial esϕ(+a) = V = J0L/σm, dondeσm

es la conductividad eléctrica del metal yL su longitud. La
ecuacíon de Poisson (13) queda

d2δϕ

dx2
= 4πe(δñ− δp̃) + 4πeγ

∆T

2a
x. (16)

3. Lasecuacionesbásicasen lageneración dela
fuerza termoelectromotriz y sus soluciones

Teniendo ya las ecuaciones que resuelven nuestro problema y
sus respectivas condiciones de frontera, podemos proceder a
calcularE , la fuerza termoelectromotriz yRS , la resistencia
del semiconductor. En el caso general es posible resolver el
sistema de ecuaciones diferenciales, pero desde el punto de
vista f́ısico la respuesta no resulta muy interesante, pues se
obtienen expresiones muy largas y complicadas, que hacen
difı́cil el ańalisis. A este problema lo podemos determinar
mediante tres distancias caracterı́sticas:a, la longitud de la
muestra;lD, la longitud de difusíon, yrd, el radio de Debye.
Nótese que para cualquier semiconductor, y bajo cualquier
circunstancia, se cumple que:lD À rd (valores t́ıpicos de
lD est́an en el intervalo de10−1 a 10−3cm, y valores derd

en el intervalo de10−5 a 10−7cm). Es por esto que sólo te-
nemos tres casos, que desde nuestro punto de vista, muestran
las principales caracterı́sticas de este fenómeno de transporte:
a À lD À rd; lD À a À rd y lD À rd ≥ a

3.1. a À lD À rd

En este caso estamos suponiendo quea es mucho mayor
quelD y, por lo tanto, es necesario tomar en cuenta los proce-
sos de recombinación voluḿetrica. Tambíen tenemoscuasi-
neutralidad, puesa À rd [4]. Es muy importante notar, co-
mo se ha sẽnalado en la Ref. 5, que cuando esta condición se
cumple, tendremos que se cumple tambiénδρ = 0. Normal-
mente todos los investigadores que estudian los fenómenos
de transporte en dispositivos electrónicos toman como con-
dición de cuasineutralidad la expresión δn = δp [10, 11],
pero nosotros mostramos que esta afirmación es incorrecta.
Podemos ver de (16) que cuando tenemos inhomogeneidad
de temperatura,δρ = 0 equivale a decir

δp̃ = δñ + γ
∆T

2a
x. (17)

Ésta es la condición de cuasineutralidad.

Las tasas de recombinación se simplifican:

Rvolumétrica =
1
τ

(
δñ− β

∆T

2a
x

)
(18)

Rsuperficial(x = ±a) = S

(
δñ∓ β

∆T

2

)
. (19)

Estas f́ormulas se obtienen después de sustituir (17) en (7)
y (11), y la constanteβ vale

β =
n0

n0 + p0

[
−γ +

ep0

T0
(α0

p − α0
n)

]
, (20)

con γ definida en la Ec. (14). Como tenemoscuasineutra-
lidad: n0 = constante;p0 = constante yϕ0 = constante; es
decir, no dependen de las coordenadas. Usando la expre-
sión (18) para la tasa de recombinación voluḿetrica, obte-
nemos el sistema de ecuaciones:

d2ϕ

dx2
− T0

en0

d2δñ

dx2
= − eτ

σn

(
δñ− β

∆T

2a
x

)
,

d2ϕ

dx2
+

T0

ep0

d2δñ

dx2
=

eτ

σp

(
δñ− β

∆T

2a
x

)
,

cuya solucíon es

δñ(x) = C1e
λx + C2e

−λx + β
∆T

2a
x,

ϕ(x) =
(

e

τσpλ2
− T0

ep0

)
(C1e

λx + C2e
−λx)

+ C3x + C4,

donde

λ2 =
e2

τT0

σn + σp

σnσp

n0p0

n0 + p0
,

y tenemos queλ−1 = lD.

Las constantesC1, C2, C3 y C4 las determinamos con
las condiciones de frontera (9) y (10), yRS est́a dado por
la Ec. (19). Los correspondientes cuasiniveles de Fermi para
electrones y huecos son

ϕ̃n(x) = −aτT0λ
2

e2

n0 + p0

n0p0

σ2
p

(σn + σp)2
J0 − σn(α1

n − α1
p)

∆T
2a

λa cothλa + λ2τaS

Shλx

Shλa

− a

σn + σp

[
J0 − (σnα1

n + σpα
1
p)

∆T

2a

]
x

a
+

J0L

2σm
− µm + ∆εc

e
,
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ϕ̃p(x) = −aτT0λ
2

e2

n0 + p0

n0p0

σnσp

(σn + σp)2
J0 − σn(α1

n − α1
p)

∆T
2a

λa cothλa + λ2τaS

Shλx

Shλa

− a

σn + σp

[
J0 − (σnα1

n + σpα
1
p)

∆T

2a

]
x

a
+

J0L

2σm
− µm + ∆εc + εg

e
.

Estas expresiones nos dejan ver claramente que no coinciden
y que son funciones no monótonas de la coordenadax. Ya se
hab́ıan obtenido en la Ref. 4, pero con otro procedimiento, lo
que nos deja ver que nuestro método es correcto.

Despúes de un cierto manipuleo matemático obtenemos
la expresíon general para la corriente total en semiconducto-
res bipolares:

J0

(
2

σS
n

+
L

σm
+

2a

σn + σp

[
σp/σn

λa cothλa + τλ2aS
+ 1

])

=
1

σn+σp

(
σp(α1

n−α1
p)

λa coth λa+τλ2aS
+σnα1

n+σpα
1
p

)
∆T. (21)

Los t́erminos2/σS
n y L/σm determinan la resistencia eléctri-

ca de los contactos y la resistencia del metal, respectivamen-
te.

Si comparamos esta expresión con la ley de Ohm,
J0R = E , siendoR la resistencia total del circuito por uni-
dad de sección transversal yE la fem, vemos que

RS =
2a

σn + σp

(
σp/σn

λa cothλa + τλ2aS
+ 1

)
(22)

corresponde a la resistencia del semiconductor y

E=
1

σn+σp

(
σp(α1

n−α1
p)

λa cothλa+τλ2aS
+σnα1

n+σpα
1
p

)
∆T (23)

a la fuerza termoelectromotriz generada.
Es importante enfatizar que estas dos cantidades depen-

den no śolo de las potencias termoeléctricas y las conductivi-
dades eĺectricas de electrones y huecos, sino también de las
tasas de recombinación, tanto de la voluḿetrica como de la
superficial. Este resultado también ya se hab́ıa obtenido en la
Ref 4.

Si los procesos de recombinación son suficientemente in-
tensos (en el lı́mite cuando

S À S0 =
T0(n0 + p0)σnσ2

p(α1
n − α1

p)
ae2n0p0(σn + σp)(σnα1

n + σpα1
p)

y/o

τ ¿ τ0 =
a(σnα1

n + σpα
1
p)

[σp(α1
n − α1

p)]S
−1
0

),

la fuerza termoelectromotriz y la resistencia del semiconduc-
tor est́an dadas por [12, 13]

E =
σnα1

n + σpα
1
p

σn + σp
·∆T y RS =

2a

σn + σp
. (24)

Es decir, obtenemos los resultados bien conocidos para la
fuerza termoelectromotriz en la teorı́a tradicional.

Por otro lado, cuando las recombinaciones volumétrica
y superficial son d́ebiles (en el ĺımite cuandoS ¿ S0 y
τ À τ0), llegamos a otro resultado:

E = α1
n∆T y RS =

2a

σn
. (25)

Este resultado es válido tanto para semiconductores tipon
como para los tipop. En otras palabras, sólo lo electrones
producen la fuerza termoelectromotriz en ausencia de recom-
binacíon.

Vemos que no podemos determinar la resistencia del se-
miconductor independientemente de la corriente totalJ0 ni
de la fuerza termoelectromotrizE . En este caso, puesto que
jp = 0 cuandoR, RS → 0 [ver Ecs. (5) y (9)], la corriente to-
tal J0 coincide con la corriente electrónicajn, y en semicon-
ductores tipop la fuerza termoelectromotriz puede cambiar
designo [4].

3.2. lD À a À rd

En este caso la longitud de la muestra es menor que la longi-
tud de difusíon por lo que no tendremos procesos de recom-
binacíon voluḿetrica (R = 0). Volvemos a tener cuasineutra-
lidad como en el caso anterior [ver Ec. (17)]. Las ecuaciones
que describen los flujos de corriente [Ecs. (5)] se simplifican:

jn = C1, jp = J0 − C1.

Tiene que ser ası́, pues la Ec. (3) debe satisfacerse.C1 es una
constante a determinar con las condiciones de frontera. Es-
cribiendo expĺıcitamente las corrientes obtenemos el sistema

−σn
dϕ

dx
+

T0σn

en0

dδñ

dx
+ σnαn

∆T

2a
= C1,

−σp
dϕ

dx
− T0σp

ep0

dδñ

dx
+

(
αp − T0γ

ep0

)
σp

∆T

2a
= J0 − C1,

que tiene por solución

δñ(x) =
e

T0

n0p0

n0 + p0

[
−J0

σp
+

σn + σp

σnσp
C1

+
(
− T0

ep0
γ − αn + αp

)
∆T

2a

]
x + C2,

ϕ(x) =
1

n0 + p0

[
−p0

J0

σp
+

p0σn − n0σp

σnσp
C1+

+
(
−T0

e
γ + n0αn + p0αp

)
∆T

2a

]
x + C3.

Las constantesC1, C2 y C3 las determinamos con las condi-
ciones de frontera (9) y (10). Los correspondientes cuasini-
veles de Fermi para electrones y huecos son

Rev. Mex. F́ıs. 49 (2) (2003) 115–122



FUERZA TERMOELECTROMOTRIZ EN SEMICONDUCTORESBIPOLARES: NUEVO PUNTO DE VISTA 121

ϕ̃n(x) =
1

1 + K

[
− J0

σn

(
1 + K

σn

σn + σp

)
+

(
α1

n + K
σnα1

n + σpα
1
p

σn + σp

)
∆T

2a

]
· x +

J0L

2σm
− µm + ∆εc

e
,

ϕ̃p(x) =
1

1 + K

[
− J0

σn + σp
K +

(
α1

p + K
σnα1

n + σpα
1
p

σn + σp

)
∆T

2a

]
· x +

J0L

2σm
− µm + ∆εc + εg

e
,

donde la constanteK vale

K =
e2Sa

T0

n0p0

n0 + p0

σn + σp

σnσp
.

La corriente total es en este caso

J0

[
2

σS
n

+
L

σm
+

2a

σn(1 + K)

(
1 + K

σn

σn + σp

)]

=
1

(1 + K)

(
α1

n + K
σnα1

n + σpα
1
p

σn + σp

)
∆T, (26)

de donde vemos que la fuerza termoelectromotriz generada
es

E =
1

(1 + K)

(
α1

n + K
σnα1

n + σpα
1
p

σn + σp

)
·∆T, (27)

y la resistencia del semiconductor es

RS =
2a

σn(1 + K)

(
1 + K

σn

σn + σp

)
. (28)

Es f́acil ver que en los casos lı́mite estas expresiones se re-
ducen a (24) y a (25), y la discusión del inciso anterior se
sigue.

3.3.. lD À rd ≥ a

En este caso no se cumple la condición de cuasineutrali-
dad y necesitamos además la ecuación de Poisson (16) pa-
ra encontrarϕ y las densidadesδñ y δp̃. Nuevamente, como
lD À a, podemos despreciar los procesos de recombinación
volumétrica (R = 0). Aśı, el sistema que representa esta si-
tuacíon es

− σn
d2ϕ

dx2
+

T0σn

en0

d2δñ

dx2
= 0,

− σp
d2ϕ

dx2
− T0σp

ep0

d2δp̃

dx2
= 0,

d2ϕ

dx2
= 4πe(δñ− δp̃) + 4πeγ

∆T

2a
x,

y su solucíon

δñ(x) = C1e
λx + C2e

−λx

− n0

n0 + p0

[
γ

∆T

2a
− p0(C3x + C4)

]
,

δp̃(x) = − p0

n0
(C1e

λx + C2e
−λx)

+
p0

n0 + p0

[
γ

∆T

2a
+ n0(C3x + C4)

]
,

ϕ(x) =
T0

en0
(C1e

λx + C2e
−λx) + C5x + C6,

dondeλ resulta ser el recı́proco del radio de Debyerd:

λ2 = r−2
d =

4πe2

T0
(n0 + p0).

Una vez ḿas, las constantesC1, C2, C3, C4, C5 y C6 las de-
terminamos con las condiciones de frontera (9), (10) y (15).
Con estos resultados se llega a que los cuasiniveles de Fermi
y la corriente total son los mismos que en el caso anterior, y
por lo tanto, tambíen los son la fuerza termoelectromotriz y
la resistencia del semiconductor. Nótese queδñ(x), δp̃(x) y
ϕ(x) no son iguales en los dos casos. En otras palabras, cuan-
do calculamos losmacropaŕametrosJ0, E y RS , no importa
si la condicíon de cuasineutralidad se cumple o no, mientras
quepara los microparámetros δñ, δp̃ y ϕ śı importa.

4. Conclusiones

De estos resultados se deduce que el tamaño de la mues-
tra śı influye en el valor de la fuerza termoelectromotriz, co-
mo es f́acil de ver al comparar (23) con (27), y (22) con (28).
Además nos muestran que cuando no tenemos recombinación
volumétrica (casos 3.2. y 3.3.), la fuerza termoelectromotriz
generada es independiente de si tenemos cuasineutralidad o
no, que en realidad es lo que esperábamos, pues la cuasineu-
tralidad es una condición para la distribución de carga cau-
sada por el contacto metal-semiconductor y no depende del
gradiente de temperatura aplicado.

Hacemos hincapié una vez ḿas, queδñ, δp̃ y ϕ no son los
mismos si tenemos cuasineutralidad o no (casos 3.2. y 3.3.),
pero los cuasiniveles de Fermi sı́ son los mismos. Es fácil
entender este hecho al pensar que el gradiente de potencial
causado por la redistribución de cargas es compensado por
los flujos de difusíon que ocurren debido al gradiente de con-
centracíon y al campo de temperaturas.

Una vez identificados los portadores de carga fuera del
equilibrio de cada uno de los procesos que toman lugar al
aplicar la diferencia de temperaturas, el método resulta ḿas
simple y pŕactico que el anterior con sus múltiples etapas.
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Viendo ćomo los resultados de la teorı́a tradicional son
casos ĺımite de nuestro modelo, podemos concluir que este
es correcto.
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