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Recurrence relations of special functions and group representations
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It is shown that the recurrence relations satisfied by several special functions can be related to representations of Lie algebras of dimension
three or four. It is also shown that in some cases these recurrence relations can be related to the isometries of constant-curvature two-
dimensional manifolds.

Keywords: Special functions; representations of Lie algebras.

Se muestra que las relaciones de recurrencia satisfechas por varias funciones especiales pueden relacionarse con representaciones deálgebras
de Lie de dimensión tres o cuatro. Se muestra también que en algunos casos estas relaciones de recurrencia pueden relacionarse con las
isometŕıas de variedades de dimensión dos con curvatura constante.
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1. Introduction

As is well-known, the spherical harmonics of a given order
form a representation space for the rotation group SO(3) and
some recurrence relations satisfied by the spherical harmon-
ics or the associated Legendre functions can be readily ob-
tained making use of the commutation relations of the gen-
erators of the group; in fact, the explicit form of the spheri-
cal harmonics is frequently obtained using the generators of
the group. In a similar manner, the Bessel functions of in-
tegral order are related to the Euclidean group of the plane
and in both cases one can establish addition theorems mak-
ing use of the unitarity of the representation. Other spe-
cial functions are also related to Lie groups in various ways
(see,e.g., Refs. 1, 2 and the references cited therein) and in
many cases the relationship arises naturally in some problems
of quantum mechanics.

In this paper we show that if a family of special functions
satisfies recurrence relations of a certain type, then the prod-
ucts of these functions with exponentials form bases for irre-
ducible representations of Lie algebras of dimension three or
four. In some cases the transformations generated by these
Lie algebras are isometries of two-dimensional manifolds;
in particular, we find that the recurrence relations for the
Chebyshev polynomials are connected with the isometries of
an hyperboloid in three-dimensional Minkowski space. It is
also shown that by defining appropriately the inner product,
one obtains a unitary representation for the corresponding
Lie groups.

2. Recurrence relations and related Lie alge-
bras

Several special functions of mathematical physics depend at
least on one parameter,n, and obey recurrence relations of
the form

(
a(x)

d

dx
+ b(x) + nr(x)

)
fn(x) = λnfn+1(x),

(
a(x)

d

dx
+ c(x)− nr(x)

)
fn(x) = µnfn−1(x), (1)

wherea, b, c, r are real-valued functions ofx that do not
containn but may depend on other parameters andλn, µn

do not depend onx. Some examples are given by the Bessel
functions, the associated Legendre functions, the associated
Laguerre polynomials, the Gegenbauer, Hermite and Cheby-
shev polynomials [1,3–6] (see Table I).

As we shall show, it is convenient to define the operators

T+ ≡ eiy

(
a(x)

∂

∂x
+ b(x)− ir(x)

∂

∂y

)
,

T− ≡ −e−iy

(
a(x)

∂

∂x
+ c(x) + ir(x)

∂

∂y

)
, (2)

T0 ≡ −i
∂

∂y
,

wherey is a new variable, and the functions

Fn(x, y) ≡ fn(x)einy. (3)

Then Eqs. (1) are equivalent to

T+Fn = λnFn+1, T−Fn = −µnFn−1 (4)

and
T0Fn = nFn. (5)

Making use of the definitions (2) and (3) one finds that

T−T+Fn=−einy{a2f ′′n + a(a′ + b + c− r)f ′n

+[ab′ + bc + nar′ + ncr − (n + 1)br

−n(n + 1)r2]fn}
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TABLE I. Explicit expressions of the functions appearing in the recurrence relations (1)

Functions fn a(x) b(x) c(x) r(x) λn µn

Associated Legendre P n
m

√
1− x2 0 0 x√

1−x2
n−m n + m

Gegenbauer Cα
n x2 − 1 2αx 0 x n + 1 −n− 2α + 1

Legendre Pn x2 − 1 x 0 x n + 1 −n

Chebyshev Tn x2 − 1 0 0 x n −n

Laguerre Lα
n x α + 1− x 0 1 n + 1 −n− α

Bessel Jn 1 0 0 −1/x −1 1

Hermite Hn 1 −2x 0 0 −1 2n

which, according to Eqs. (4), must coincide with

−λnµn+1e
inyfn,

thus

a2f ′′n + a(a′ + b + c− r)f ′n + [ab′ + bc + nar′ + ncr

−(n + 1)br − n(n + 1)r2]fn = λnµn+1fn. (6)

Similarly, one finds that

T+T−Fn=−einy{a2f ′′n + a(a′ + b + c− r)f ′n + [ac′ + bc

−nar′ − nbr + (n− 1)cr − n(n− 1)r2]fn}

and therefore

a2f ′′n + a(a′ + b + c− r)f ′n + [ac′ + bc− nar′ − nbr

+(n− 1)cr − n(n− 1)r2]fn = µnλn−1fn. (7)

By comparing Eqs. (6) and (7) it follows that

a(b′ − c′)− r(b− c) = K, (8)

and
2(ar′ − r2) = N, (9)

whereK andN are independent ofx andn, and

λnµn+1 − µnλn−1 = Nn + K. (10)

Thus, the operators (2) must obey the commutation relations

[T+, T−] = NT0 + K, [T0, T±] = ±T±, (11)

where the constantsN andK can be calculated by means
of Eqs. (8) and (9) or (10). The values ofN andK for the
functions contained in Table I are given in Table II.

The Lie algebra generated byT+, T−, T0 and, possibly,
the identity, depends on the values ofK andN . WhenN is
different from zero, it is convenient to introduce the operators

T̃± ≡ e−in0yT±ein0y = T± + n0r(x)e±iy, (12)

wheren0 is a constant. From the commutation relations (11)
one finds that

[T̃+, T̃−] = e−in0y(NT0 + K)ein0y

= NT0 + (Nn0 + K). (13)

Therefore, choosingn0 = −K/N , we obtain

[T̃+, T̃−] = NT0, [T0, T̃±] = ±T̃±. (14)

On the other hand, Eqs. (4), (5), and (12) give

T̃+(e−in0yFn) = λn(e−in0yFn+1),

T̃−(e−in0yFn) = −µn(e−in0yFn−1) (15)

and
T0(e−in0yFn) = (n− n0)(e−in0yFn). (16)

By combining the commutation relations (14) one finds
that

C1 ≡ T̃+T̃− + 1
2N(T 2

0 − T0) (17)

commutes with̃T± andT0, which means thatC1 is a Casimir
operator. In a similar manner one finds that whenN = 0, the
operator

C2 ≡ T+T− + KT0 (18)

commutes withT± andT0. The eigenvalues ofC1 andC2,
denoted byκ1 and κ2, respectively, corresponding to the
functions given in Table I are listed in Table II.

According to the preceding discussion, we have four dif-
ferent cases.

(i) N > 0. WhenN is positive, the Lie algebra gener-
ated byT̃± andT0 is isomorphic tosu(2) andso(3).
This case contains the associated Legendre functions
(see Table II).

(ii) N < 0. WhenN is negative,T̃± andT0 generate a
Lie algebra isomorphic tosu(1, 1) andsl(2,R). This
case contains the Gegenbauer, Legendre, Chebyshev,
and Laguerre polynomials.
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TABLE II. Values of the constants appearing in the commutation relations (11) and (14).

Functions N K n0 κ1 κ2 w(x)

Associated Legendre 2 0 0 m(m + 1) · · · 1

Gegenbauer −2 −2α −α α(1− α) · · · |1− x2|α−3/2

Legendre −2 −1 −1/2 1/4 · · · |1− x2|−1

Chebyshev −2 0 0 0 · · · |1− x2|−3/2

Laguerre −2 −α− 1 −(α + 1)/2 (1− α2)/4 · · · xα−1e−x

Bessel 0 0 · · · 1 · · · x

Hermite 0 −2 · · · · · · 0 e−x2

(iii) N = 0, K = 0. WhenN andK vanish, the algebra
generated byT± andT0 is isomorphic to that of the
Euclidean group of the plane. This case contains the
Bessel functions.

(iv) N = 0, K 6= 0. WhenN is equal to zero butK is
different from zero, the algebra generated byT±, T0,
and the identity is a central extension of the algebra of
the Euclidean group of the plane. This case contains
the Hermite polynomials.

3. Unitarity of the group actions

We introduce the inner product

(f, g) =
∫ x2

x1

dx

∫ 2π

0

dy w(x, y) f(x, y) g(x, y) (19)

wherew(x, y) is some weight function; the functionw and
the limits of integration are to be chosen in such a way that,
for a space of functions obeying the appropriate boundary
conditions,T †0 = T0 andT †+ = T−. The self-adjointness of
T0 requires thatw be a function ofx only, while the condition
T †+ = T− amounts toa′ + aw′/w − b + r = c, i.e.,

ln |aw| =
∫

b + c− r

a
dx. (20)

Then, T̃ †+ = T̃−, and the operatorsC1 and C2 are self-
adjoint. The weight functions corresponding to the families
of special functions appearing in Table I are listed in Table II.

Differentiating Eq. (9) it follows that2r/a=r′′/r′+a′/a;
therefore, whenb + c = 0, from Eq. (20) we find that, apart
from an irrelevant constant factor, the weight function can be
taken as

w = |a3r′|−1/2. (21)

By virtue of Eqs. (4), (5), (15), and (16), the functions
fn(x)einy or fn(x)ei(n−n0)y are mapped into linear combi-
nations of themselves under the transformations generated by
the Lie algebra (11) or (14), respectively. Letting, for in-
stance,

Φn(x, y) ≡ Nnfn(x)einy,

whereNn is a normalization constant such that the functions
Φn are normalized with respect to the inner product (19), for
any transformation,T , generated by the Lie algebra (11),

T Φn =
∑

n′
Tn′nΦn′ ,

where the matrix(Tn′n) is unitary. (Recall that in some cases
the functions cannot be normalized in the strict sense,e.g.,

∫ ∞

0

Jn(αx)Jn(α′x)xdx = α−1δ(α− α′).)

Therefore, if(x, y) and(x′, y′) are two arbitrary points, we
have

∑
n

Φn(x, y)Φn(x′, y′)

=
∑

n

(T Φn)(x, y) (T Φn)(x′, y′). (22)

If there exists a transformationT in the group generated by
the Lie algebra (11) such that(T Φn)(x′, y′) does not van-
ish for only one value ofn (as in the case where thefn are
the associated Legendre functions or the Bessel functions of
integral order, sincePn

m(1) = δn0 andJn(0) = δn0), then
the right-hand side of Eq. (22) reduces to a single term and
Eq. (22) becomes an addition theorem for the functionsfn.

4. Constant-curvature manifolds

Whenb(x) andc(x) vanish, the operators

T0, T1 =
(T+ + T−)

2
, and T2 =

(T+ − T−)
2i

can be considered as vector fields on a two-dimensional man-
ifold, M . This happens, for instance, for the associated
Legendre functions, the Bessel functions and the Chebyshev
polynomials (see Table I). In the case of the associated Leg-
endre functions, takingM as the sphere withx = cos θ
andy = φ, whereθ andφ are the usual polar and azimuth
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angles, respectively, the operatorsTi (i = 0, 1, 2) generate
the rotations of the sphere and the functions (3) (which, apart
from a constant factor, are the spherical harmonics) are the
separable eigenfunctions of the Laplace–Beltrami operator of
the sphere. Analogously, in the case of the Bessel functions
of integral order, takingM as the Euclidean plane withx = r
andy = φ, wherer andφ are the usual polar coordinates,
the operatorsTi generate the orientation-preserving isome-
tries of the plane and the productsJn(x)einy are separable
eigenfunctions of the Laplace operator. As we shall show,
the Chebyshev polynomials are also related to the Laplace–
Beltrami operator of a constant-curvature manifold.

In the case of the Chebyshev polynomials, the opera-
tors (2) are explicitly given by

T0=−i
∂

∂y
, T±=± e±iy

(
(x2−1)

∂

∂x
∓ ix

∂

∂y

)
. (23)

We look for a metric,gµνdxµdxν , with

µ, ν = 1, 2, x1 = x, x2 = y,

which is invariant under the transformations generated
by (23),i.e.,

Xµ∂gνρ/∂xµ + gµν∂Xµ/∂xρ + gµρ∂Xµ/∂xν = 0,

whereXµ∂/∂xµ is any of the vector fields (23). We find that,
up to an overall constant factor,

gµνdxµdxν =
dx2

(1− x2)2
− dy2

1− x2
, (24)

which has signature(+−) for −1 < x < 1. A straightfor-
ward computation shows that (24) is the metric induced by
the Lorentzian metric−dX2 − dY 2 + dZ2 on the surface
X2 + Y 2 − Z2 = 1 parametrized by

X =
cos y√
1− x2

, Y =
sin y√
1− x2

, Z =
x√

1− x2
.

It can be readily seen, making use of Eq. (9), that the vec-
tor fieldsTi with b(x) = c(x) = 0 generate the orientation-
preserving isometries of

gµνdxµdxν =
dx2

a2(x)
+

dy2

a(x)r′(x)
. (25)

Using Eq. (9) again, one finds that the Gaussian curvature
of the metric (25) is equal toN/2. Furthermore, letting
g ≡ det(gµν), one has

√
|g| = |a3r′|−1/2, which coincides

with the weight function obtained in the preceding section
[Eq. (21)]; thus, in the case under consideration, the area el-
ement appearing in the inner product (19) is the area element
defined by the metric (25).

Making use of the general expression

∇2f =
1√
|g|

∂

∂xµ

(√
|g| gµν ∂f

∂xν

)

for the Laplace–Beltrami operator, where(gµν) is the inverse
of (gµν), Eq. (24) yields

∇2f = (1−x2)2∂2
xf − (1−x2)x∂xf − (1−x2)∂2

yf. (26)

Therefore, the functionsFn(x, y) = Tn(x)einy are eigen-
functions of∇2 with eigenvalue equal to zero. It may be
noticed that

∇2 = T+T− − T 2
0 + T0 = T 2

1 + T 2
2 − T 2

0 .

A family of functions,Tα
n (x), which contains the Cheby-

shev polynomials forα = 0, is obtained looking for separable
eigenfunctions of the Laplacian operator (26); if

∇2(Tα
n (x)einy) = αTα

n (x)einy,

one obtains

(1− x2)Tα
n
′′ − xTα

n
′ +

(
n2 − α

1− x2

)
Tα

n = 0. (27)

The functionsTα
n (x) share the same raising and lowering op-

erators (1) for all values ofα and, for a fixed value ofα, the
functionsTα

n (x)einy form a basis for an irreducible represen-
tation of SO0(2,1).
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