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Efecto de la quiralidad sobre solitones polarizados en un medio anisótropo
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Se presenta la simulación de la ecuación no lineal de Schrödinger para un medio quiral dispersivo, con no linealidad tipo Kerr. El efecto de la
quiralidad espacial se considera mediante el formalismo de Born-Fedorov. Los resultados obtenidos, a través del ḿetodo espectral de Fourier,
muestran los efectos de la quiralidad sobre pulsos solitónicos con polarización circular y polarizacíon mixta en un medio ćubico aniśotropo.
En la simulacíon nuḿerica se encuentra que los solitones polarizados circularmente a la derecha son más estables que los polarizados a la
izquierda cuando el factor quiral aumenta. Además para estéultimo caso se observa una conversión de modos N=1 a N=2 si el factor quiral
tiene un valor apropiado. Para el caso de modos acoplados el factor quiral permite la existencia de modos elı́pticos que pueden propagarse
en conjunto con los modos fundamentales.

Descriptores:Quiralidad, solitones, fibráoptica, polarizacíon.
Simulation of nonlinear Schrödinger equation is presented, for a dispersive chiral media, with Kerr-type non linearity. Spatial chirality effects
is considered through the Born-Fedorov formalism. Results obtained, by means of Fourier method, show the chirality effects over circular
and mixed polarized solitons pulses in an anisotropic cubic media. Numerical simulation results show that right hand circulary polarized
solitons are more stable that left hand polarized, when the chirality factor increases. For this later case, a mode conversion is observed for
N=1 to N=2 if the chirality factor has an adequate value. For coupled modes the chirality factor allows the existence of elliptically polarized
modes together with fundamental modes.
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1. Int roducción

Los efectos no lineales que resultan de la polarización han si-
do un tema de estudio de gran interés debido a la gran varie-
dad de aplicaciones, tanto en dispositivos como en sistemas
de telecomunicacioneśopticas, entre las que podemos desta-
car: reformateo de pulsos, conmutaciónóptica, discriminado-
res de intensidad, compuertas lógicasópticas, etc. También
interesan, tanto desde un punto vista fundamental como de
aplicacíon tecnoĺogica, feńomenos derivados de los efectos
de la polarizacíon no lineal, tales como la birrefringencia in-
ducidaópticamente, inestabilidad de la polarización y propa-
gacíon solit́onica. En relacíon a estáultima es fundamental
un buen conocimiento de los procesos no lineales de la po-
larizacíon y sus efectos para el diseño y caracterización de
diversos dispositivos que usan fibrasópticas monomodo. En
relacíon con esto, Hasegawa y Tappert [1] demostraron que
en una fibraóptica con no linealidad tipo Kerr, la propaga-
ción de pulsos electromagnéticos (EM) de envolvente sua-
ve est́a gobernada por la ecuación no lineal de Schrödinger
(NLS) completamente integrableiΨz + Ψtt + C|Ψ|2Ψ = 0,
la cual admite N soluciones tipo solitones (C=constante). Es-
ta ecuacíon fue derivada a partir de las ecuaciones de Max-
well suponiendo dispersión lineal d́ebil, siendoΨ la ampli-
tud de variacíon suave del campo eléctrico de la onda elec-
tromagńetica. Ḿas tarde esto fue comprobado experimental-
mentes por Mollenaueret al. [2]. Para aprovechar mejor la
capacidad del canal es necesario transmitir pulsos cortos del

orden de los subpico o femto-segundos. Pero la transmisión
de tales pulsos ultracortos genera efectos de alto orden, como
dispersíon de tercer orden, auto escarpado (self steepening,
SS) y esparcimiento Raman estimulado (SRS). En este caso,
la propagacíon de la onda debe ser descrita por una ecuación
no lineal de Schr̈odinger de ḿas alto nivel (HNLS)

iΨz + Ψtt + C|Ψ|2Ψ
+i(C1Ψttt + C2|Ψ|2Ψt + C3|Ψ|2t Ψ) = 0.

Por ejemplo, cuandoC 6= 0 y cuando las dos contribuciones
inerciales de la polarización no lineal (el esparcimiento Ra-
man estimulado (SRS) y el auto escarpado (SS)) son iguales
(C2 = C3 = 1) y en ausencia de la dispersión de tercer orden
(C1 = 0), la HNLS se reduce a una ecuación no lineal de
Schr̈odinger completamente integrable

iΨz + Ψtt + C|Ψ|2Ψ + i(|Ψ|2Ψ)t = 0,

la cual tambíen admite solitones.
Por otro lado la propagación de pulsośopticos en fibras

birrefringentes puede ser muyútil en el contexto de acoplado-
res no lineales,́area en la cual se desarrolla una gran actividad
y donde las ecuaciones dinámicas que gobiernan la propaga-
ción de sẽnales en la forma de solitonesópticos se reducen a
dos ecuaciones no lineales de Schrödinger

iΨjz + Ψjtt + Cj [
2∑

k=1

|Ψk|2]Ψj = 0,
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dondej = 1, 2 [3]. El reciente estudio de la propagación en
fibras ópticas birrefringentes nos permite introducir el con-
cepto de solitones que cambian su forma mientras intercam-
bian enerǵıa entre ellos durante la propagación. Esta conmu-
tación de enerǵıa de los solitoneśopticos puede ser usada
para la construcción de compuertas lógicas completamente
ópticas.

En la Sec. 1 de este artı́culo se describe un modelo que
considera, adeḿas de la dispersión y atenuacíon, la no linea-
lidad y la quiralidad del medio. Este modelo no sólo pue-
de reproducir las ecuaciones anteriores, sino que también
caracteriza nuevos efectos importantes en los futuros mate-
riales quirales. En otros artı́culos [4] se ha reportado sobre
una teoŕıa fenomenoĺogica que describe la auto-acción de los
pulsos electromagnéticos en ciertos materiales quirales. La
teoŕıa est́a basada en el formalismo de Beltrami-Maxwell que
ha sido extendida para medios quirales no lineales [5, 6].

La parte téorica de este trabajo es una extensión de un
art́ıculo reciente sobre solitones quirales [6]. En la Sec. 2 se
reproducen los aspectos escenciales de la teorı́a [6], hacien-
do extensivo el ańalisis para ondas quirales polarizadas a la
derecha y a la izquierda sin acoplamiento, y finalmente con
acoplamiento La simulación y los resultados nuḿericos pre-
sentados se basan en el método espectral de Fourier, el cual
es descrito en la Sec. 3. En la Sec. 4 se discuten los resultados
obtenidos y en la Sec. 5 se plantean las conclusiones.

2. Aspectos teóricos.

En esta sección se reproducen los aspectos teóricos esencia-
les de la propagación de solitones quirales discutidos amplia-
mente en la Ref. 6. La quiralidad puede considerarse como
una actividadóptica y corresponde a la rotación del plano
de polarizacíon, en un medio lineal iśotropo donde la rota-
ción del plano de polarización puede predecirse por medio
de las ecuaciones de Maxwell, agregando a la polarizaciónP
un t́ermino proporcional a∇× ~E. Las ecuaciones de Drude-
Born-Fedorov satisfacen plenamente las condiciones de bor-
de [7], lo que permite caracterizar el medio quiral no li-
neal por medio de las ecuacionesD = εn

~E + εT∇ × ~E
y B = µ0( ~H + T∇ × ~H), dondeεn es la permitividad yT
es el coeficiente quiral. El seudoescalarT representa la me-
dida de la quiralidad y tiene unidades de longitud. Con estas
relaciones constitutivas la ecuación de onda, derivada de las
ecuaciones de Maxwell, es

∇2 ~E + µ0εT
2 ∂2

∂t2
∇2 ~E = µ0εn

∂2 ~E

∂t2
+ µ0σ

∂ ~E

∂t

+ (µ0εnT + µ0εT )∇× ∂2 ~E

∂t2
+ µ0Tσ∇× ∂ ~E

∂t
. (1)

Se considera que el medio quiral tiene una no linealidad
de tipo Kerr, caracterizada por unı́ndice de refracción tal que

la permitividad es

εn = εo + ε2

∣∣∣ ~E
∣∣∣
2

, (2)

dondeεo es la parte lineal yε2 es la parte no lineal, respec-
tivamente, deεn.

Suponiendo que~E representa una onda polarizada hacia
la derecha, que se propaga en la direcciónz, se tiene

~E (~r, t) = (x̂ + jŷ)ΨR (~r, t) e−j(kz−ω0t)

= ~ΨRe−j(kz−ω0t). (3)

Despúes de varias manipulaciones algebraicas, donde se
considera la aproximación de envolvente suave [6], el resul-
tado es el siguiente

j(
∂~ΨR

∂z∗
+ k′

∂~ΨR

∂t
) +

1
2
k′′

∂2~ΨR

∂t2
− j

1
6
k′′′

∂3~ΨR

∂t3

+(1− Tk)
[
jωα

2k0

~ΨR − βω2
0

2k0

∣∣∣~ΨR

∣∣∣
2

~ΨR

]

+(1− Tk)
∂

∂t
(
∣∣∣~ΨR

∣∣∣
2

~ΨR) + Tkk0
~ΨR = 0, (4)

donde

z∗ =
z

1− T 2k2
0

; v2 =
1

µoε
; α = µoσ;

k0 =
ω0

c
; β = µ0ε2,

y ~ΨR representa la envolvente compleja. De igual forma si el
campo eĺectricoóptico es polarizado a la izquierda,

~E (~r, t) = (x̂− jŷ)ΨL (~r, t) e−j(kz−ω0t) = ~ΨLe−j(kz−ω0t),

la ecuacíon de onda resultante es

j(
∂~ΨL

∂z∗
+ k′

∂~ΨL

∂t
) +

1
2
k′′

∂2~ΨL

∂t2
− j

1
6
k′′′

∂3~ΨL

∂t3

+(1 + Tk)
[
jωα

2k0

~ΨL − βω2
0

2k0

∣∣∣~ΨL

∣∣∣
2

~ΨL

]

+(1 + Tk)
∂

∂t
(
∣∣∣~ΨL

∣∣∣
2

~ΨL)− Tkk0
~ΨL = 0. (5)

En este desarrollo se ha considerado que como la envol-
venteΨR,L(z, t) es una funcíon de variacíon lenta enz y
t, la relacíon de dispersión k = k(ω), se puede transfor-
mar al dominio de las variaciones espaciales por medio de
∆ω = ω − ω0, lo que representa un pequeño desv́ıo de
frecuencia de la banda lateral respecto deω0, y a trav́es de
∆k = k − k0, se tiene el correspondiente número de onda.

Luego se usa la transformada de Fourier para∆k y ∆ω,
y se aproxima1/v ' ∆k/∆ω tal que por medio de una serie
de Taylor se obtiene

∆k =
1
v

∂

∂t
=

∂k

∂ω

∂

∂t
− j

1
2

∂2k

∂ω2
0

∂2

∂t2
− j

1
6

∂3k

∂ω3
0

∂3

∂t3

=
k0

ω0

∂

∂t
(6)
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Finalmente las Ecs. (5) y (4) se pueden escribir de la forma

j(
∂φ

∂z∗
+ k′

∂φ

∂t
) +

1
2
k′′

∂2φ

∂t2
− j

1
6
k′′′

∂3φ

∂t3

+(1∓ Tk)
[
jωα

2k0
φ− βω2

0

(2k0)3
|φ|2 φ

]

+(1∓ Tk)
∂

∂t
(|φ|2 φ)± Tkk0φ = 0, (7)

donde

k′ =
∂k

∂ω
=

1
vg

, k′′ =
∂2k

∂ω2
, k′′′ =

∂3k

∂ω3
, ~ΨR,L = φ.

La Ec. (7) describe la propagación de pulsos en medios
quirales, tanto en la región óptica como en la de microondas.
Los detalles de las consideraciones hechas para obtener la
ecuacíon en el ŕegimenóptico (7), se encuentran en la Ref. 6,
lo mismo que el ańalisis de cada término de la ecuación. En
la versíon de microondas, esta ecuación tambíen constituye
un buen modelo para un biodieléctrico con ṕerdidas que si-
mula el comportamiento electromagnético de la cabeza hu-
mana irradiada por teléfonos celulares, ya que las autofre-
cuencias de excitaciones colectivas tipotwist (o hélices) en
cadenas moleculares [8] est́an en el rango de los gigahertz.
Las cadenas de DNA, que son hélices dobles a la derecha o
izquierda inmersas en un ambiente acuoso, donde además se
tiene un conjunto de proteı́nas, membranas, etc., representan
el bioplasma y poseen una quiralidad geométrica que puede
ser representada por el factorT . En este caso la velocidad de
la onda es mucho menor debido a la alta constante dieléctrica
del medio (≈ 50ε0). Los t́erminos ḿas importantes, en la ver-
sión de microondas, sonk′, k′′, la atenuacíon (σ ≈ 1[Ω/m]),
la quiralidad y el t́ermino ćubico, el cual a frecuencias de
microondas, como en el caso de un bioplasma, debe ser estu-
diado cuidadosamente. De acuerdo a la conjetura de Fröhlich
[9], la enerǵıa en el material biológico puede ser transferida
sin disipacíon si estructuras solitónicas apropiadas se forman
dentro de las ćelulas. En nuestro modelo, este efecto ”sin di-
sipacíon”se puede simular a través de la quiralidad si el factor
C es de valor tal que1−kT → 0 y por lo tanto la atenuación
efectiva tiende a cero. De manera que para el tratamiento y
generacíon de solitones en el rango de las microondas sólo es
necesario escalar la frecuencia, la amplitud y la duración del
pulso de entrada en la Ec. (7).

A fin de facilitar la solucíon nuḿerica de la ecuación de
propagacíon se introducen los siguientes cambios de varia-
bles:t′ = t − z/vg y z′ = z∗, aśı el sistema de referencia
orginal seŕa t = t′ + z/vg y = z∗ = z′. Con ∂

∂t |φ|2 φ = 0,
(aqúı no se consideran los efectos de esparcimiento Raman
SRS y Brillouin SBR estimulados), la Ec. (7) toma la forma

j
∂φ

∂z′
+

1
2
k′′

∂2φ

∂t′2
− j

1
6
k′′′

∂3φ

∂t′3
+ j(1∓ Tk)

ω0α

2k0
φ

−(1∓ Tk)
βω2

0

2k0
|φ|2 φ± Tkk0φ = 0. (8)

Finalmente, definiendo las nuevas variables

q =
ω

2
3
0

(2k0)
1
3
β

1
3 φ, ξ =

ω
2
3
0 β

1
3

(2k0)
1
3
z′,

τ =
ω

1
3
0√

k(2)(2k0)
1
3

β
1
3 t′, CR

L = 1∓ Tk,

γ =
β

1
6

6k(2)

ω
1
3
0√

(2k0)
1
3 k′′

, Γ =
ω

2
3
0 α

(2k0)
2
3 β

1
3
,

D =
Tkk0(2k0)

1
3

β
1
3 ω

2
3
0

;

y operando algebraicamente se obtiene la ecuación quiral no
lineal de Schr̈odinger

j
∂q

∂ξ
+

1
2

∂2q

∂τ2
− jγ

∂3q

∂τ3
+ jΓCR

L q ±Dq − CR
L |q|2 q = 0.

(9)

ConT = 0, C = 1, y D = 0, se obtiene la tı́pica ecuacíon
no lineal de Schr̈odinger para un medio normal (aquiral). La
amplitud q corresponde a una onda quiral polarizada hacia
la derecha (signo superior)ó izquierda (signo inferior). El
número de ondak puede tomar cualquier valor, desde

k0

1 + Tk0
hasta

k0

1− Tk0
,

lo que corresponde a los autovalores de la ecuación ho-
moǵenea (7) conφ constante. Conγ = 0 y Γ = 0, los perfi-
les de los solitones fundamentalesR ó L tienen las siguientes
formas, respectivamente:

qR =

√
2(kR −D)

cosh
√

2(kR −D)τ
y qL =

√
2(kL + D)

cosh
√

2(kL + D)τ
.

Estas ecuaciones no acopladas se pueden generalizar si se in-
cluyen todas las componentes del vector de polarización no
linealPNL en el medio ćubico tipo Kerr, el cual depende del
tensor de susceptibilidad de tercer ordenχ(3). Nuevamente
despúes de algunas operaciones algebraicas se pueden obte-
ner las ecuaciones no lineales acopladas de Schrödinger da-
das por

jqτξ + qτττ + Cr

[
L∑

s=R

(|csqs|2
]

qr = 0,

donder, s = R, L y cs es un factor nuḿerico. Estas ecuacio-
nes pueden ser usadas para describir tanto cambios de pola-
rización aśı como la propagación a lo largo de fibraśopticas
fuertemente birrefringentes. Aquı́ es posible usar técnicas de
pertubacíon para encontrar expresiones analı́ticas aproxima-
das para las ecuaciones acopladas de Schrödinger cerca de
los puntos de bifurcación, donde las soluciones quiralesR y
L son casos particulares de las soluciones elı́pticamente po-
larizadas.
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3. Método espectral deFourier

La ecuacíon de propagación [Ec. (8)] es una ecuación di-
ferencial parcial no lineal que generalmente no posee solu-
ciones analı́ticas excepto para algunos casos especı́ficos en
los cuales se puede emplear el método de esparcimiento in-
verso. Por ello, para analizar y comprender los fenómenos no
lineales en materiales quirales, es necesario recurrir a técni-
cas nuḿericas, siendo las principales el método de las dife-
rencias finitas en el dominio del tiempo (FDTD) y los méto-
dos espectrales de Fourier. En nuestro trabajo usaremos una
de estaśultimas t́ecnicas, el ḿetodo de paso dividido(split-
step), para estudiar el problema de la propagación de pulsos
en medios quirales no lineales en el régimenóptico.

Para comprender la filosofı́a del ḿetodosplit-stepde Fou-
rier, la ecuacion de onda espacio-temporal de un medio qui-
ral no lineal [Ec. (8)] se puede escribir de la siguiente manera
[6]:

∂φ

∂z
= jQ̂; (10)

aqúı los efectos lineales y no lineales están considerados en
el operador diferencial̂Q. La solucíon de la Ec. (8), como
función de la distanciaz, es

A(z) = exp
[
j

∫ z

0

Q̂(z)dz

]
A(0), (11)

dondeA(0) es el valor inicial, en espacio y tiempo, de la en-
volvente polarizadax − y enz = 0 y Q̂ = D̂ + N̂ , siendo
D̂ el operador de la parte homogénea yN̂ el de la parte no
homeǵenea. Eligiendo una pequeña distancia de propagación
(∆z) y observando quêD puede ser integrado directamente,
la Ec. (11) se reduce a

A(∆z) = exp

[
j(∆zD̂ +

∫ ∆z

0

N̂(z′) dz′)

]
A(0). (12)

La integral puede ser aproximada con una exactitud de se-
gundo orden en∆z, por lo que la ecuación de propagación
llega a ser

A(∆z) = exp
[
j∆z(D̂ + N(∆z/2))

]
A(0). (13)

Aunque en la ecuación anterior se tiene una aproximación
de segundo orden para la integral del operador no lineal, no
hay garant́ıas que la implementación real seŕa de segundo or-
den, ya que las envolventes en∆z/2 son desconocidas. La
aproximacíon que se usa en el métodosplit-stepes que es-
tos valores se determinan en un paso de propagación lineal
∆z/2, no considerando, por lo tanto, la contribución no li-
neal. El resultado es que el paso no lineal tiene una exactitud
de primer orden.

El exponencial puede ser escrito en forma simétrica

A(∆z) = exp
[
j
∆z

2
D̂

]
exp

[
j∆zN̂

]
exp

[
j
∆z

2
D̂

]
A(0)

la cual tiene exactitud de segundo orden en∆z y requiere
tres operaciones para un paso de propagación longitudinal.
Esta separación en pasos homogéneo y y no homoǵeneo es la
principal caracterı́stica del ḿetodosplit-step.

El operador lineal se aplica en el dominio de Fourier, re-
sultando

exp
[
j
∆z

2
D̂

]
A(z0)

= z−1

{
exp

[
j
∆z

2
z

{
D̂

}]
z {A(z0)}

}
,

dondez−1 es la operación de transformada inversa de Fou-
rier. En general, las partes lineal y no lineal actúan conjun-
tamente a lo largo del material. El métodosplit-steppermite
obtener una solución aproximada suponiendo que la propa-
gacíon del campo eléctricoóptico, en una pequeña distancia
∆z, se realiza en dos pasos. En el primero, desdez = z0

hastaz = z0 + ∆z/2, sólo act́ua la parte lineal ŷN = 0,

BL(z0 +
z0

2
) = exp

[
j
∆z

2
D̂

]
A(z0).

En el segundo paso, la parte no lineal actúa sola en el punto
∆z/2, dondeD̂ = 0,

BL

(
z0 +

z0

2

)
= exp

[
j∆zN̂

(
∆z

2

)]
BL

(
z0 +

z0

2

)
.

Para finalizar el recorrido el pulso sólo se propaga con parte
lineal hasta alcanzar la distancia∆z. Finalmente, consideran-
do los cambios entre los dominios del tiempo y la frecuencia,
la propagacíon sobre todas las distancias∆z est́a determina-
da por

A(z + ∆z) = z−1

×




exp
[
j ∆z

2 z
{

D̂
}]
z exp

[
j∆zz

{
N̂

}]

z−1
{

exp
[
j ∆z

2 z
{

D̂
}]
z {A(z0)}

}


 .

Para el ćalculo nuḿerico de solitones brillantes (región de
dispersíon ańomala) la Ec. (7) se trabaja en la tercera ventana
óptica, por lo tantok′′′ es nulo; adeḿas elúltimo término de
esta ecuación se puede eliminar por transformación unitaria,
por lo tanto para este caso se tiene

j
∂φ

∂z′
+

1
2
k′′

∂2φ

∂t′2
+ j(1∓ Tk)

ω0α

2k0
φ

−(1∓ Tk)
βω2

0

2k0
|φ|2 φ = 0 (14)

y el operador lineal se define por

D̂ = −1
2

k′′

T 2
0

∂2φ

∂τ2
+ j

ω0α

2k0
Cφ,

dondeτ = t′/tp, y tp es el ancho del pulso.
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El operador no lineal será

N̂ =
βω2

0C

2k0
|φ|2 φ.

La Ec. (14) caracteriza la propagación solit́onica con
pérdidas, por tanto acepta la condición inicial para este tipo
de propagación [10],

φ(0, t′) =
√

P0senh(t′/tp),

dondeP0 debe cumplir con la condición [10]

P0 =
2k′′k0C

t20βω2
0

N2 =
2k′′k0(1∓ Tk0)

t20βω2
0

N2.

4. Análisis de resultados

Como nuestras simulaciones están basadas en el método
split-stepde Fourier, se definen los operadores lineal y no
lineal. Aśı, en la Ec. (9) el operador no lineal está compuesto
por el último término. Primero se consideran las soluciones
sin acoplamiento entreR y L. La Ec. (9) representa el mode-
lo básico de la propagación de una onda en una fibraóptica
quiral, tanto en la segunda como en la tercera ventanaópti-
cas, aśı como en el rango de microondas. Para los cálculos
numéricos hemos usadok′′ = −17, 4 ps2/km, γ = 0, Γ = 0,
lo cual corresponde a la región de dispersión ańomala, la lon-
gitud de la fibra es de2,9 km, β = 0, 1x10−25 s2/m2W y el
ancho del pulsotp = 4 ps. Las Figs. 1 (evolución temporal)
y 2 (evolucíon espectral) corresponden a un solitón de orden
uno con una potencia pico de entrada deP0 = 0, 87 W y
C = 1, y sirven como elementos de comparación cuando el
factorT 6= 0, en este caso,q = qR = qL. Cuando aumenta
el factor quiral se encuentra que el pulsoR permanece esta-
ble hastaTk0 = 0, 5 (Figs. 3, 4 y 5). La Fig. 5 muestra la
proyeccíon del solit́on en el plano de la intensidad donde se
observa que el pulso se ensancha y decrece cuando avanza
con la distancia. Esta estabilidad global da la posibilidad de
aumentar la potencia de entrada y el rango dinámico de las
variables en juego, preservando la naturaleza del solitón de
orden uno. Nuestro cálculo nuḿerico indica que al aumentar
al doble la potencia (P0 = 1, 74 W), estos pulsos solitónicos
de tipoR se muestran estables para un rango dinámico me-
nor de la quiralidad,0 ≤ k0T ≤ 0,3. Para valores mayores de
k0T el pulsoR muestra un corrimiento positivo enz/z0 = 1.
y su estructura solitónica se quiebra paraz/z0 º 1 (Fig. 6).
Aqúı se puede observar que el factor quiral modifica fuerte-
mente el balance entre los efectos inducidos por la dispersión
de la velocidad de grupo (GVD) y la automodulación de fa-
se (SPM). Para el caso del pulsoL la situacíon es diferente,
cuando|Tk0| aumenta, la intensidad|qL|2 aumenta desde 1
hasta 1,6 para|Tk0| = 0, 3, (ver Figs. 7, 8 y 9). Contraria-
mente con lo que ocurre con el pulsoR (Fig. 5) en la Fig. 8
se aprecia un estrechamiento del pulsoL a medida que avan-
za con la distancia. aumentando su intensidad. Este aumento
puede ser compensado si el medio tiene perdidas. Esto ocurre

cuandoTk0 es negativo y se incluyen las pérdidas (Γ). En es-
te caso el factor quiral puede compensar las pérdidas t́ıpicas
de un pulso en una fibráoptica normal, esto puede observarse
en la Fig. 10. A niveĺoptico esta compensación puede ser in-
teresante cuando se requiere aumentar el nivel de potencia de
un láser en un sistema de comunicaciones. A nivel de micro-
ondas esta compensación sugiere que la onda de RF emitida
por los celulares puede propagase al interior de la cabeza a
pesar de las altas pérdidas del medio. Para valores mayores
de Tk0, el solitonL se transforma y ocurre una conversión
de modo, deN = 1 paraN = 2. Aqúı se puede comparar
la Fig. 11, que corresponde a un soliton de ordenN = 1 y
k0T = 0,7 con la Fig. 12 que corresponde a un soliton tı́pico
de segundo orden conP0 = 3, 49 W. Esta potencia se requie-
re para soportar un soliton de segundo orden sin efecto quiral.
Este efecto se explica considerando que la razón N entre la
longitud de dispersión y la longitud no lineal es modificada
por el factor quiral,N = (LD/LNL)(1± Tk0).

FIGURA 1.

FIGURA 2.
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FIGURA 3.

FIGURA 4.

FIGURA 5.

FIGURA 6.

Para el caso de solitones de tercer orden, (P0 = 7, 86 W,
N = 3), se estudiaron los cambios espectrales para polari-
zacíon R y L respectivamente. Estosos cambios espectrales
se deben al balance entre la GVD, la SPM y la quiralidad.
Al aumentarTk0 se encuentra que el solitonR es ḿas regu-
lar que el solitonL. El cálculo nuḿerico se extendió hasta
Tk0 = 0, 5. Cualitativamente se observó que la SPM gene-
ra un chirp de frecuencia positiva tal que el canto delantero
del pulso tiene un desplazamiento hacia las bajas frecuencias
y el canto posterior al contrario, tomando como referencia
la frecuencia central. El ensanchamiento espectral producido
por la SPM se situa en torno dez/z0 = 0,2, siendo que la
tı́pica estructura oscilatoria es aumentada por el factor quiral.
Paraz/z0 ∼ 0,35, la GDV ańomala y la quiralidad positiva
reducen el espectro del pulso.

FIGURA 7.
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FIGURA 8.

FIGURA 9.

FIGURA 10.

FIGURA 11.

FIGURA 12.

Para el caso con acoplamiento se considera un sistema de
dos ecuaciones no lineales acopladas. se supone que la ener-
gı́a total del haz es invariante,

∫
(q2

R + q2
L)dτ = UR + UL,

luego se puede obtener la energı́a de dispersión en el o los
puntos de bifurcación entre las soluciones no acopladas que
son ondas quirales circularmente polarizadasR o L y ondas
elipticas. Usando un ḿetodo perturbativo es posible encon-
trar expresiones aproximadas para las soluciones polarizadas
eĺıpticamente cerca de los puntos de bifurcación. Por ejemplo
se supone que la solución es aproximadamente circular con
(qL/qR) ¿ 1, aśı el pulsoR tiene una solución de la forma
sech. De esta forma los resultados numéricos obtenidos para
solitonesR (ver las las figuras para pulsosR), se usan para
obtener la ecuación autoconsistente para las ondasL , qL:

j
∂qL

∂ξ
+

1
2

∂2qL

∂τ2
− jγ

∂3qL

∂τ3
+ jΓCLqL

−CL |qR|2 qL ±DqL = 0.

Tambíen la situacíon inversa puede ser simulada. El factor
CL considera adeḿas de la modulación cruzada el intercam-
bio de energia entre los pulsos. Esto conduce a la aparición de

Rev. Mex. F́ıs. 49 (1) (2003) 20–27



EFECTO DE LA QUIRALI DAD SOBRE SOLITONESPOLARIZADOS EN UN MEDIO ANISÓTROPO 27

nuevos estados solitónicos eĺıpticos. Como una ilustración las
curvas correspondientes a las soluciones fundamentales son
mostradas en el diagrama (Ur,l−k) with D = 1 (Fig. 13). Los
resultados preliminares obtenidos muestran que las ramas de
las soluciones elipticamente polarizadas (Ur

e , U l
e) emergen en

torno de0,5 ≤ k ≤ 1,5. Este resultado muestra que el ba-
lance entre la no linealidad y la girotropı́a quiral en el caso
acoplado permite la existencia de nuevos solitones casi circu-
lares. Sobre este aspecto un cálculo nuḿerico ḿas acucioso
est́a en curso y pretende estudiar las inestabilidades produci-
das cuando el acoplamiento es más fuerte.

FIGURA 13.

5. Conclusiones

En este trabajo se ha obtenido la ecuación no lineal de
Schr̈odinger para una fibráoptica cuyo ńucleo es quiral, dis-
persivo y tiene comportamiento no lineal tipo Kerr. Las simu-
laciones muestran que, para esta fibra, los pulsos solitónicos
de orden 1 tipoR tienen un gran rango dinámico para un va-
lor dekT de hasta0,5, conservando la estabilidad cuando la
potencia de entrada aumenta. Para valores dekT mayores, el
factor quiral modifica fuertemente el balance entre los efectos
de la GVD y la SPM.

En el caso de pulsos tipoL, la situacíon es diferente, debi-
do a que ocurre una conversión de modos, desdeN = 1 para
N = 2. Este efecto se explica por el hecho de que la razón
N , entre la longitud de dispersiónLD y la longitud no lineal
LNL es modificada sustancialmente por el factor quiral.

Otro resultado obtenido que es significativo es que un fac-
tor de quiralidad negativo puede compensar la disminución
del pulso en una fibráoptica normal por ṕerdidas de propaga-
ción.Porúltimo la simulacíon nuḿerica de modos acoplados
predice la existencia de soluciones elipticamente polarizadas
que pueden ser importantes en futuras aplicaciones.
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