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Efficiency of a Curzon and Ahlborn engine with Dulong-Petit heat transfer law
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Using the maximization of the power output per cycle, the optimization of a thermal engine performing a Carnot-type cycle is considered.

It is assumed that the heat transfer between the reservoirs and the engine occurs according to the Dulong and Petit's heat transfer law. It is
found that the efficiency obtained with this heat transfer law can be written as a power series in the parameté V.o — In Vinin),

whereV,,,.. andV,,,;, are the maximum volume and minimum volume spanned by the cycle, respectively. Itis also shown that the calculated
efficiency verifies the semi-sum property of the ecological efficiency.

Keywords: Finite time thermodynamics; optimization; power output.

Se considera la optimizam de una raquina érmica por medio de un ciclo tipo Carnot, usando la maximérade la potencia de salida

en el ciclo. Se supone que la transferencia de calor entre los almacenesagumase realiza de acuerdo con la ley de transferencia de

calor de Dulong y Petit. Se encuentra que la eficiencia obtenida con esta ley de transferencia de calor, se puede escribir como una serie de
potencias del pametro\ ~ 1/(In Vinaz — In Vinin ), dondeVinaz ¥ Vinin SON los volimenes raximo y minimo subtendidos por el ciclo,
respectivamente. Tanén se muestra que la eficiencia calculada cumple la propiedad de semi-suma de la eficiedgigaecol

Descriptores: Termodiramica de tiempos finitos; optimizaci; potencia de salida.

PACS: 44.6+k; 44.90+c

1. Introduction thermodynamic equilibrium within the working substance.

Classical fibri h q ics has b _ The expression for the power output associated with the Cur-
assical equilibrium thermodynamics has been very Impors 4, ang Ahlborn cycle corresponds to a convex function with

tant in the study of thermal engines; its main role in thermaf)nly a maximum point into the intervdl < 8 < 1, with

engine analysis has consisted in providing upper bounds fo/(n); = T,/T); such that the efficiency of this cycle at maxi-
process variables such as efficiency, work, heat and otherﬁ1um power regime is [3]

However, the classical equilibrium thermodynamics bounds

are usually far away from typical real values. Moreover, Ty

the problem of taking a system from a given initial state to nea=1- T’ @)

a given final state while producing a minimum of entropy

or a minimum loss of availibility leads to reversible pro- WhereéZ> and Ty are the temperatures of the cold and hot
cesses. These processes are equivalent to each other and HEREVOIrS respectively.

zero value of both entropy or loss availability, but need in-

finitely long process time. In many applications it is natu- T
ral to introduce a constraint for the available process time.

This approach is known as finite time thermodynamics and P E— @ 2
discussede.g, [1,2,3]. In this contex, endoreversible pro-
cesses [4] are generally considered, where the system inter
nally is reversible and the production of entropy is caused
by the transport to the system, or from the system. So that,
endoreversible thermodynamics can be considered as an ex
tension of classical equilibrium thermodynamics to include
irreversible processes[1,2]. A typical endoreversible system
is the so-called Curzon and Ahlborn engine[3] (see Fig. 1).
This heat engine is a Carnot-type cycle in which there is no
thermal equilibrium between the working fluid and the reser-
voirs, at the isothermal branches of the cycle; furthemore,
there exists a finite time heat transfer given by Newton’s heat
transfer law. The engine is a non-null power model, in con- s
trast with all reversible models which are zero-power mod-
els. The curzon and Ahlborn cycle is applied to thermal en-cure 1. Curzon and Ahlborn Cycle in the entrogyand abso-
gines, to include the irreversible processes of the interactiofute temperaturd” plane. Q represents the absorbed heaf/at
of the engine with the reservoirs while it is maintained theandQ- represents the rejected heaffat

g lQZ
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The success of Eqg. (1) lies in the fact that it gives a reato the zeroth order term in a power series in the parameter
sonable prediction for the reported experimental values of efA cited above. For this approximate expression, the equiva-
ficiency for a certain number of power plants (see table 1 ofent expression to (3) is also derived. Furthermore, numerical
Ref. [3]), in contrast with the values obtained by the Carnotresults are compared with the numerical results of Refs. 10

efficiency and 11. The times for the isothermal branches and adiabatic
T branches are taking similary as the times in Refs. 8 and 9 to
no=1-— ?j (2)  build the expression of power output.

When the temperatures of the working substance in th
isothermal branches (Fig. 5., ¢ = 1,2, with T, < Ty,
are taken to be the same than the temperatures of the resgfrom the definition of efficiency = 1 — Q2/Q1, the endore-
voirs, Ty, = Ti and Ty, = T3, the irreversibility of  versibility condition, namely), /T1., = Q2/T5.,, makes the
the heat transfer process between the engine and the resgrm of efficiencyn = 1 — T /T1. Which is applicable to
voirs is ignored. Since the publication of the Curzon andany endoreversible cycle. However, the ratio of temperatures
Ahlborn paper, Eq. (1) has been obtained in several differen¢hanges with the maximized function and with the assumed
ways[1,4,5,6], and other methods to qualify the performanceeat transfer law in an endoreversible engine model. In the
of the Curzon and Ahlborn engine have been proposed. Pafollowing three cases: the Carnot efficiency [Eq. (2)], the
ticularly Angulo-Brown[7] advanced an optimization crite- Curzon and Ahlborn efficiency [Eq. (1)] and the so-called

rion that combines the power output of the cyéteand the  ecological efficiency [Eq. (3)], the efficiency always depends
total entropy productiom by the so-called ecological func- on a functionz(3), with 3 = T /T} , as

tion E = P — Tyo, obtaining the ecological eficienayg,

©. Efficiency at maximum power output

namely, n=1-2(p). (4)
213 Thus, the idea is to find the functior{3) that follows from
ng=1—1/ 5 the maximization of the function that represents the power
output of the enginel(3), and then to substitute it in Eq. (4)
which has the following property: to obtain the corresponding efficiency for the heat tranfer law
1 assumed. Let us consider a gas in a cylinder with a piston
ng ~ Q(nc +nca), 3) as the working substance that exchanges heat with the reser-
voirs, and let us use a heat transfer law of the form:
wherenc 4 andng are given by the Eq. (1) and (2), respec- 0
tively. =a(Ty - T))", (5)

On the other hand, Gutkowicks-Krusin, Procaccia and dt
Ross[8] have derived Eq. (1) as the upper bound of the efwherek > 1, anda is the thermal conductancé)/dt is the
ficiency as a function of the ratio of the maximum volume rate of heat) exchanged and’y and7; are the temperatures
Vinae and the minimum volumé,,,;,, spanned by the heat for the heat exchange process considered. The first law of

engine through the quantity ~ 1/(In V0 — In Viyin). thermodynamics in its local form, applied to the system, is
Similary, for the criterion of merit named ecological [7], dE  dQ dv
Ladino-Luna and de la Selva[9] have shown that the ecolog- = ar  Pa

ical eff|C|e.ncy Is also expressed as the upper bound of thgnd assuming an ideal gas as the working substance of the
power series of the same parametarf Ref. 8.

The Ref. 8 and 9 have assumed that the time for the adfyde’ one obtains

abatic branches, in the Curzon and Ahlborn engine, can be aQ _ dv o o(Ty —T))k = RT; dV

written as a function of the time obtained from the duration a  Par f VvV oat’

of the isothermal branches by means of the heat transfer lawhere we have used Eq. (5).

used. In all of the above quoted calculations Newton's heat  Following now the procedure employed in Refs. 8 and 9,
transfer law was considered in order to calculate the time ofhe times for the isothermal branchgsand; are

duration of the processes of heat transfer between the en-
. . . . Rle ‘/2
gine and the reservoirs. Using a non linear heat transfer law, t1 = T — Tk In A
particulary the Dulong and Petit's heat transfer law, Arias- Ty — Thw) 1
Herrandez and Angulo-Brown [10] and Angulo-Brown and fe — RT3y, In Vs ©6)
Paez-Herandez [11] studied and obtained numerical results 2 a(Toy —To)k V'
that suggest that expression (3) is a general property. and the corresponding exchanged heatsand Q, are, re-

In the present work, with the optimization of the power spectively,
output of a Curzon and Ahlborn engine, an approximate ex- ’
pression for the ecological efficiency by means of the Dulong Q) = Ry, In Va . Qs = RTy,In Vi ’ @)
and Petit's heat transfer law [12] is derived, corresponding
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where R is the universal gas constant aWg V5, V3, V, are  where) denotes the parameter

the corresponding volumes for the states 1,2,3,4 in Fig. 1, re- )

spectively. For the adiabatic processes usjng: C,/C,, A — (11)
one finds the following times: (y—1)n
Rle le . e .
ty = In , Imposing the conditio’2 = 0 one obtains: = z(z,
T ol ~Tw)f (v 1) Tow as posing b (2, )
RTQw T2w
ty = — In —. 8 =
! a(TZw - TQ)]C(’Y - ]') le ( ) Tr = G +zﬁa (12)
i i : Z + zF+L
Let us make now the following change of variables: and fromdP/az — 0, one gets
T T @  —F1tAlnz)(z =)+ M1-2)( —p)
T’ Ty’ 2(1=2)(1+Anz)(zz — )
the power output of the engine becomes _ ayk-1 _ 0k
) zk(ze - 0)" '+ (1—2x) —0. (13)
W TFa(l—2)(1+ Alnz) (zz — B)F + 2(1 — x)k
tot z

Substituting the variable in Eq. (13) with the help of
Eq. (12), the resulting expression is the following one, which
| shows the implicit function = 2(\, 3), for a givenk:

=2 Gz —pB)F

2
2k 10— )AL —2) — 2(1+ Alnz)) + zk(zFT + B)(1 — 2)(1 + Aln 2)

2(1—2)(14+ Alnz) (z + BaFr T(z—ﬂ))

(%41 + 2)

Since the solution of Eq. (14) is not analyticaly feasible
whenk is not an integer, the case discussed hefeds5/4
(the Dulong and Petit’s heat transfer law) [12]. One can therare shown in Table |, compared with;zpp in references

take the approximations only for the exponents, [10,11]. Figure 2 shows the comparison betwegn,p
and nca with the temperatures of the reservoirs in real
2 2k plants[10,11].
~1 R | 15
E+1 ’ k+1 ’ (15)

in Eg. (14) to obtain
T+ AIn2)((EB+ zk)(1 — 2) — 2(2 — )
FA1=2)(z—=B)—(1+Alnz)(1—2)z=0. (16)
The approximations (15) are both reasonable when5/4.

Equation (16) allows to derive the following explicit ex-
pression for the function = (8, k) in the limit A = 0:

(=P (k—1)£/(B-1)2(1 —k)*> + 4k%3
o 2k

Taking nowk = 5/4 in Eq. (17) one obtains the following
value for the positive rootppp(3):

1-0++V/B2+986+1 (18)
10 ‘

The numerical results foyppp = 1 — zppp and the
semi-sumyspp defined as[7]

. (17)

zppp = 00 0.2 0.4 0.6 0.8 T p

) FIGURE 2. Comparison between the Curzon and Ahlborn effi-
~ o 19 ciency,nca, and the efficiency)ppp obtained here from the ap-
Isbp 2 (e +neop) (19) proximate (18) for the Dulong and Petit's heat transfer law.
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TaBLE |. Comparison of the numerically obtained efficiency by Arias-Heitez and Angulo-Brown (1994) and Angulo-Brown ariegR
Hernandez (1993)ya epp, With the approximate efficiencyrpp and the semi-sum also approximate efficiemgy, » obtained here.

Power plant T>(K) T1(K) nNca NMEDP NPDP NSDP NOBS
1962, West Thurrock conven- 298 838 0.403367 0.49 0.33577 0.49008 0.36
tional coal fired steam plant.

1964, Lardarello (Italy) geother- 353 523 0.1784 0.239 0.1453 0.23517 0.16
mal steam plant.

1956, steam power plant in the 298 923 0.4318 0.52 0.36006 0.5186 0.40
u.s.

1949, combined-cycle (steamand 298 783 0.3831 0.47 0.31804 0.46872 0.34
mercury) plant in the U.S.

1985, Doel 4 (Belgium) 283 566 0.2929 0.373 0.24113 0.37056 0.35

Now assuming that obained from Eq. (16) can be ex- one can find the coefficients(5),: = 1,2, ..., taking the-
pressed as a power series in the paramgtere have the valuezy = zppp(5), Eq. (18), by successively taking the
following expresion fompp: derivative with respect ta. The two first ones coefficients

b1(B) andby () are:
npp =1—zpp(X,3)
16(1 — 20)(8 — 20)

=1—2ppp(1 +bi(B)A+ba(B)N2+O(N?)), (20) bi(8) = 2o(5— 47 — 10%) (21)

| and

b2(B) =

4(2’0 — 1)(20 — ﬁ) { [(—1 + ,6 + 1020) In 2o + 820 — 4ﬁ — 4](,3 +1-— 1020)
(1 + 906 — 102’0)2 1+96— 10z

40(2’0 — 1)(20 — ﬁ)
1493 — 102

—[(98+1—10z)Inzo+4+ 45 — 820]} , (22)

which are positives fop values in the intervad < 5 < 1,
as we can see in Figs. 3 and 4. The numerical results olg-comparison between the upper bound calculated with the
tained from Eg. (19) are in good agreement with the previ-approximations (15) and the values obtained numerically in
ous reported values fajpp calculated by means of other Refs. 10
approaches (see Table I).

b

. 4 ,
3. Conclusions

One of the main achievements of finite time thermodynamics
has been to formulate heat engine models under more real3
istic condition than those of classical equilibrium thermody-
namics. By means of finite time thermodynamics models,
good agreement between theorethical values of process vari2
ables and experimental data has been obtained, [1,3,7,8]. It |
this contex, a first result in the present paper is embodied
by Eq. (20) together with Eq. (21) and Eq. (22). It ex-
presses the fact that the efficiency for a Carnot type engine T
depends on the size of the engine as represented by the ps
rameter\ ~ 1/(lnVs — InV;). The leading term in (20),
corresponding to the exact numerical value calculated with- .
out taking into account explicitely the dependency)oris 9 0 0.2 04 0.6 0.8 T P
the upper bound for the value of the efficiency; in fact theFicure 3. First order coefficient; = b,(8), in an interval
larger the ratid’s / V1, the bigger the efficiency becomes. The 0 < 3 < 1 of the power series (20).
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FIGURE 4. Second order coefficiedt = b2(3), in an interval
0 < B < 1 of the power series (20).

NA

and 11 are shown in colums 4, 5 and 6 of Table I, where one
can appreciate that it was appropiate to take these approxi-
mations. In fact, the semi-sum property shown in Eqg. (3) and
Eg. (19) can be appreciated in colum 6. It is important to
point out that in Refs. 10 and 11 this property was only nu-
merically found; in contrast, in the present work this property
has been derived anlytically by means of Eq. (19). As we can
see, the efficiencyppp = 1—zppp is a more relistic model
than the reported in Refs. 10 and 11.
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