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En este trabajo se presenta una forma sencilla de obtener una erpagsitica para la respuesta en el dominio de las frecuencias de la
permeabilidad diamica en fluidos viscoasticos maxwellianos. Tan#i se ilustra el caso de présisenoidal, en el que la permeabilidad se

puede expresar en el espacio de configdracte modela la respuesta@inica del sistema circulatorio humano como la respuestariga

en un tubo recto y la sangre como un fluido maxwelliano, se determinan las resonancias de este sistema y se encuentra que la frecuencia de
bombeo cardiaco natural corresponde a @ximo de permeabilidad viscasdtica. Para reforzar lo anterior, cuantitativamente se muestra a

través de un modelo de prési pulsante (tren de pulsos gaussianos), que el incremento en la permeabilidad puede tener un efecto positivo en

el flujo medio.

Descriptores: Viscoelasticidad; transformada de Fourier; resonancia; medio poroso.

In the present work a simple form to obtain analytical expression for the dynamic permeability of Maxwellian fluids is presented. This
expression gives the frequency dependent form of this dynamic permeability. In particular case, the analytic expression for the sinusoidal
pressure pump fluid is illustrated in the configuration space. As an example of the feasibility of this expression the flow of human blood in

a tube is presented finding that the human heart frequency has the same order that the frequencies where the dynamic permeability shows
resonances. In order to make clear the above aspect of the dynamic permeability a model of pulsing pressure drops (gaussian like) are
analyzed.

Keywords: Viscoelastic; Fourier transform; resonance; porous media.
PACS: 87.45.Ft; 83.80.Lz; 47.55. Mh

1. Introducdodn frontera. Desde el punto de vistgito, estas ecuaciones re-
quieren informadn adicional, una ecuam de estado entre
La descripodn del flujo de fluidos en medios porosos tie- |3 presbn y la densidad y otra relami entre el tensor de es-
ne una gran aplicabn enareas de la explotam petrole-  fyerzos viscosos y el gradiente de velocidades para que pue-
ra, el transporte de agua en mantosiferos y en los cam-  gan considerarse un sistema cerrado. Precisamente, las ecua-
pos gecérmicos, transporte de biofluidos en membranas y egjones constitutivas y de estado especifican el tipo de fluido
reactores qimicos, entre otras, adéxs su estudio es una par- gye se pretende describir. Estas relaciones hacen la distinci
te fundamental de la manica de fluidos. Para poder descri- gntre un gas, un fluido incompresible y newtoniano (como el
bir estos flujos deberemos primero definir lo que es un mediggua) o0 uno incompresible y viscastico (como la miel).
poroso. Aunque todos entendemos intuitivamente lo que &s| agua, el ras coniin de los fluidos, es un buen ejemplo
un fluido, es necesario precisar que en este trabajo tratarga yn fluido newtoniano incompresible. La aproxindacile
mos a fluidos viscoékticos; estos fluidos generalmente nofido incompresible no es una restriggimuy severa, dado
son abordados en los cursos de licenciatura. Para aclarar I@ge para la mayaa de los iquidos como el agua bajo con-
propiedades de estos fluidos raros, empecemos presentarglgiones ambientales normales se tiene que el cambio en la
las ecuaciones de balance que describen el flujo de fluidos.qgensidad es muy peqjie, de hecho para el agua es del or-

La ecuacdn de balance de masa: den deAp/p ~ 10~5 para cambios de prési del orden de
dp atmosferas []y, por lo tanto, la suposién de incompresibi-
%=V (1) lidad es una aproximatn razonable. La clasificami de flui-
do newtoniano tiene que ver con la ecdactonstitutiva que
y la ecuacdn de balance de cantidad de movimiento: relaciona al tensor de esfuerzos con el gradiente de velocida-
v o des en una for.m_a lineal. Para el caso de fluidos newtonianos
rn +p(v-V)v=-Vp-V. -7, (2)  podemos escribir
dondep es la densidad de masa del fluidoel campo de ve- T = -—nVv, 3)

locidadesp la preson y 7 el tensor de esfuerzos viscosos.

La Ec. (1) es la llamada ecuaci de continuidad que repre- donder es la viscosidad.

senta la conservam de la masa. La Ec. (2) es la ecusrci Como se puede apreciar, con esta edrase tiene un

de balance de cantidad de movimiento. Desde la perspectionjunto de dos ecuaciones para do$gmitasp y v que da-

va matenatica para que este conjunto de ecuaciones sea ufas las condiciones iniciales y de frontera puede resolverse.
problema cerrado hacen faltan las condiciones iniciales y d8in embargo, en esta ocasiestamos interesados en ilustrar
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gué pasa en los fluidos que intervienen en la explotapie-

trolera, en los reactores picos y los biofluidos que presen-

75

trabajo, la idea de poro se toraaromo el espacio intermedio
entre los dos extremosi&dados, de tal forma que los espa-

tan propiedades que los hacen ser llamados no newtonianasos sean grandes desde el punto de vista miépeo, pero
La caracteistica fundamental de los fluidos no newtonianospequéios para las escalas del sistentd. Tambén se abor-

es gue la ecuadn constitutiva ya no es lineal2], Algunos

dar& el transporte de fluidos en medios porosos y por lo tanto

de estos fluidos los podemos encontrar en nuestra casa. Rete medio debe ser atravesados por un fluido; de esta forma
ejemplo, la miel; que al parar de verterla observamos un conse requiere que podamos encontrar espacios huecos en el ma-

portamiento inercial al ver que confia fluyendo por unos
instantes ras. En algunos procesosigucos industriales los

terial que edin interconectados, por esta@azecesitamos
poder definir el poro efectivo como los espacios interconecta-

fluidos tienen propiedades diferentes a las del agua y mucha®s del medio poroso. Es obvio que para el estudio de flujo de

veces son llamados fluidos@icos P].

materia §lo se consideran los poros efectivos y los espacios

Los fluidos no newtonianos muestran muchas propieaislados no juegan papel alguno en el transporte de masa, con
dades diferentes, entre ellas la elasticidad. Los fluidos visexcepcbn de su participadn en los efectos difusivos, que no
coehsticos se caracterizan por ser fluidos que presentan corse abordan en este trabajo; pero una descidpciletallada
portamiento disipativo como la viscosidad y una propiedadse puede encontrar en trabajos de Ochaa]|

de restitucdbn ante los esfuerzos (la elasticidad antes men-

cionada). Uno de los modelosas simples de fluidos vis-

El medio poroso puede ser caracterizado por varias pro-
piedades geoétricas, como son la porosidadefinida como

coehsticos es el llamado modelo de Maxwell. El fluido dela fraccibn de espacio vaa con respecto al volumen total, en

Maxwell [3], que es uno de los modelosamsencillos para
un fluido viscoehstico, tiene la siguiente ecuéniconstituti-
va linealizada:

a<—>
ot
dondet,,, es el tiempo de relajamn de Maxwell. Claramen-
te sit,,, — 0 la ecuaddn constitutiva del fluido newtonia-

t = -—nVv -7,

(4)

nuestro caso sarel espacio interconectado. Es dormue
en la literatura se use eétrimino dametro promedio de po-
ro, pero esto@o tendia sentido estrictamente si los huecos
tuvieran forma ciindrica o esfrica [6]. Sin embargo, el con-
cepto de daimetro promedio sarde mucha utilidad en este
trabajo.

La permeabilidad es ebtmino asociado a la conducti-
vidad del MP con respecto a un fluido y nos indica que tan

no se recupera, [Ec. (3)]. El modelo anterior fue propuesfacilmente fluye un fluido a tré&s de un medio poroso. Se
to por Maxwell para introducir la inercia en el sistema yacostumbra definir el Darcy como la unidad de méutiaie
aunque tiene limitaciones, sirve para ilustrar el comportata permeabilidad y su equivalencia es @87 cm. Existen
miento viscodstico de algunos fluidos no newtonianos. Lamuchas formas de modelar un medio poroso, por ejemplo

Ec. (4) es una ecuam lineal y esta caractistica es una de
sus principales limitaciones, ya que la mdgode los flui-

consicerese un@lido al que se le barrena eriftiples luga-
res conservando los ejes de los barrenos paralelos, e&to ser

dos viscodlsticos presentan un comportamiento no lineal yun manojo de tubos. Otra forma de modelaias&onside-
sus propiedadessicas dependen de la viscosidad y del es+ar un sistema compuesto por un conglomerado de esferas

fuerzo cortante al que son sometidos. Adsimel fluido de
Maxwell slo considera un tiempo de relajéaniy casi todos

solidas fijas azarosamente distribuidas. Se ha encontrado que
algunos medios porosos muestran caréstieas de autosi-

los fluidos viscodlsticos reales presentan un comportamienmilaridad ] y por ello tambén se han tratado de modelar
to que requiere de varios de ellos para ser descritos. Exig los medios porosos como fractales){12]. Como se ob-
ten otros modelos que describen con mayor exactitud a eserva, describir la microestructura de un medio poroso es un

te tipo de fluidos 2,4, 5]; pero para nuestros propitos el

modelo de Maxwell es suficiente. Estas limitaciones no de-

tema abierto y lleno de posibilidades.
Ahora podremos comprendebrmo la descripé@n del

ben desalentarnos en la compabacile los resultados obte- transporte en medios porosos presenta dificultades que radi-
nidos con este modelo y experimentos con fluidos reales, yean tanto en la compleja estructura del medio poroso como
gue los fluidos micelares se comportan como maxwellianosn las propiedadessicas de los fluidos. Esta complejidad

Estos fluidos son compuestos formados porigalds que

poseen secciones hidatficas e hidrdficas que al contac-
to con el agua forman estructuras quelaatcomo resortes
micros®picos dando al fluido una componentastica en su

comportamiento.

del transporte en medios porosos se presenta claramente al
describir el conjunto de ecuaciones de balance y ecuaciones
constitutivas, consideradas para modelar el flujo en medios
porosos. Antes de comenzar y para centrar nuestra atenci
en la permeabilidad debemos hacer una aproxipmacsupo-

Hasta aqly hemos descrito a los fluidos, pero debemosner que el transporte de calor en el sistema no es importante.

definir un medio poroso (MP) como un cuergdido con ho-

Para una discuan de un problema incluyendo el transporte

yos interconectados (poros). Estos poros pueden ser espacitescalor se puede consultar el amplio trabajo desarrollado por
extremadamente pedqies, intersticios moleculares, y otros Whitaker [13, 14].

muy grandes, cavernas. Como se compremnden esta de-

Entonces, bajo una situéci isoermica, para describir el

finicibn se abarca desde membranas muy poco permeabliigjo a trawes de un medio poroso se requiere en principio
hasta la corteza terrestre en escalas muy diferentes. Para estsolver el problema dado por las Ecs. (1) y (2) que deben re-
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solverse bajo condiciones de frontera tan complejas como Igde la descripdn del flujo de dos tipos de fluidos, uno new-
ilustradas en la Fig. 1. La complejidad radica en las condiciotoniano y otro maxwelliano a tré&é de un medio poroso.
nes de frontera que generalmente se toman como la condici Con este alisis capturamos las caradtdicas esenciales de

de no deslizamiento, a saber, los flujos de intes tecndbgico y discutimos la relevancia
de contar con aproximaciones dtiabs a la compleja pro-
v=0 en S, blematica real. La organiza@n del trabajo es la siguiente:

- e . . en la Sec. 2, para definir la permeabilidad, presentamos la
dondes es la superficie deldido indicada en la Fig. 1. BVi- 4,00 e problema del flujo de Poiseuille para un fluido

dentemente el desorden de la superficie introduce una COMwtoniano estacionario usando un manojo de tubos capila-
plejidad adicional a la no linealidad de la Ec. (2). Por SUPUES;as posteriormente en la Sec. 3, resolvemos el problema de

fo, tamben se requiere la condémi inicial en todo el campo un fluido de Maxwell en un medio poroso en estado depen-
de velocidades para la solaidel problema, esto es otro reto diente del tiempo. Con este modelo se generaliza la defini-
ma;l/Dor. tro lad : | sist q cibn de permeabilidad al caso dimico y se obtiene como

or otro fado, como ya mencionamos, €l SIStema 0&,q4 mite |a permeabilidad damica de un fluido newto-
Ecs. (1) y (2) no es un sistema cerrado, es necesario 'erdHlano En la Sec. 4, se analiza el comportamiento de la per-
cir dos ecuaciones as que especifiquen el tipo de fluido de meabilidad didmica en&érminos de la frecuencia y se mues-
trabajo. La primera es la ecuanlc_je estado entre la PrOBI +ra que existe un incremento de varimsienes de magnitud
y la densidad, la segunda se reflere a I? emnacon,sntuu- en esta propiedad dependiendo de la frecuencia de @xitaci
va para el tensor de esfuerzos viscosos; pero estaarpedr Ademas, presentamos ajustes que relacionan el vagod-m

escog|da‘s entre Ias, E.CS' G14). 9°m° ya Mencionamos, €S ., yg | permeabilidad dependiendo de las propiedasies f
la selecadbn de estdiltima ecuaddn donde centraremos las cas del fluido y del medio poroso. En la Sec. 5 se discute un
diferencias entre los fluidos newtoniano y maxwelliano que ejemplo previamente presentadts]donde se analiza el rit-
estudiaremos. . . . . . mo cardiaco humano bajo estptica, ya que la sangre puede
Porlo tanto: bajo la hiptesis de incompresibilidad, el sis- ser considerada como un fluido de Maxwell y los resultados
tema de ecuaciones (1) y (2) se transforma en muestran que la frecuencia cardiaca humana cae justamen-
V.v— te en la zona de axima eficiencia. Tambn presentamos el
v =0, (5) : . L
problema del perfil de velocidades de un fluido visaegto
bajo una presin sinuidal, problema completamente aial
co. Finalmente mostramos la respuesta del flujo medio de un
fluido viscoebstico expuesto a un bombeado gaussiano efi-
ciente, esto se compara con el flujo medio de un bombeo a
ﬁ%cuenma ndptima.

ov
pat+p(v V)v=-Vp-V-7. (6)

Estas son las ecuaciones diferenciales parciales no lineal
gue tenemos que resolver en la intrincada gedmete la
Fig. 1. Para resolver estas ecuaciones en un medio poro-

so, generalmente se utilizan modelos muy simpléso[se 2. Permeabilidad de un fluid o viscoso

definen nuevas variables promedis, 15]. En este trabajo 50 util fluio d ) il defini
utilizaremos la primera opéh y consideraremos el modelo EN €sta secon utilizaremos el flujo de Poiseuille para definir

mas simple para un medio poroso: un manojo de tubos capf" Modelo S|mpdl_e para la permelzabllldad. S”upongamos f?'“_'e
lares, con el que obtendremos una exg@esimple para la [€N€MOS un medio poroso completamente lleno con un flui-

permeabilidad diamica. Aqd abordamos de una forma sim- 40 newtoniano incompresible de viscosiday cuyos poros
tienen un radio promedio, esto es conocido como un me-

dio poroso saturado. Como ya mencionamos se matelar
medio poroso como un manojo de pefjoe tubos capilares
construyendo una red con una porosidadl tener un ma-
nojo de tubos, podremos calcular el flujo en un tubo y luego
multiplicar el resultado por elinmero de tubos para obtener
el flujo total que pasa a trég del medio poroso, por esta
razon en esta seamn analizaremos el caso del flujo a teav
de un tubo obteniendo la bien conocida sdacanaitica de-
bida a Poiseuille 1[7] y con este resultado introducir el con-
cepto de permeabilidad y facilitar la discbisiposterior.

Al sustituir la Ec. (3) en la ecuaimn de balance de canti-
dad de movimiento (6) llegamos a

Escala microscapica

ov 2
Escala macroscapica P ot +p(v-V)v=-Vp+nV-v, (7)

FIGURA 1. Esquema de un medio poroso. que es la llamada ecuéci de Navier-Stokes. Aunque nos in-
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teresa el caso damico, para los prdpsitos de esta sedi Al usar la expredin (14) para el perfil de velocidades e inte-
basta con considerar el problema&srsimple: supondremos grar se obtiene

flujo estacionario en un ducto de sdmticircular constante .
despreciando los efectos de borde, es decir, los producidos a Q= _ma” < d ) .
la entrada y la salida del tubo (ver Fig. 2). 8n

Bajo estas condiciones la velocidad tiene la siguiente for- oo . . .
, Para obtener la descrifici de flujo a trags del medio po-
mav = (v, (y,2),0,0) y la presbn solamente depende de

) roso solamente nos resta calcular la setdransversal que
la coordenada axial,e, p = p(z) y claramente con esta - .
i . . . es ocupada por los tubos en retacal area total del medio
seleccbn de la dependencia de la velocidad se satisface 1a ) :
P T poroso. Dado que el modelo es un manojo de tubos capilares,
ecuaocbn de continuidad

esta reladin esh dada por la porosidad, entonces tenemos

V.v=0 @) que multiplicar el flujo en el tubo para obtener el flujo vo-
lumétrico que pasa por el medio poroso. Por lo tanto, el flujo
y el termino no lineal es autoaicamente ceroj.e. de un fluido newtoniano e incompresible con viscosigad

(v- V) v = 0. Al sustituir las formas funcionales dey pen  {raves de un medio poroso con porosidag con un radio
la ecuachn de Navier-Stokes (7) y expresando el resultadd®romedio de pora est dado por

en coordenadas aildricas 4
— Qe _ mea ip
10 [ dv, d g 8n \dz" /)’
o "or ) T @ ©) | ,
Con este simple modelo hemos encontrado uarpatro que
con las condiciones de frontera dependdinicamente de las propiedades del medio poroso: la
porosidady el valor del radio promedio de poro. Estépea-
vy = finita (10) tro esla permeabilidad y éstlada por
. - 4
en el eje del cilindro y K= 7T€8a _ (15)
va (@) =0, (11) Esto pretende desacoplar las propiedades del medio poroso y
cona el radio del tubo. La Ec. (9) edilmente integrable, a 125 dél fluido. Asque podemos escribir
saber, K < d )
g=——\5p)-
1/d \r? n \dz
vy (r) = = e Z—I—Alogr—i—B, 12
AN Esta es la llamada ley de Darcy, muy usada en el transporte
imponiendo condicionesdicas en la frontera (10) y (11), ob- de fluidos en medios porosos, 8, 15] que nos dice que el
tenemos flujo promedio en un medio poroso es proporcional al gra-
diente de presiones y que la constante de proporcionalidad es
A=0 B= _ia2 ip. (13) lallamada permeabilidad. Entonces la permeabilidad nos da
dn - dx una medida de dutan fcilmente un fluido fluye a tré&s de

un medio poroso. Una permeabilidad grande significa que el
fluido puede fluir libremente y una permeabilidad baja signi-
fica que se requiere una mayor pégspara producir un flujo

1 /d equivalente.
vy (1) = I (dxp) ((12 — r2) . (14)

Entonces, la soluoh para el perfil de velocidades @stada
por

Tenemos entonces un perfil padéibo que depende del gra-
diente de presiones. Claramente vemos que la velocidac
méaxima ocurre para = 0. Este perfil de velocidades apa-
recefa en cada uno de los tubos de nuestro modelo de medic
poroso; pero dado que estamos interesados en el flujoéstrav
de este medio, no nos interesa el detalle del flujo sino el flujo
promedio atravesando el medio poroso, que es una cantida
medible experimentalmente. El flujo vol@tnico promedio

se obtiene al integrar el perfil de velocidades:

21 a
Q- / / ve (r) rdrde.
0 0 FIGURA 2. Ejes coordenados en un tubo.
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Aqui podemos resumir las hipesis que hemos utilizado dondew es la frecuencia YV (r,w) es la amplitud de cada
para obtener estos resultados: un modelo de tubos capilaresa de las componentes de Fourier para reconstruirt).
infinitos y un fluido incompresible y newtoniano, adstsu-  Aqui hemos usado las magculas para denotar funciones en
pusimos que no hay deslizamiento en las paredes y asumimekdominio de la frecuencia.
un estado estacionario. Los objetivos del trabajo son abordar Al trabajar en el dominio de la frecuencias estamos cam-
la permeabilidad diamica de fluidos viscoasticos, a@isque  biandonos a un espacio donde consideramos todos los posi-
en la pbxima secdn cambiaremos dos hoesis: lade fluido  bles estados transitorios que puede describir la Ec. (19) y por
newtoniano y de estado permanente. De tal forma, analizaresta rasn no son necesarias las condiciones iniciales para el
mos un fluido de Maxwell en dos situacionesatiricas. problema. De hecho trabajaremos con las amplitudes de las
componentes de Fourier del problema y@siremos encon-
trar cuales son las &s importantes para describir el compor-
tamiento del fluido de Maxwell en un tubo. Lachica que
En esta secoh consideraremos el caso dependiente del tiem@du usamos es una de lasasiconfinmente usadas efsica
po y adems maxwelliano. Continuamos con el modelo deya que transforma una ecuéagidiferencial en una ecuaci
tubos Cap”ares infinitos para el medio poroso y las aproxialgebraica facilitando el prOblema. De esta forma estamos
maciones de incompresibilidad y de no deslizamiento en lakustrando una aplicadh mas de las bondades de la trans-
paredes para el fluido. formada de Fourier.

Bajo estas condiciones las Ecs. (5), (6) y (4) son las Usando la defini@n (20) podemos transformar la
adecuadas para describir el sistema. La sotugiuede EC. (19)en
ser complicada; sin embargo, al tener la misma geome-
tria que en la secon anterior, un tubo recto, tenemos que
v = (v; (t,9,2),0,0), quep = p(t,z) y por lo tanto la
ecuacbn de continuidad se satisface autdivamente y el

3. Permeabilidad dinamica

—p (tmw? +iw) V = — (1 — iwt,,) VP4nV?V;  (21)

reescribiendo llegamos a

término no lineal es autoaticamente cero. ' . p (tmw? + iw) V4nV2V = (1 — itwt,) VP. 22)
Entonces al tomar la derivada de la Ec. (6) sin considerar
el termino no lineal obtenemos Notemos que la ecudmi diferencial es respecto a la variable
92v oVp o7 espacial; pero e es solamente algebraica. Como en la sec-
Poz = "ar YV ot (16)  cion anterior, la descripéh en coordenadas tilricas es la

) ) mas adecuada. La ecuaniresultante es
donde hemos usado que las derivadas parciales se pueden in-

tercambiar. Ahora tomamos la divergencia de la Ec. (4) y lle- 9%V 19V p (tmw?+iw) (1 —iwty,)

V= P, (23
gamos a o Trar T o ” VP, (23)
g -
¢ V. or _ V-V T (17) 9ue es una ecuam de Bessel de orden cera9]. La solu-
ot cion general de la parte homergea de esta ecuéai esé da-

Combinando las Ecs. (16) y (17) obtenemos da por [19] C'Jo(Br) + C1Yo(fr), dondeo(z) y Yo(x) son
las funciones cihdricas de Bessel de primera y segunda cla-

se. Dado que la solumn debe ser acotada en= 0, tenemos
queC; = 0y, por lo tanto, la soluéin de la Ec. (23) puede
ser escrita como

0*v oVp

Plm gy = ~tm—— + nViv+ V.- T, (18)

y, finalmente, usando la Ec. (6) llegamos a la exjresi
1 —wi,,

v v ov V(r,w) = Co(fr) — —myp, 24
tmp <at2> +p (at) ——tn L —=VptV2v,  (19) (r,w) = CJo(Br) = —35 (24)

iy . dondeC es una constante, el @anetrog est dado por
gue es la ecuagn para la velocidad que tenemos que resolver ec g P

acorde con condiciones iniciales y de frontera. p
En un medio poroso difitmente se conocen las condi- p= <

ciones iniciales en las fronteras. A fin de resolver la Ec. (19)

podemos utilizar la transformada de Fourier sin perder deEste paametro determina las longitudes de onda donde la

talle en la descripéin de nindgin estado transitorio ya que funcion Bessel tiene sus raices y por lo tanto determina las

hay €rminos de todas las frecuencias. El uso adecuado dengitudes de onda que caben completamente en el tubo de

la transformada de Fourier asgarantizado por el hecho de radioa que estamos modelandd9]. Para evaluar la cons-

gue la Ec.(19) es lineal. Recordemos gue la transformada dente utilizamos la condioh V (a,w) = 0, condicbn de no

[(tmw)Q + iwtmD 3

Ntm

Fourier de la fundnw(r,t) se define como deslizamiento sobre el cilindro, iazbtenemos
1 e . (1 —iwty,)
W(r,w :—/ w(r, t)e” *“idt, 20 C=-——VP
(r,w) = —— ; (r,t) (20) T ()
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y, por lo tanto, la soluéin final es

(I —iwty,) 1wty
V(T7W) = WJg(ﬁT)VP 7ﬁ2 VP,
gue puede ser rearreglada como
(1= dwty) Jo(Br)
Vir,w)=— 72y <1 — Jo(ﬁa)> VP. (25)

Notemos que la solugh lo vale en el intervalo

0 <7 < ay que si no existe el gradiente de presiones no

79

Este paametro est relacionado con elimmero de Deborah

gue nos indica la importancia relativa de los efectos viscosos
y los ehsticos del fluido en el problema. Como veremos ade-
lante, este pametro determina @ndo los efectos asticos

son importantes, es decir, cuando encontraremos resonancias
en el flujo a traés del medio poroso. Eérminos del paame-

tro «, 8 puede ser expresado como

aw
ﬂ: o

a2

(1)

existe un perfil de velocidades. En principio, con este perfil
dependiente de la frecuencia, podemos tomar la transformad@ndecw se ha definido como

inversa y describir su evolumi en el tiempo.

En lugar de hacer esto seguiremos con nuestro modelo de

w(w) = (W*)* + iw",

tubos capilares y calcularemos el flujo promedio en un tubo.

Asi, nuevamente integramos sobre la sead¢ransversal para

obtener el flujo promedio

cNM%Aa{“ﬁg%)

(1_

jgggg) VP} rdr.

Al integrar tenemos

_ (1 —dwty) { 5 2aJ1(ﬁa)}
Q(w) 52y Jo(5) VP,
gue podemos reescribir como
o) = (1 — iwty,) ma? { _ 2J1(Ba) }
Q(w) = 2, - 5 (Fa) VP. (26)

Al multiplicar por la porosidad, é&alogamente alaculo de la
seccon anterior, podemos llegar a una retacpara el flujo
medio a tra@s del medio poroso como

_ema? (1 — iwty,) _ 2Ji(Ba)
1) =", [1 aBJo(Ba)

y nuevamente obtenemos a una ecbiadjeneralizada de
Darcy:

} VP (27)

1) = - L2gp (28)
donde la permeabilidad chmica esi dada por
_ era® (1 — iwtyy,) 2J1(Ba)
(= - [ 2R e

Notemos que la permeabilidad es una fénciespuesta,

es decir, es una propiedaiita del sistema que nos indica

como responde el sistema ante cambios de @neson un
flujo. En particular, la amplitud de estémero complejo nos

y la frecuencia adimensional es
w* = tpw.

Claramente el argumento de las funciones Besséaldsdo
por

Ba=a O;—? =amw. (32)

Con esta notabn la permeabilidad se escribe como

__57ra4 (I—iwtm) [, 2J1({ow)
K(o,w)= o [1 Tamdoas) | (33)

Este resultado para la permeabilidadaimica ya fue obteni-

do usando una metodolzgde medio efectivo2p], o para el
mismo problema 1[6] y para tubos coréntricos bajo campos
magreticos P1]; sin embargo, el desarrollo agpresentado

es mas dafano y sencillo. Un aspecto importante a notar es
que las funciones de Bessel presentan oscilaciones y el hecho
de que la permeabilidad sea un cocienté&si@as es indicati-

vo de un posible comportamiento resonante de las funciones
de Bessell; y Jy. En la siguiente sean analizaremos estas
resonancias.

4. Incremenb en la permebilidad dinamica

Para analizar el comportamiento de la permeabilidadrdin
ca [Ec. (33)] editil comparar su magnitud con respecto a la

indica la magnitud de la respuesta, mientras que la parte im@ermeabilidad eética [Ec. (15)]. Por lo tanto definimos la

ginaria esh ligada con la fase entre el Bstilo, en este caso

forma adimensional de la permeabilidad atimica con res-

la presbn, y la respuesta, el flujo. Esto es un ejemplo de lapecto a la permeabilidad ésica como

funciones respuestas complejas. Para ulisia general de
la permeabilidad diamica es conveniente definir uimero
adimensional dado por

pa’®

nt'rn .

(30)

La permeabilidad adimensional nos indicéntas veces es
mayor la permeabilidad damica con respecto a la ésta;
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caso de frecuencia cero. Eigitamente la forma adimensio- w = 0. Este comportamiento disipativo taréhi se puede

nal para la permeabilidad dimica esi dada por

ey 80 —iwty) [ 2i(Vom)
K*(w) = =—— [1 \/ﬁjo(\/@)] (34)

Un punto importante aqes que en elinite cuanda,,, — 0

tenemos el comportamiento newtoniano. Para clarificar est

punto analicemos el valercw cuandot,,, — 0. En este caso

2

pa ( *\2 . *)
tn}IEO Ntm ()" 4w

2

lim pa
n

tm—0

_pa?
=1—Ww

(tmw2 + iw)

y por lo tanto para el caso newtoniano la permeabilidad

dinamica esi dada por

lim K*(w) — —ii — L 'Z)\w) , (35)
tim—0 )\W V Z)\(A)JO( V Z)\w)
donde
A P2

n

Este resultado fue obtenido hace algunossap2]. Con
el objeto de comparar la permeabilidadatimca para un flui-
do newtoniano y otro maxwelliano graficaremos las permea
bilidades diimicas dimensionales; aunque posteriormentt
para profundizar el alisis regresaremos a los resultados pa-
ra la permeabilidad damica adimensional en el caso max-
welliano. En la Fig. 3 se observa el aater disipativo del
fluido newtoniano, es decir, la amplitud de las perturbacio-
nes con frecuencias altas son atenuadas en comaueami
las perturbaciones de frecuencias bajas. De hecho, cualqui
perturbaddn es atenuada con respecto al estado estacionari

T T
600 800

o [rad/s]

T T T T T
200 400 1000 1200 1400

FIGURA 3. Respuesta en frecuencias de un fluido newtoniano, flui-
do sin tiempo de relajagn.

apreciar en la Fig. 4, donde se presenta el resultado para la
permeabilidad diamica cort,,, # 0y « = 11. Sin embar-

go, en el casex = 0.0021, la situacbn es draraticamen-

te diferente, aduvemos un incremento en la permeabilidad
dinamica de vario®rdenes de magnitud, Fig. 5. Esto indi-
ga que el comportamiento&gtico del fluido se manifiesta

para frecuencias esgécas y las perturbaciones con dicha
frecuencia se transmiten eficientemente a lo largo del medio
poroso. Al analizar detalladamente la tranficentre la res-
puesta viscosa y la respuestastica se obtiene el valoritir

co a, donde el comportamiento cambia de ser disipativo a
elastico R0],

o, ~ 11.64.
Hasta aqguhemos identificado un draatico cambio en la

respuesta del sistema; pero los experimentales requieren al-

142107 -

a=11
—Re
0 T Im
1.0x10°
N';‘ 1
é 8.0x10° -
¥

5.0x10° 4
4.0x10°

2.0x10° 4

Q.0

0
w [rad/s]

v,
FIGURA 4. Respuesta en frecuencias fluido ligeramente maxwe-
lliano.
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00

-2.0x10%

K [Nm?s]

-4.0%10°

-6.0%10°
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T
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FIGURA 5. Respuesta en frecuencias, fluido maxwelliano.
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gunos datos adicionales para intentar realizar los experimel
tos. Por ejemplo, ¢ @les el valor raximo de la permeabili-
dad diramica para un valaxr dado? y dade, ¢ a q& frecuen-
cia ocurre el raximo?, ¢ existe aln gradiente de presm pa-

ra el cual este incremento pueda ser medido y contribuya :
transporte? Para responder a las primeras dos preguntas p
cedimos a calcular el aximo de la permeabilidad camica

en &rminos del paéimetroa. Es posible realizar eladculo
analtico; pero debido a la complejidad del resultado no se
permite vislumbrar el comportamiento en forma global. En |z
Fig. 6 se presenta el resultado en una forma visual. A la vis
ta de estos resultados surge la inquietud de generar un ajut
que reproduzca la compleja relagientre la permeabilidad
maxima y el paametroc. La correlacbn

*
max

~ 10%(1_1, (36)
reproduce aproximadamente los valores atioos y puede
ser considerada una buertarhula para el dife de experi-
mentos. Una situadh semejante ocurre en la relagientre
la frecuencia a la que ocurre elaxximo y el valor dex. En
la Fig. 7 presentamos los valores reales de esta oelgcsu

ajuste;

*
max

w ~ 10%071/2

37

)
mostrando tamiin que estdltima es una buena aproxima-
cion.

Con estos datos los ciéfitos experimentales ya pueden

D DINAMICA DE FLUIDOS VISCOELASTICOS 81

10' £
a
3 0 F v _eer ol B
» E o= 1070
]
10"
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107 10 10 10 10
oL

FIGURA 7. Ajuste exponencial de alfa en fubaide la frecuencia.

5. Lafrecuencacardiaca humana

En esta secon desviaremos un poco nuestra aténcso-
bre los medios porosos y aplicaremos nuestros hallazgos a
un problema de un fluido viscdsdtico en un tubo.

Dentro de la gran variedad de fluidos vis@sticos, la
sangre humana es uno de los que ha presentado mayor in-
teres, de tal forma que existe una revista digcd llamada
Biorehologyque presenta numerosos estudios del flujo san-
guineo en cadalmero y en muchos de ellos se modela a la
sangre como un fluido de Maxwell.

disehar sus dispositivos y verificar nuestras predicciones. En Usaremos los ajustes de lasrhulas (36) y (37) para ana-
la proxima secdn presentaremos una evidencia cualitativalizar 1a frecuenciptima de bombeo de la sangre humana. Al

de nuestras predicciones.

1.85 4

1.00

0.595

0.80

0.0 0.1 0.3

£l
L3

FIGURA 6. Comportamiento de la permeabilidadahnica en fun-
cion de alfa.

usar los paametros fsicos de la sangre: viscosidad eriing

20 cp [23], una densidad de.05 g/cm® [24, 25], el tiempo

de relajaddn de la sangre fresdas [24] y para el tubo pode-

mos seleccionar un rango de radios de nuestras arterias entre
0.02y 0.35 cm [24] esta elecdn puede parecer ingenua, pe-

ro Unicamente sendr para ilustrar el orden de magnitud de
las respuestas del sistema). Con esta inforomapodemos
obtener dos valores extremos par&n los cuales ocurre el
maximo en la permeabilidad. Al utilizar los valores adecua-
dos para obtener dhhite inferior llegamos a

1.05(0.02)?
= ——7—7—=.0021
(6%} .2(1) 00
y para el Imite superior
1.05(0.35)2
= —— =2.57.
= T1(0.05)

Como vemos, estos valores son menores que el vataogr
entonces se tiene un sistemastico en la sangre fluyendo

en el sistema circulatorio. Por lo tanto, podemos obtener el
valor de las frecuencias correspondientes a estos valores del
patametroa. En el primer caso tenemos

wmax: = 105 /v/.0021 = 55rad/s
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y en el segundo De manera directa obtenemos

wmaxn = 105 /V/2.57 = 1.57rad/s o T o
APw) = —= [ e"du = —6(wp — w), (40)
Observando la Fig. 5, podemos confirmar la existencia de un Ver A Ver
valor maximo de permeabilidad para el valer= 0.0021.
Generalmente usamos las unidades de Hertz, convirtiemlondeu = (wg — w)t. Por lo tanto

do estos dos datos llegamos a »
0

VP(w) =
55 1.57
Vméx € ( ) Hz € (8.7,0.25) Hz. V2l

§(wo — w). (41)

or’ 2w
] ) ) Al introducir este resultado en la Ec. (25), llegamos a
Aqui debemos recordar que la frecuencia cardiaca para los

humanos eétentrel y 3 Hz. Este resultado nos indica que el —(1 —iwty,) Jo(Br)
corazdn humano bombea la sangre a una frecuencia muy cer- Virw) = B2y ( - Jo(ﬁa))

cana a labptima. Por otro lado, los pametros ffsicos de la o

sangre en los maiferos no cambian mucho y se sabe que un X ﬁzé(w(’ —w). (42)
roedor puede tener una frecuencia cardiacatdez, mien- T

tras que una ballena azul puede tener una frecuencia cardiagmalmente, al aplicar la transformaaiinversa, regresamos
de0.5 Hz. Con este ajuste se ilustra que la posibilidad de url espacio real y obtenemos

bombeo eficiente de fluidos viscéasticos es undpico que

debe ser investigado con mayor detalle. Por lo tanto, pare- u(rt) = —(1 — dwotm) (1 B Jo(ﬁo?“))

ce que nuestro estudio simplificado del caso no estacionario ’ By Jo(Boa)

de un flujo de Maxwell es adecuado y contiene la esencia Do '

de la fisica involucrada en el problema. Claramente existen T exp(—iwot), (43)

muchos otros factores que deben ser considerados en la des-
cripcion de flujo sangineo; pero dado lo simple de nuestro donde
modelo, una verificabn experimental es requerida y por lo

tanto mqtivamos_ la squeda de Ia}s resonan_cias el flujo de By = <P |:(th0)2 I iwotmD
fluidos viscoéhsticos fluyendo a tré&s de medios porosos.

Ahora regresamos a [@tima pregunta que planteamos, o . . .
g preg que p Al tomar los valoresipicos de un fluido maxwelliano mice-

sobrg la eX|stenc!a de dlg tipo de gradiente .d'e présique . (ver Ref. 26) o = 0.123: 1 = 1 m , y una presin nor-
permita ver este incremento en la permeabilidad. Con la sa-

lucion del problema de flui i tenemos | ta malizada del Hz, podemos generar el perfil de velocidades
clon def problen € iujo sangieo 1enemos 1a pauta pa- ¢ qjararig dependiente del tiempo (Fig. 8).
ra estudiar otro sistema con gasto neto, esto lo harerags m . L. .
: oo En la siguiente secdn, exponemos la respuesta del flujo
adelante con un tren de pulsos gaussianos. En la siguiente . . . .
g . : medio viscodistico para un bombeo con gasto efectivo.
seccbn mostramos un casoas sencillo que resulta ser com-
pletamente andlco y que puede servir para dig® un dis-
positivo experimental que cuantitativamente confirme nues7, Tren de pulsos
tro modelo.

1
2

(2

Ahora, mostraremos cuantitativamente el aumento del flujo
medio en bombeo viscamtico. Para ello analizaremos un
fluido maxwelliano contenido en un tubo saturado de longi-
tud! y que es sometido a una preside bombeo pulsante.

En esta secon analizaremos un fluido de Maxwell oscilante ~ Definamos el tren de pulsos como
en un tubo saturado de longitid Definamos el flujo osci-

5
lante como Ap(t) = poZe’(t’jT’r)2, (44)
Ap(t) = poe™ ot (38) =0

6. Preson sinuidal en un fluido de Maxwell
contenido en un tubo

. . ndeT controla el peri tiem ntr Isos. D
dondep, es una constantey, la frecuencia caractstica. dondeT controla el pe oqlo de tiempo entre dos pulsos. De
egta manera, en el espacio de frecuencias

Para poder ocupar la Ec.(25) es necesario que el flujo se
transformado al espacio de frecuencias, al usar la transfor-

5
macbn (20) tenemos AP(w) = PO o—w?/apy 4 NTpiTmjw) 45
) ) = = 2;0 )
APw) = 7 /61(wojw>tdt‘ (39 Ppara una presh normalizad = 1, podem reciar
2 ara una preén normalizada yI' = 1, podemos aprecia
0 este comportamiento en la Fig. 9.
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FIGURA 8. Perfil de velocidades del flujo sinuidal oscilatorio.
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Como estamos interesados en analizar el comportamien-

to del flujo medio con este tipo de pulsaciones, entonces, s 1.2%10* o =141 e s s
guiendo los pasos de _Ia sefmianteric_;r y sustituyendo en la — = Bonbao ﬁ:éﬁci:n{e_rrin_s)
Ec.(26) tenemos el flujo en el dominio de las frecuencias. ' ]
5 8.0x10™ -
K (w - - T
Q (w) _ Po ( )e—w2/4[1 + 262Tﬂjw]' (46) s.oa0 LY
V21l e E 1
L aoaotq)h
o 14 &

Observamos que el gasto medio depende de la permeal

2exte’q 1 o, 2
lidad diramica. $lo para recordar veamos esta respuesta e : /{\/\)(\ f\ >
la Fig. 10, en donde mostramos los resultados para un fluid 08 15—

cona=4.71,l=1m ypy = 1Pa.

~

St Av" SR
; 1 Uz 3

. . -2.0x10" o [Rddfs]
Se observa que en este caso particular, la permeabilide :

dinamica y la pregin pulsante, tienen aximos apreciables

A4.0x10"

enw = 2 rad/s, (Figs. 9y 10). Para saber si ambos sistemas o _
se acoplan para generar una respuesta similar en el flujo mELGURA 11. Gasto enérminos de la frecuencia.
dio, apreciemos el comportamiento de la Ec. (46) (Fig. 11).

T=1 Re
4 ] - eEss Im
3
|
o b
oo 2—\||
—_— T
o 1
< |1
1414
il ]
1 v 1
L AR ;'I
VAYAVAVELN
1] b a ’ ! LTS
E2R TS i\; :"Jv LA T T 1
7 A 2 3 5
&
|
14 Vi o [radfs]
.\I

Finalmente, comparemos el flujo sometido a pulsaciones
conT = 1y T = 0.5 (con este periodo se generan pulsos con
w =1 rad/seg) (Fig. 11). Apreciamos que existe un aumento
considerable en el flujo medio, en el caso de bombeo eficiente
la amplitud es seis veces mayor que en el no eficiente.

8. Conclusiones

En este trabajo hemos presentado una exqmgsara deter-
minar las resonancias de la permeabilidachdiica de flui-
dos viscodsticos.

Los resultados taricos y la evidencia cualitativa de la ex-
plicacion de la frecuencia cardiaca humana,csno la ob-
tencbn de la frecuenciaptima de bombeo para la sangre a
traves de las arterias, es tazpara motivar la isqueda de
otras aplicaciones en campos deikida aplicada o la inge-
niefia. Presentamos el problema del bombeo vissiieio, y

FIGURA 9. Presbn en el espacio de frecuencias para un tren deaungue no es posible obtener un modeloiéinalen el espa-

pulsos Gaussiano.

5.0x107 -

1 a=141 —Re
a0’ A Im
3.0x10% |
N’a‘ 5
£ 20x10°
Z
x "
1.0x1Q™
0.0
T T 1
[ 12 14
Aoxetd w [rad/s]

FIGURA 10. Permeabilidad damica para un tren de pulsos.

cio real, podemos ver que el gasto medio tiene un incremento
considerable cuando la frecuencia de bombeo corresponde a
la resonancia de la permeabilidad. Taétbpresentamos el
caso nas sencillo de presn sinuidal en el que el proble-
ma es completamente aitado en el espacio real, esto puede
dar pauta a los experimentales para realizar sus mediciones y
comprobar este modelo.

Para aplicaciones concretas a problemas de exbrade
petdleo se requiere analizar el problema makito, donde
el medio poroso no estsaturado, este problema ha sido re-
cientemente abordado encdntdose resultados similares a
los aqu presentados2[7].
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