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Modelo simple para la permeabilidad dińamica de fluidos viscoeĺasticos.
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En este trabajo se presenta una forma sencilla de obtener una expresión anaĺıtica para la respuesta en el dominio de las frecuencias de la
permeabilidad dińamica en fluidos viscoelásticos maxwellianos. También se ilustra el caso de presión senoidal, en el que la permeabilidad se
puede expresar en el espacio de configuración. Se modela la respuesta dinámica del sistema circulatorio humano como la respuesta dinámica
en un tubo recto y la sangre como un fluido maxwelliano, se determinan las resonancias de este sistema y se encuentra que la frecuencia de
bombeo cardiaco natural corresponde a un máximo de permeabilidad viscoelástica. Para reforzar lo anterior, cuantitativamente se muestra a
través de un modelo de presión pulsante (tren de pulsos gaussianos), que el incremento en la permeabilidad puede tener un efecto positivo en
el flujo medio.

Descriptores:Viscoelasticidad; transformada de Fourier; resonancia; medio poroso.

In the present work a simple form to obtain analytical expression for the dynamic permeability of Maxwellian fluids is presented. This
expression gives the frequency dependent form of this dynamic permeability. In particular case, the analytic expression for the sinusoidal
pressure pump fluid is illustrated in the configuration space. As an example of the feasibility of this expression the flow of human blood in
a tube is presented finding that the human heart frequency has the same order that the frequencies where the dynamic permeability shows
resonances. In order to make clear the above aspect of the dynamic permeability a model of pulsing pressure drops (gaussian like) are
analyzed.

Keywords: Viscoelastic; Fourier transform; resonance; porous media.

PACS: 87.45.Ft; 83.80.Lz; 47.55. Mh

1. Int roducción

La descripcíon del flujo de fluidos en medios porosos tie-
ne una gran aplicación enáreas de la explotación petrole-
ra, el transporte de agua en mantos acuı́feros y en los cam-
pos geot́ermicos, transporte de biofluidos en membranas y en
reactores qúımicos, entre otras, además su estudio es una par-
te fundamental de la mecánica de fluidos. Para poder descri-
bir estos flujos deberemos primero definir lo que es un medio
poroso. Aunque todos entendemos intuitivamente lo que es
un fluido, es necesario precisar que en este trabajo tratare-
mos a fluidos viscoelásticos; estos fluidos generalmente no
son abordados en los cursos de licenciatura. Para aclarar las
propiedades de estos fluidos raros, empecemos presentando
las ecuaciones de balance que describen el flujo de fluidos.

La ecuacíon de balance de masa:

∂ρ

∂t
= ∇ · v, (1)

y la ecuacíon de balance de cantidad de movimiento:

ρ
∂v
∂t

+ ρ (v · ∇)v = −∇p−∇ ·←→τ , (2)

dondeρ es la densidad de masa del fluido,v el campo de ve-
locidades,p la presíon y←→τ el tensor de esfuerzos viscosos.
La Ec. (1) es la llamada ecuación de continuidad que repre-
senta la conservación de la masa. La Ec. (2) es la ecuación
de balance de cantidad de movimiento. Desde la perspecti-
va mateḿatica para que este conjunto de ecuaciones sea un
problema cerrado hacen faltan las condiciones iniciales y de

frontera. Desde el punto de vista fı́sico, estas ecuaciones re-
quieren informacíon adicional, una ecuación de estado entre
la presíon y la densidad y otra relación entre el tensor de es-
fuerzos viscosos y el gradiente de velocidades para que pue-
dan considerarse un sistema cerrado. Precisamente, las ecua-
ciones constitutivas y de estado especifican el tipo de fluido
que se pretende describir. Estas relaciones hacen la distinción
entre un gas, un fluido incompresible y newtoniano (como el
agua) o uno incompresible y viscoelástico (como la miel).
El agua, el ḿas coḿun de los fluidos, es un buen ejemplo
de un fluido newtoniano incompresible. La aproximación de
fluido incompresible no es una restricción muy severa, dado
que para la mayorı́a de los ĺıquidos como el agua bajo con-
diciones ambientales normales se tiene que el cambio en la
densidad es muy pequeño, de hecho para el agua es del or-
den de∆ρ/ρ ∼ 10−5 para cambios de presión del orden de
atmósferas [1] y, por lo tanto, la suposición de incompresibi-
lidad es una aproximación razonable. La clasificación de flui-
do newtoniano tiene que ver con la ecuación constitutiva que
relaciona al tensor de esfuerzos con el gradiente de velocida-
des en una forma lineal. Para el caso de fluidos newtonianos
podemos escribir

←→τ = −η∇v, (3)

dondeη es la viscosidad.
Como se puede apreciar, con esta ecuación se tiene un

conjunto de dos ecuaciones para dos incógnitas,p y v que da-
das las condiciones iniciales y de frontera puede resolverse.
Sin embargo, en esta ocasión estamos interesados en ilustrar
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qué pasa en los fluidos que intervienen en la explotación pe-
trolera, en los reactores quı́micos y los biofluidos que presen-
tan propiedades que los hacen ser llamados no newtonianos.
La caracteŕıstica fundamental de los fluidos no newtonianos
es que la ecuación constitutiva ya no es lineal [2]. Algunos
de estos fluidos los podemos encontrar en nuestra casa. Por
ejemplo, la miel; que al parar de verterla observamos un com-
portamiento inercial al ver que continúa fluyendo por unos
instantes ḿas. En algunos procesos quı́micos industriales los
fluidos tienen propiedades diferentes a las del agua y muchas
veces son llamados fluidos exóticos [2].

Los fluidos no newtonianos muestran muchas propie-
dades diferentes, entre ellas la elasticidad. Los fluidos vis-
coeĺasticos se caracterizan por ser fluidos que presentan com-
portamiento disipativo como la viscosidad y una propiedad
de restitucíon ante los esfuerzos (la elasticidad antes men-
cionada). Uno de los modelos más simples de fluidos vis-
coeĺasticos es el llamado modelo de Maxwell. El fluido de
Maxwell [3], que es uno de los modelos más sencillos para
un fluido viscoeĺastico, tiene la siguiente ecuación constituti-
va linealizada:

tm
∂←→τ
∂t

= −η∇v −←→τ , (4)

dondetm es el tiempo de relajación de Maxwell. Claramen-
te si tm → 0 la ecuacíon constitutiva del fluido newtonia-
no se recupera, [Ec. (3)]. El modelo anterior fue propues-
to por Maxwell para introducir la inercia en el sistema y
aunque tiene limitaciones, sirve para ilustrar el comporta-
miento viscoeĺastico de algunos fluidos no newtonianos. La
Ec. (4) es una ecuación lineal y esta caracterı́stica es una de
sus principales limitaciones, ya que la mayorı́a de los flui-
dos viscoeĺasticos presentan un comportamiento no lineal y
sus propiedades fı́sicas dependen de la viscosidad y del es-
fuerzo cortante al que son sometidos. Además, el fluido de
Maxwell śolo considera un tiempo de relajación y casi todos
los fluidos viscoeĺasticos reales presentan un comportamien-
to que requiere de varios de ellos para ser descritos. Exis-
ten otros modelos que describen con mayor exactitud a es-
te tipo de fluidos [2, 4, 5]; pero para nuestros propósitos el
modelo de Maxwell es suficiente. Estas limitaciones no de-
ben desalentarnos en la comparación de los resultados obte-
nidos con este modelo y experimentos con fluidos reales, ya
que los fluidos micelares se comportan como maxwellianos.
Estos fluidos son compuestos formados por partı́culas que
poseen secciones hidrofóbicas e hidrof́ılicas que al contac-
to con el agua forman estructuras que actúan como resortes
microsćopicos dando al fluido una componente elástica en su
comportamiento.

Hasta aqúı, hemos descrito a los fluidos, pero debemos
definir un medio poroso (MP) como un cuerpo sólido con ho-
yos interconectados (poros). Estos poros pueden ser espacios
extremadamente pequeños, intersticios moleculares, y otros
muy grandes, cavernas. Como se comprenderá con esta de-
finición se abarca desde membranas muy poco permeables
hasta la corteza terrestre en escalas muy diferentes. Para este

trabajo, la idea de poro se tomará como el espacio intermedio
entre los dos extremos señalados, de tal forma que los espa-
cios sean grandes desde el punto de vista microscópico, pero
pequẽnos para las escalas del sistema [6]. Tambíen se abor-
daŕa el transporte de fluidos en medios porosos y por lo tanto
este medio debe ser atravesados por un fluido; de esta forma
se requiere que podamos encontrar espacios huecos en el ma-
terial que est́en interconectados, por esta razón necesitamos
poder definir el poro efectivo como los espacios interconecta-
dos del medio poroso. Es obvio que para el estudio de flujo de
materia śolo se consideran los poros efectivos y los espacios
aislados no juegan papel alguno en el transporte de masa, con
excepcíon de su participación en los efectos difusivos, que no
se abordaŕan en este trabajo; pero una descripción detallada
se puede encontrar en trabajos de Ochoa [7, 8].

El medio poroso puede ser caracterizado por varias pro-
piedades geoḿetricas, como son la porosidadε definida como
la fraccíon de espacio vacı́o con respecto al volumen total, en
nuestro caso será el espacio interconectado. Es común que
en la literatura se use el término díametro promedio de po-
ro, pero esto śolo tendŕıa sentido estrictamente si los huecos
tuvieran forma ciĺındrica o esf́erica [6]. Sin embargo, el con-
cepto de díametro promedio será de mucha utilidad en este
trabajo.

La permeabilidad es el término asociado a la conducti-
vidad del MP con respecto a un fluido y nos indica que tan
fácilmente fluye un fluido a través de un medio poroso. Se
acostumbra definir el Darcy como la unidad de medición de
la permeabilidad y su equivalencia es de9,87 cm. Existen
muchas formas de modelar un medio poroso, por ejemplo
consid́erese un śolido al que se le barrena en múltiples luga-
res conservando los ejes de los barrenos paralelos, esto serı́a
un manojo de tubos. Otra forma de modelar serı́a conside-
rar un sistema compuesto por un conglomerado de esferas
sólidas fijas azarosamente distribuidas. Se ha encontrado que
algunos medios porosos muestran caracterı́sticas de autosi-
milaridad [9] y por ello tambíen se han tratado de modelar
a los medios porosos como fractales [10–12]. Como se ob-
serva, describir la microestructura de un medio poroso es un
tema abierto y lleno de posibilidades.

Ahora podremos comprender cómo la descripcíon del
transporte en medios porosos presenta dificultades que radi-
can tanto en la compleja estructura del medio poroso como
en las propiedades fı́sicas de los fluidos. Esta complejidad
del transporte en medios porosos se presenta claramente al
describir el conjunto de ecuaciones de balance y ecuaciones
constitutivas, consideradas para modelar el flujo en medios
porosos. Antes de comenzar y para centrar nuestra atención
en la permeabilidad debemos hacer una aproximación y supo-
ner que el transporte de calor en el sistema no es importante.
Para una discusión de un problema incluyendo el transporte
de calor se puede consultar el amplio trabajo desarrollado por
Whitaker [13, 14].

Entonces, bajo una situación isot́ermica, para describir el
flujo a trav́es de un medio poroso se requiere en principio
resolver el problema dado por las Ecs. (1) y (2) que deben re-
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solverse bajo condiciones de frontera tan complejas como las
ilustradas en la Fig. 1. La complejidad radica en las condicio-
nes de frontera que generalmente se toman como la condición
de no deslizamiento, a saber,

v = 0 en S,

dondeS es la superficie del sólido indicada en la Fig. 1. Evi-
dentemente el desorden de la superficie introduce una com-
plejidad adicional a la no linealidad de la Ec. (2). Por supues-
to, tambíen se requiere la condición inicial en todo el campo
de velocidades para la solución del problema, esto es otro reto
mayor.

Por otro lado, como ya mencionamos, el sistema de
Ecs. (1) y (2) no es un sistema cerrado, es necesario introdu-
cir dos ecuaciones ḿas que especifiquen el tipo de fluido de
trabajo. La primera es la ecuación de estado entre la presión
y la densidad, la segunda se refiere a la ecuación constituti-
va para el tensor de esfuerzos viscosos; pero estas podrán ser
escogidas entre las Ecs. (3)ó (4). Como ya mencionamos, es
la seleccíon de estáultima ecuacíon donde centraremos las
diferencias entre los fluidos newtoniano y maxwelliano que
estudiaremos.

Por lo tanto, bajo la hiṕotesis de incompresibilidad, el sis-
tema de ecuaciones (1) y (2) se transforma en

∇ · v = 0, (5)

ρ
∂v
∂t

+ ρ (v · ∇)v = −∇p−∇ ·←→τ . (6)

Éstas son las ecuaciones diferenciales parciales no lineales
que tenemos que resolver en la intrincada geometrı́a de la
Fig. 1. Para resolver estas ecuaciones en un medio poro-
so, generalmente se utilizan modelos muy simples [6] o se
definen nuevas variables promedio [8, 15]. En este trabajo
utilizaremos la primera opción y consideraremos el modelo
más simple para un medio poroso: un manojo de tubos capi-
lares, con el que obtendremos una expresión simple para la
permeabilidad dińamica. Aqúı abordamos de una forma sim-

FIGURA 1. Esquema de un medio poroso.

ple la descripcíon del flujo de dos tipos de fluidos, uno new-
toniano y otro maxwelliano a través de un medio poroso.
Con este ańalisis capturamos las caracterı́sticas esenciales de
los flujos de inteŕes tecnoĺogico y discutimos la relevancia
de contar con aproximaciones analı́ticas a la compleja pro-
blemática real. La organización del trabajo es la siguiente:
en la Sec. 2, para definir la permeabilidad, presentamos la
solucíon del problema del flujo de Poiseuille para un fluido
newtoniano estacionario usando un manojo de tubos capila-
res. Posteriormente en la Sec. 3, resolvemos el problema de
un fluido de Maxwell en un medio poroso en estado depen-
diente del tiempo. Con este modelo se generaliza la defini-
ción de permeabilidad al caso dinámico y se obtiene como
caso ĺımite la permeabilidad dińamica de un fluido newto-
niano. En la Sec. 4, se analiza el comportamiento de la per-
meabilidad dińamica en t́erminos de la frecuencia y se mues-
tra que existe un incremento de variosórdenes de magnitud
en esta propiedad dependiendo de la frecuencia de exitación.
Además, presentamos ajustes que relacionan el valor máxi-
mo de la permeabilidad dependiendo de las propiedades fı́si-
cas del fluido y del medio poroso. En la Sec. 5 se discute un
ejemplo previamente presentado [16] donde se analiza el rit-
mo cardiaco humano bajo estaóptica, ya que la sangre puede
ser considerada como un fluido de Maxwell y los resultados
muestran que la frecuencia cardiaca humana cae justamen-
te en la zona de ḿaxima eficiencia. También presentamos el
problema del perfil de velocidades de un fluido viscoelástico
bajo una presión sinuidal, problema completamente analı́ti-
co. Finalmente mostramos la respuesta del flujo medio de un
fluido viscoeĺastico expuesto a un bombeado gaussiano efi-
ciente, esto se compara con el flujo medio de un bombeo a
frecuencia nóoptima.

2. Permeabilidad deun fluido viscoso

En esta sección utilizaremos el flujo de Poiseuille para definir
un modelo simple para la permeabilidad. Supongamos que
tenemos un medio poroso completamente lleno con un flui-
do newtoniano incompresible de viscosidadη y cuyos poros
tienen un radio promedioa, esto es conocido como un me-
dio poroso saturado. Como ya mencionamos se modelará el
medio poroso como un manojo de pequeños tubos capilares
construyendo una red con una porosidadε. Al tener un ma-
nojo de tubos, podremos calcular el flujo en un tubo y luego
multiplicar el resultado por el ńumero de tubos para obtener
el flujo total que pasa a través del medio poroso, por esta
raźon en esta sección analizaremos el caso del flujo a través
de un tubo obteniendo la bien conocida solución anaĺıtica de-
bida a Poiseuille [17] y con este resultado introducir el con-
cepto de permeabilidad y facilitar la discusión posterior.

Al sustituir la Ec. (3) en la ecuación de balance de canti-
dad de movimiento (6) llegamos a

ρ
∂v
∂t

+ ρ (v · ∇)v = −∇p + η∇2v, (7)

que es la llamada ecuación de Navier-Stokes. Aunque nos in-
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teresa el caso dinámico, para los proṕositos de esta sección
basta con considerar el problema más simple: supondremos
flujo estacionario en un ducto de sección circular constante
despreciando los efectos de borde, es decir, los producidos a
la entrada y la salida del tubo (ver Fig. 2).

Bajo estas condiciones la velocidad tiene la siguiente for-
mav = (vx (y, z) , 0, 0) y la presíon solamente depende de
la coordenada axial,i.e., p = p (x) y claramente con esta
seleccíon de la dependencia de la velocidad se satisface la
ecuacíon de continuidad

∇ · v = 0 (8)

y el término no lineal es autoḿaticamente cero,i.e.,
(v · ∇)v = 0. Al sustituir las formas funcionales dev y p en
la ecuacíon de Navier-Stokes (7) y expresando el resultado
en coordenadas cilı́ndricas

η
1
r

∂

∂r

(
r
∂vx

∂r

)
=

d

dx
p, (9)

con las condiciones de frontera

vx = finita (10)

en el eje del cilindro y

vx (a) = 0, (11)

cona el radio del tubo. La Ec. (9) es fácilmente integrable, a
saber,

vx (r) =
1
η

(
d

dx
p

)
r2

4
+ A log r + B, (12)

imponiendo condiciones fı́sicas en la frontera (10) y (11), ob-
tenemos

A = 0 B = − 1
4η

a2 d

dx
p. (13)

Entonces, la solución para el perfil de velocidades está dada
por

vx (r) = − 1
4η

(
d

dx
p

) (
a2 − r2

)
. (14)

Tenemos entonces un perfil parabólico que depende del gra-
diente de presiones. Claramente vemos que la velocidad
máxima ocurre parar = 0. Este perfil de velocidades apa-
receŕıa en cada uno de los tubos de nuestro modelo de medio
poroso; pero dado que estamos interesados en el flujo a través
de este medio, no nos interesa el detalle del flujo sino el flujo
promedio atravesando el medio poroso, que es una cantidad
medible experimentalmente. El flujo volumétrico promedio
se obtiene al integrar el perfil de velocidades:

Q =
∫ 2π

0

∫ a

0

vx (r) rdrdθ.

Al usar la expresíon (14) para el perfil de velocidades e inte-
grar se obtiene

Q = −πa4

8η

(
d

dx
p

)
.

Para obtener la descripción de flujo a trav́es del medio po-
roso solamente nos resta calcular la sección transversal que
es ocupada por los tubos en relación al área total del medio
poroso. Dado que el modelo es un manojo de tubos capilares,
esta relacíon est́a dada por la porosidad, entonces tenemos
que multiplicar el flujo en el tubo para obtener el flujo vo-
lumétrico que pasa por el medio poroso. Por lo tanto, el flujo
de un fluido newtoniano e incompresible con viscosidadη a
través de un medio poroso con porosidadε y con un radio
promedio de poroa est́a dado por

q = Qε = −πεa4

8η

(
d

dx
p

)
.

Con este simple modelo hemos encontrado un parámetro que
dependéunicamente de las propiedades del medio poroso: la
porosidad y el valor del radio promedio de poro. Este paráme-
tro es la permeabilidad y está dada por

K =
πεa4

8
. (15)

Esto pretende desacoplar las propiedades del medio poroso y
las del fluido. Aśı que podemos escribir

q = −K

η

(
d

dx
p

)
.

Ésta es la llamada ley de Darcy, muy usada en el transporte
de fluidos en medios porosos [6, 18, 15] que nos dice que el
flujo promedio en un medio poroso es proporcional al gra-
diente de presiones y que la constante de proporcionalidad es
la llamada permeabilidad. Entonces la permeabilidad nos da
una medida de qúe tan f́acilmente un fluido fluye a través de
un medio poroso. Una permeabilidad grande significa que el
fluido puede fluir libremente y una permeabilidad baja signi-
fica que se requiere una mayor presión para producir un flujo
equivalente.

FIGURA 2. Ejes coordenados en un tubo.
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Aqúı podemos resumir las hipótesis que hemos utilizado
para obtener estos resultados: un modelo de tubos capilares
infinitos y un fluido incompresible y newtoniano, además su-
pusimos que no hay deslizamiento en las paredes y asumimos
un estado estacionario. Los objetivos del trabajo son abordar
la permeabilidad dińamica de fluidos viscoelásticos, aśı que
en la pŕoxima seccíon cambiaremos dos hipótesis: la de fluido
newtoniano y de estado permanente. De tal forma, analizare-
mos un fluido de Maxwell en dos situaciones dinámicas.

3. Permeabilidad dinámica

En esta sección consideraremos el caso dependiente del tiem-
po y adeḿas maxwelliano. Continuamos con el modelo de
tubos capilares infinitos para el medio poroso y las aproxi-
maciones de incompresibilidad y de no deslizamiento en las
paredes para el fluido.

Bajo estas condiciones las Ecs. (5), (6) y (4) son las
adecuadas para describir el sistema. La solución puede
ser complicada; sin embargo, al tener la misma geome-
trı́a que en la sección anterior, un tubo recto, tenemos que
v = (vx (t, y, z) , 0, 0), que p = p (t, x) y por lo tanto la
ecuacíon de continuidad se satisface automáticamente y el
término no lineal es autoḿaticamente cero.

Entonces al tomar la derivada de la Ec. (6) sin considerar
el término no lineal obtenemos

ρ
∂2v
∂t2

= −∂∇p

∂t
−∇ · ∂←→τ

∂t
, (16)

donde hemos usado que las derivadas parciales se pueden in-
tercambiar. Ahora tomamos la divergencia de la Ec. (4) y lle-
gamos a

tm∇ · ∂←→τ
∂t

= −η∇2v −∇ ·←→τ . (17)

Combinando las Ecs. (16) y (17) obtenemos

ρtm
∂2v
∂t2

= −tm
∂∇p

∂t
+ η∇2v +∇ ·←→τ , (18)

y, finalmente, usando la Ec. (6) llegamos a la expresión

tmρ

(
∂2v
∂t2

)
+ρ

(
∂v
∂t

)
=−tm

∂∇p

∂t
−∇p+η∇2v, (19)

que es la ecuación para la velocidad que tenemos que resolver
acorde con condiciones iniciales y de frontera.

En un medio poroso dificı́lmente se conocen las condi-
ciones iniciales en las fronteras. A fin de resolver la Ec. (19)
podemos utilizar la transformada de Fourier sin perder de-
talle en la descripción de ninǵun estado transitorio ya que
hay t́erminos de todas las frecuencias. El uso adecuado de
la transformada de Fourier está garantizado por el hecho de
que la Ec.(19) es lineal. Recordemos que la transformada de
Fourier de la funcíonw(r, t) se define como

W (r, ω) =
1√
2π

∫ ∞

0

w(r, t)e−iωtdt, (20)

dondeω es la frecuencia yW (r, ω) es la amplitud de cada
una de las componentes de Fourier para reconstruirw(r, t).
Aqúı hemos usado las mayúsculas para denotar funciones en
el dominio de la frecuencia.

Al trabajar en el dominio de la frecuencias estamos cam-
biándonos a un espacio donde consideramos todos los posi-
bles estados transitorios que puede describir la Ec. (19) y por
esta raźon no son necesarias las condiciones iniciales para el
problema. De hecho trabajaremos con las amplitudes de las
componentes de Fourier del problema y ası́ podremos encon-
trar cuales son las ḿas importantes para describir el compor-
tamiento del fluido de Maxwell en un tubo. La técnica que
aqúı usamos es una de las más coḿunmente usadas en fı́sica
ya que transforma una ecuación diferencial en una ecuación
algebraica facilitando el problema. De esta forma estamos
ilustrando una aplicación más de las bondades de la trans-
formada de Fourier.

Usando la definicíon (20) podemos transformar la
Ec. (19) en

−ρ
(
tmω2 + iω

)
V = − (1− iωtm)∇P+η∇2V; (21)

reescribiendo llegamos a

ρ
(
tmω2 + iω

)
V+η∇2V = (1− iωtm)∇P. (22)

Notemos que la ecuación diferencial es respecto a la variable
espacial; pero enω es solamente algebraica. Como en la sec-
ción anterior, la descripción en coordenadas cilı́ndricas es la
más adecuada. La ecuación resultante es

∂2V

∂r2
+

1
r

∂V

∂r
+

ρ
(
tmω2+iω

)

η
V =

(1− iωtm)
y

∇P, (23)

que es una ecuación de Bessel de orden cero [19]. La solu-
ción general de la parte homogénea de esta ecuación est́a da-
da por [19] CJ0(βr) + C1Y0(βr), dondeJ0(x) y Y0(x) son
las funciones cilı́ndricas de Bessel de primera y segunda cla-
se. Dado que la solución debe ser acotada enr = 0, tenemos
queC1 = 0 y, por lo tanto, la solución de la Ec. (23) puede
ser escrita como

V (r, ω) = CJ0(βr)− 1− iωtm
β2

∇P, (24)

dondeC es una constante, el parámetroβ est́a dado por

β =
(

ρ

ηtm

[
(tmω)2 + iωtm

])
.
1
2

Este paŕametro determina las longitudes de onda donde la
función Bessel tiene sus raices y por lo tanto determina las
longitudes de onda que caben completamente en el tubo de
radioa que estamos modelando [19]. Para evaluar la cons-
tante utilizamos la condición V (a, ω) = 0, condicíon de no
deslizamiento sobre el cilindro, ası́ obtenemos

C =
(1− iωtm)
β2J0(βa)

∇P
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y, por lo tanto, la solución final es

V (r, ω) =
(1− iωtm)
β2J0(βa)

J0(βr)∇P − 1− iωtm
β2

∇P,

que puede ser rearreglada como

V (r, ω) = − (1− iωtm)
β2y

(
1− J0(βr)

J0(βa)

)
∇P. (25)

Notemos que la solución śolo vale en el intervalo
0 < r < a y que si no existe el gradiente de presiones no
existe un perfil de velocidades. En principio, con este perfil
dependiente de la frecuencia, podemos tomar la transformada
inversa y describir su evolución en el tiempo.

En lugar de hacer esto seguiremos con nuestro modelo de
tubos capilares y calcularemos el flujo promedio en un tubo.
Aśı, nuevamente integramos sobre la sección transversal para
obtener el flujo promedio

Q (ω) = −2π

∫ a

0

[
− (1− iωtm)

β2y

(
1− J0(βr)

J0(βa)

)
∇P

]
rdr.

Al integrar tenemos

Q (ω) =
(1− iωtm)π

β2y

[
a2 − 2aJ1(βa)

βJ0(βa)

]
∇P,

que podemos reescribir como

Q (ω) =
(1− iωtm) πa2

β2y

[
1− 2J1(βa)

aβJ0(βa)

]
∇P. (26)

Al multiplicar por la porosidad, ańalogamente al ćalculo de la
seccíon anterior, podemos llegar a una relación para el flujo
medio a trav́es del medio poroso como

q (ω) =
επa2 (1− iωtm)

β2y

[
1− 2J1(βa)

aβJ0(βa)

]
∇P (27)

y nuevamente obtenemos a una ecuación generalizada de
Darcy:

q (ω) = −K (β, ω)
η

∇P, (28)

donde la permeabilidad dinámica est́a dada por

K (β, ω) = −επa2 (1− iωtm)
β2

[
1− 2J1(βa)

aβJ0(βa)

]
. (29)

Notemos que la permeabilidad es una función respuesta,
es decir, es una propiedad fı́sica del sistema que nos indica
cómo responde el sistema ante cambios de presión con un
flujo. En particular, la amplitud de este número complejo nos
indica la magnitud de la respuesta, mientras que la parte ima-
ginaria est́a ligada con la fase entre el estı́mulo, en este caso
la presíon, y la respuesta, el flujo. Esto es un ejemplo de las
funciones respuestas complejas. Para un análisis general de
la permeabilidad dińamica es conveniente definir un número
adimensional dado por

α =
ρa2

ηtm
. (30)

Este paŕametro est́a relacionado con el número de Deborah
que nos indica la importancia relativa de los efectos viscosos
y los eĺasticos del fluido en el problema. Como veremos ade-
lante, este parámetro determina cuándo los efectos elásticos
son importantes, es decir, cuando encontraremos resonancias
en el flujo a trav́es del medio poroso. En términos del paŕame-
tro α, β puede ser expresado como

β =
√

α$

a2
, (31)

donde$ se ha definido como

$(ω) = (ω∗)2 + iω∗,

y la frecuencia adimensional es

ω∗ = tmω.

Claramente el argumento de las funciones Bessel está dado
por

βa = a

√
α$

a2
=
√

α$. (32)

Con esta notación la permeabilidad se escribe como

K(α, ω)=−επa4 (1−iωtm)
α$

[
1− 2J1(

√
α$)√

α$J0(
√

α$)

]
. (33)

Este resultado para la permeabilidad dinámica ya fue obteni-
do usando una metodologı́a de medio efectivo [20], o para el
mismo problema [16] y para tubos conćentricos bajo campos
magńeticos [21]; sin embargo, el desarrollo aquı́ presentado
es ḿas díafano y sencillo. Un aspecto importante a notar es
que las funciones de Bessel presentan oscilaciones y el hecho
de que la permeabilidad sea un cociente deéstas es indicati-
vo de un posible comportamiento resonante de las funciones
de BesselJ1 y J0. En la siguiente sección analizaremos estas
resonancias.

4. Incremento en la permebilidad dinámica

Para analizar el comportamiento de la permeabilidad dinámi-
ca [Ec. (33)] eśutil comparar su magnitud con respecto a la
permeabilidad estática [Ec. (15)]. Por lo tanto definimos la
forma adimensional de la permeabilidad dinámica con res-
pecto a la permeabilidad estática como

K∗(ω) =
K(ω)
K (0)

.

La permeabilidad adimensional nos indica cuántas veces es
mayor la permeabilidad dinámica con respecto a la estática;
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caso de frecuencia cero. Explı́citamente la forma adimensio-
nal para la permeabilidad dinámica est́a dada por

K∗(ω) =
8 (1− iωtm)

α$

[
1− 2J1(

√
α$)√

α$J0(
√

α$)

]
. (34)

Un punto importante aquı́ es que en el lı́mite cuandotm → 0
tenemos el comportamiento newtoniano. Para clarificar este
punto analicemos el valorα$ cuandotm → 0. En este caso

ĺım
tm→0

α$ = ĺım
tm→0

ρa2

ηtm

(
(ω∗)2 + iω∗

)

= ĺım
tm→0

ρa2

η

(
tmω2 + iω

)
= i

ρa2

η
ω

y por lo tanto para el caso newtoniano la permeabilidad
dinámica est́a dada por

ĺım
tm→0

K∗(ω) = −i
8

λω

[
1− 2J1(

√
iλω)√

iλωJ0(
√

iλω)

]
, (35)

donde

λ =
ρa2

η
.

Este resultado fue obtenido hace algunos años [22]. Con
el objeto de comparar la permeabilidad dinámica para un flui-
do newtoniano y otro maxwelliano graficaremos las permea-
bilidades dińamicas dimensionales; aunque posteriormente
para profundizar el ańalisis regresaremos a los resultados pa-
ra la permeabilidad dińamica adimensional en el caso max-
welliano. En la Fig. 3 se observa el carácter disipativo del
fluido newtoniano, es decir, la amplitud de las perturbacio-
nes con frecuencias altas son atenuadas en comparación con
las perturbaciones de frecuencias bajas. De hecho, cualquier
perturbacíon es atenuada con respecto al estado estacionario,

FIGURA 3. Respuesta en frecuencias de un fluido newtoniano, flui-
do sin tiempo de relajación.

ω = 0. Este comportamiento disipativo también se puede
apreciar en la Fig. 4, donde se presenta el resultado para la
permeabilidad dińamica contm 6= 0 y α = 11. Sin embar-
go, en el casoα = 0.0021, la situacíon es draḿaticamen-
te diferente, aqúı vemos un incremento en la permeabilidad
dinámica de variośordenes de magnitud, Fig. 5. Esto indi-
ca que el comportamiento elástico del fluido se manifiesta
para frecuencias especı́ficas y las perturbaciones con dicha
frecuencia se transmiten eficientemente a lo largo del medio
poroso. Al analizar detalladamente la transición entre la res-
puesta viscosa y la respuesta elástica se obtiene el valor crı́ti-
co αc donde el comportamiento cambia de ser disipativo a
elástico [20],

αc ' 11.64.

Hasta aqúı hemos identificado un draḿatico cambio en la
respuesta del sistema; pero los experimentales requieren al-

FIGURA 4. Respuesta en frecuencias fluido ligeramente maxwe-
lliano.

FIGURA 5. Respuesta en frecuencias, fluido maxwelliano.
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gunos datos adicionales para intentar realizar los experimen-
tos. Por ejemplo, ¿cuál es el valor ḿaximo de la permeabili-
dad dińamica para un valorα dado? y dadoα, ¿a qúe frecuen-
cia ocurre el ḿaximo?, ¿existe alǵun gradiente de presión pa-
ra el cual este incremento pueda ser medido y contribuya al
transporte? Para responder a las primeras dos preguntas pro-
cedimos a calcular el ḿaximo de la permeabilidad dinámica
en t́erminos del paŕametroα. Es posible realizar el cálculo
anaĺıtico; pero debido a la complejidad del resultado no se
permite vislumbrar el comportamiento en forma global. En la
Fig. 6 se presenta el resultado en una forma visual. A la vis-
ta de estos resultados surge la inquietud de generar un ajuste
que reproduzca la compleja relación entre la permeabilidad
máxima y el paŕametroα. La correlacíon

K∗
máx ' 10

3
4 α−1, (36)

reproduce aproximadamente los valores numéricos y puede
ser considerada una buena fórmula para el disẽno de experi-
mentos. Una situación semejante ocurre en la relación entre
la frecuencia a la que ocurre el máximo y el valor deα. En
la Fig. 7 presentamos los valores reales de esta relación y su
ajuste;

ω∗máx ' 10
2
5 α−1/2, (37)

mostrando también que estáultima es una buena aproxima-
ción.

Con estos datos los cientı́ficos experimentales ya pueden
disẽnar sus dispositivos y verificar nuestras predicciones. En
la próxima seccíon presentaremos una evidencia cualitativa
de nuestras predicciones.

FIGURA 6. Comportamiento de la permeabilidad dinámica en fun-
ción de alfa.

FIGURA 7. Ajuste exponencial de alfa en función de la frecuencia.

5. La frecuencia cardiaca humana

En esta sección desviaremos un poco nuestra atención so-
bre los medios porosos y aplicaremos nuestros hallazgos a
un problema de un fluido viscoelástico en un tubo.

Dentro de la gran variedad de fluidos viscoelásticos, la
sangre humana es uno de los que ha presentado mayor in-
teŕes, de tal forma que existe una revista cientı́fica llamada
Biorehologyque presenta numerosos estudios del flujo san-
gúıneo en cada ńumero y en muchos de ellos se modela a la
sangre como un fluido de Maxwell.

Usaremos los ajustes de las fórmulas (36) y (37) para ana-
lizar la frecuenciáoptima de bombeo de la sangre humana. Al
usar los paŕametros f́ısicos de la sangre: viscosidad entre5 y
20 cp [23], una densidad de1.05 g/cm3 [24, 25], el tiempo
de relajacíon de la sangre fresca1 s [24] y para el tubo pode-
mos seleccionar un rango de radios de nuestras arterias entre
0.02 y 0.35 cm [24] esta eleccíon puede parecer ingenua; pe-
ro únicamente servirá para ilustrar el orden de magnitud de
las respuestas del sistema). Con esta información podemos
obtener dos valores extremos paraα en los cuales ocurre el
máximo en la permeabilidad. Al utilizar los valores adecua-
dos para obtener el lı́mite inferior llegamos a

αl =
1.05(0.02)2

.2(1)
= .00 21

y para el ĺımite superior

αh =
1.05(0.35)2

1(0.05)
= 2.57.

Como vemos, estos valores son menores que el valor crı́tico,
entonces se tiene un sistema elástico en la sangre fluyendo
en el sistema circulatorio. Por lo tanto, podemos obtener el
valor de las frecuencias correspondientes a estos valores del
paŕametroα. En el primer caso tenemos

ωmáx l = 10
2
5 /
√

.00 21 = 55rad/s
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y en el segundo

ωmáx h = 10
2
5 /
√

2.57 = 1.57rad/s

Observando la Fig. 5, podemos confirmar la existencia de un
valor máximo de permeabilidad para el valorα = 0.0021.

Generalmente usamos las unidades de Hertz, convirtien-
do estos dos datos llegamos a

νmáx ∈
(

55
2π

,
1.57
2π

)
Hz ∈ (8.7, 0.25)Hz.

Aqúı debemos recordar que la frecuencia cardiaca para los
humanos está entre1 y 3 Hz. Este resultado nos indica que el
coraźon humano bombea la sangre a una frecuencia muy cer-
cana a láoptima. Por otro lado, los parámetros f́ısicos de la
sangre en los maḿıferos no cambian mucho y se sabe que un
roedor puede tener una frecuencia cardiaca de10 Hz, mien-
tras que una ballena azul puede tener una frecuencia cardiaca
de0.5 Hz. Con este ajuste se ilustra que la posibilidad de un
bombeo eficiente de fluidos viscoelásticos es un tópico que
debe ser investigado con mayor detalle. Por lo tanto, pare-
ce que nuestro estudio simplificado del caso no estacionario
de un flujo de Maxwell es adecuado y contiene la esencia
de la f́ısica involucrada en el problema. Claramente existen
muchos otros factores que deben ser considerados en la des-
cripción de flujo sangúıneo; pero dado lo simple de nuestro
modelo, una verificación experimental es requerida y por lo
tanto motivamos la b́usqueda de las resonancias el flujo de
fluidos viscoeĺasticos fluyendo a través de medios porosos.

Ahora regresamos a láultima pregunta que planteamos,
sobre la existencia de algún tipo de gradiente de presión que
permita ver este incremento en la permeabilidad. Con la so-
lución del problema de flujo sanguı́neo tenemos la pauta pa-
ra estudiar otro sistema con gasto neto, esto lo haremos más
adelante con un tren de pulsos gaussianos. En la siguiente
seccíon mostramos un caso más sencillo que resulta ser com-
pletamente analı́tico y que puede servir para diseñar un dis-
positivo experimental que cuantitativamente confirme nues-
tro modelo.

6. Presión sinuidal en un fluido de Maxwell
contenido en un tubo

En esta sección analizaremos un fluido de Maxwell oscilante
en un tubo saturado de longitudl. Definamos el flujo osci-
lante como

∆p(t) = p0e
−iω0t, (38)

dondep0 es una constante yω0 la frecuencia caracterı́stica.
Para poder ocupar la Ec.(25) es necesario que el flujo sea
transformado al espacio de frecuencias, al usar la transfor-
macíon (20) tenemos

∆P (ω) =
p0√
2π

∞∫

0

ei(ω0−ω)tdt. (39)

De manera directa obtenemos

∆P (ω) =
p0√
2π

∞∫

0

eiudu =
p0√
2π

δ(ω0 − ω), (40)

dondeu = (ω0 − ω)t. Por lo tanto

∇P (ω) =
p0√
2πl

δ(ω0 − ω). (41)

Al introducir este resultado en la Ec. (25), llegamos a

V (r, ω) =
−(1− iωtm)

β2y

(
1− J0(βr)

J0(βa)

)

× p0√
2πl

δ(ω0 − ω). (42)

Finalmente, al aplicar la transformación inversa, regresamos
al espacio real y obtenemos

v(r, t) =
−(1− iω0tm)

β2
0y

(
1− J0(β0r)

J0(β0a)

)

×p0

l
exp(−iω0t), (43)

donde

β0 =
(

ρ

ηtm

[
(tmω0)

2 + iω0tm

]) 1
2

.

Al tomar los valores tı́picos de un fluido maxwelliano mice-
lar (ver Ref. 26) ,α = 0.123; l = 1 m , y una presíon nor-
malizada de1 Hz, podemos generar el perfil de velocidades
oscilatorio dependiente del tiempo (Fig. 8).

En la siguiente sección, exponemos la respuesta del flujo
medio viscoeĺastico para un bombeo con gasto efectivo.

7. Tren depulsos

Ahora, mostraremos cuantitativamente el aumento del flujo
medio en bombeo viscoelástico. Para ello analizaremos un
fluido maxwelliano contenido en un tubo saturado de longi-
tud l y que es sometido a una presión de bombeo pulsante.

Definamos el tren de pulsos como

∆p(t) = p0

5∑

j=0

e−(t−jTπ)2 , (44)

dondeT controla el periodo de tiempo entre dos pulsos. De
esta manera, en el espacio de frecuencias

∆P (ω) =
p0√
2π

e−ω2/4[1 +
5∑

j=0

eiTπjω]. (45)

Para una presión normalizada yT = 1, podemos apreciar
este comportamiento en la Fig. 9.
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FIGURA 8. Perfil de velocidades del flujo sinuidal oscilatorio.
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Como estamos interesados en analizar el comportamien-
to del flujo medio con este tipo de pulsaciones, entonces, si-
guiendo los pasos de la sección anterior y sustituyendo en la
Ec.(26) tenemos el flujo en el dominio de las frecuencias.

Q (ω) =
p0K (ω)√

2πηl
e−ω2/4[1 +

5∑

j=0

eiTπjω]. (46)

Observamos que el gasto medio depende de la permeabi-
lidad dińamica. Śolo para recordar veamos esta respuesta en
la Fig. 10, en donde mostramos los resultados para un fluido
conα = 4.71 , l = 1m y p0 = 1Pa.

Se observa que en este caso particular, la permeabilidad
dinámica y la presíon pulsante, tienen ḿaximos apreciables
enω = 2 rad/s, (Figs. 9 y 10). Para saber si ambos sistemas
se acoplan para generar una respuesta similar en el flujo me-
dio, apreciemos el comportamiento de la Ec. (46) (Fig. 11).

FIGURA 9. Presíon en el espacio de frecuencias para un tren de
pulsos Gaussiano.

FIGURA 10. Permeabilidad dińamica para un tren de pulsos.

FIGURA 11. Gasto en términos de la frecuencia.

Finalmente, comparemos el flujo sometido a pulsaciones
conT = 1 y T = 0.5 (con este periodo se generan pulsos con
ω =1 rad/seg) (Fig. 11). Apreciamos que existe un aumento
considerable en el flujo medio, en el caso de bombeo eficiente
la amplitud es seis veces mayor que en el no eficiente.

8. Conclusiones

En este trabajo hemos presentado una expresión para deter-
minar las resonancias de la permeabilidad dinámica de flui-
dos viscoeĺasticos.

Los resultados téoricos y la evidencia cualitativa de la ex-
plicación de la frecuencia cardiaca humana, ası́ como la ob-
tencíon de la frecuenciáoptima de bombeo para la sangre a
través de las arterias, es razón para motivar la b́usqueda de
otras aplicaciones en campos de la fı́sica aplicada o la inge-
nieŕıa. Presentamos el problema del bombeo viscoelástico, y
aunque no es posible obtener un modelo analı́tico en el espa-
cio real, podemos ver que el gasto medio tiene un incremento
considerable cuando la frecuencia de bombeo corresponde a
la resonancia de la permeabilidad. También presentamos el
caso ḿas sencillo de presión sinuidal en el que el proble-
ma es completamente analı́tico en el espacio real, esto puede
dar pauta a los experimentales para realizar sus mediciones y
comprobar este modelo.

Para aplicaciones concretas a problemas de extracción de
petŕoleo se requiere analizar el problema multifásico, donde
el medio poroso no esté saturado, este problema ha sido re-
cientemente abordado encontrándose resultados similares a
los aqúı presentados [27].
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1. S. Whitaker,Introduction to Fluid Mechanics, (Pergamonn, N.
Y., 1976).
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