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Electronic band structure of (001)–semiconductor surfaces: the frontier–induced
semi–infinite–medium states.
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In previous work we have discussed the valence band electronic structure of the (001) oriented semi–infinite medium of the II–VI wide band
gap zinc–blende semiconductor compounds. We have found three characteristic surface resonances besides the known bulk bands (heavy
hole, light hole and spin–orbit bands). Two of these resonances correspond to the anion–terminated surface and the third one to the cation
terminated surface. Furthermore, we have shown that three non dispersive (001)–surface–induced bulk states, in theΓ−K direction of the
2D Brillouin zone, are also characteristic of these systems. To identify these states, from other known surface states, we have called them
frontier–induced semi–infinite–medium states. In order to continue with the description of these systems, we review the main characteristics
of the electronic structure of the (001)–surfaces and we present a detailed theoretical discussion of the frontier–induced semi–infinite–medium
states. We use tight binding Hamiltonians and the well–known Surface Green’s Function Matching method to calculate the electronic surface
band structure.
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En un trabajo previo hemos calculado la estructura electrónica de bandas de las superficies orientadas en la dirección (001) de compuestos
semiconductores de la familia II–VI. De ese trabajo hemos hallado que, además de las bandas de volumen conocidas (bandas de huecos
pesados, huecos ligeros y espı́n–órbita), existen en estos sistemas tres resonancias de superficie. Dos de estas resonancias están asociadas
con una superficie terminada en anión, y la tercera resonancia se asocia con la terminación catíon de la superficie. También, hemos hallado
que existen tres estados electrónicos localizados en valores de energı́a que no presentan dispersión como funcíon del vector de onda en
estos sistemas bidimensionales. Para identificar estos estados hemos propuesto el nombre de estados de frontera inducidos por un medio
semi–infinito. Con el inteŕes de continuar el estudio de estos sistemas, en el presente trabajo hacemos una revisión del estado del arte de
la estructura electrónica de bandas de las superficies semiconductoras orientadas en la dirección (001), y presentamos un estudio teórico
detallado de los estados frontera inducidos por un medio semi–infinito. Para nuestro análisis utilizamos el ḿetodo de enlace fuerte y el
método empalme de la función de Green de superficie en el cálculo la estructura electrónica de bandas de la superficie.

Descriptores:Estados electrónicos; resonancias de superficie; método de enlace fuerte

PACS: 71.15.Ap: 73.20.At

1. Introduction

The electronic band structure of the valence–band of the
II–VI wide band gap semiconductors CdTe, ZnTe, CdSe and
ZnSe semi–infinite crystals terminated in the (001)–surface
has been discussed in Refs. 1 and 2. The calculated elec-
tronic band structure of the valence band of the (001)–surface
is very rich in several features. In general, we find three
characteristic surface–resonances in the energy range stud-
ied (full and empty triangles in Fig. 1. Two correspond to
the anion–terminated surface (Sa1, Sa2) and the third one
to the cation terminated surface (Sc). The anion–terminated
surface–resonance (Sa1) follows roughly the dispersion of
the heavy hole bulk band, but at a slightly higher energy (see
Fig. 1. TheSa2 surface resonance does not show dispersion
and, approximately, coincidences with the lower bulk band of
s−character. The cation terminated surface–resonance (Sc)
starts roughly around 2–3 eV from the top of the valence band
in Γ and has a varying amount of dispersion, depending on
the compound. These surface resonances are characteristic of
the kind of atomic species on the surface (see Refs. 1 and 2).

On the other hand, by looking at the poles of the real part

of the (001)–bulk–projected Green’s function we obtain the
eigenvalues of the (001)–surface–induced bulk states. Three
such states appear (Bh, Bl, andBs) in this range of energy.
These surface–induced bulk bands do not show dispersion
from Γ to K. We find that the energy of these states can be
associated with the one of the hh, the lh, andso bulk band
at K, the 2D–high–symmetry point [1, 2]. Thus, atK, Bh

mixes mainly with the hh bulk band andBl with the lh one,
both states are mainly of (px, py)–character.Bs mixes with
the spin–orbit band and is mainly of (s, pz)–composition (see
Table IV in Ref. 2). The three states appear at the same posi-
tion in energy irrespective of the cation or anion termination
of the surface, as can be expected for a surface–inducedbulk
states, since they must depend on the surface only through
the boundary conditions (the wave function must be zero
at the surface). Furthermore, we have found these induced
bulk states at the (001)–interfaces as well. In order to ex-
tend this study to the case of interfaces, and other type of
heterojunctions as well, and to emphazise the idea that they
are semi–infinite medium states as opposed to bulk (infinite
medium) or surface (local) states, we propose for them the
generic denomination of Frontier–Induced Semi–Infinite
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FIGURE 1. Electronic band structure of (001)–CdTe in the valence
band range. We show the heavy hole (hh), light hole (lh), spin–orbit
(so), and the lowers–cation character bulk bands with solid lines.
We also show the FISIM statesBh, Bl, andBs (solid points), and
the surface resonancesSa1, Sa2 (solid triangles), andSc (open
triangles), the broken lines are a guide to the eye. The first two sur-
face resonances appear only for an anion–terminated surface, and
the last resonance for a cation–one.

Medium (FISIM) states. We found experimental evidence for
the FISIM states on the (001)-CdeTe oriented semi–infinite
crystals [3, 4], and on the (001)–ZnSe system [5–7], and we
feel that a full theoretical interpretation of the electronic band
structure for these semi–infinite systems is missing. With this
purpose, in this work, we present a detailed theoretical dis-
cussion of the FISIM states. The rest of the paper is organized
as follows. In Sec. 2, we describe the method that we have
used. Sec. 3 is devoted to the discussion of the FISIM states.
We summarize our conclusions in a final Sec. 4.

2. The method

The Schr̈odinger equation, with the appropriate Hamilto-
nian describing an infinite periodic system, gives the Bloch
wave functions and the energy eigenvalues. The Bloch wave
functions fulfil periodic boundary conditions. When a sur-
face is introduced, and the system becomes semi–infinite, the
boundary conditions are such that the wave function has to
be zero at the surface. These new boundary conditions man-
ifest themselves in changes in the energy spectrum and in
the occurrence of new states. These new states exist only in
the few atomic layers nearby the surface atomic layer. Their

wave function decays exponentially from the surface into the
bulk. On the other hand, there are other states that do not de-
cay exponentially from the surface, and can exist in layers
inside the semi–infinite medium, but have a 2D character and
therefore can only be detected by photoemission of an ori-
ented crystal. All these effects related with the introduction
of a surface into an infinite periodic medium can be better
described in the language of Green’s functions. A few words
about the bulk Green function will help us to introduce the
surface Green function. As it is well know, the infinite peri-
odic medium Green’s function,G, is

G(E,k) = (E −H(k))−1, (1)

wherek is the crystal momentum,E is the quasiparticle en-
ergy andH the Hamiltonian for the infinite periodic sys-
tem with translational symmetry, periodic boundary condi-
tions are assumed. However, as soon as we are interested in
the semi–infinite medium, we have to introduce the Green’s
function for a semi–infinite medium [8]:

Gs = G−GG−1
B G + GG−1

B G−1
S G−1

B G, (2)

where the first term in the right hand side is just the Green’s
function for the infinite medium. The second and third terms
describe the total effect of introducing a surface to an infinite
medium. The second term describes the hard wall effect, in
close analogy to the hard core term in scattering theory. The
third term describes the new states, the new solutions due to
the matching conditions and give rise to surface states that
decay few atomic layers away from the surface.

In order to compute the bulk (infinite medium) band
structure of the II–VI semiconductor compounds we have
used the empirical tight–binding (TB) method in the Slater–
Koster formalism [9, 10]. We have used an orthogonal basis
set of five atomic orbitals per atom in the unit cell, (s p3 s∗),
and we have included the effect of the spin–orbit interac-
tion [11]. As is widely accepted, this representation gives
an acceptable description of the electronic band structure of
the semiconductor compounds [10, 12, 13].

To study the (001) surfaces we use the Surface Green’s
Function Matching Method (SGFM) in the appropriate tight–
binding representation [8, 14, 15]. This method uses as input
the bulk tight–binding parameters (TBP). The difference be-
tween the bulk TBP and the surface ones is taken into account
through the matching in the SGFM method [8]. We have
calculated the (001)–bulk–projected(GB) and the (001)–
surface–projected(GS) Green’s functions, given in Eq.(2).
From GB we can obtain the changes in the electronic band
structure derived from the hard wall effect (second term con-
tribution in Eq. 2) and fromGS we obtain the surface band
structure (third term contribution). To calculate these Green
functions we use the known formulae [14, 15]

G−1
S = (E −H00)−H01T, (3)

G−1
B = G−1

S −H10T̃ . (4)
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The way in which the Hamiltonian matrices are relate to the
TB Hamiltonians is described in detail in references [14, 15],
we will omit further details here.T andT̃ are transfer matri-
ces depending only onH00, H01 and H10, the principal–
layer–projected Hamiltonian matrices [16]. Quickly con-
verging algorithms to calculate the transfer matrices were
first obtained by Ĺopez Sanchoet al. [17]

3. The FISIM–states

3.1. The experimental evidence

3.1.1. (001)–CdTe

One of most capable techniques to determine absolute crit-
ical point energies and energy dispersion curves is the an-
gle resolved photoelectron spectroscopy (ARPES). From the
ARPES data for CdTe(001), obtained by Niles and Höchst
[3], the measured spin–orbit splitting∆ESO = 0.95 eV
agrees well with earlier electroreflectance and photolumi-
nescence measurements [18, 19]. The experimentally deter-
mined dispersion of the heavy– and light–hole valence bands
agrees well with predictions based on nonlocal pseudopo-
tential calculations [20]. For the width and dispersion of
the split–off valence band, however, Niles and Höchst found
a small but noticeable discrepancy with theoretical predic-
tions [20, 21]. Their data imply a width of 4.4 eV, whereas
nonlocal pseudopotential calculations predict 5.05 eV. Fur-
thermore, in their ARPES report, Niles and Höchst notice
the persistence of photon momentum independent emission
at 4.4 eV. In Fig. 6 of Ref. 3, they report a non–dispersive
(k−independent) band measured up to about half the way
from Γ − X. They attribute this state to indirect transitions
from a high–density–of–states region around the critical va-
lence band pointX6.

Later on, Gawliket al. [4] investigated an unrecon-
structed CdTe(001) surface prepared by ion bombardment
and annealed using angle resolved photoemission. To sep-
arate surface and bulk related spectral features they used
different criteria. They found, at 4.6 eV binding energy, a
weakly dispersing band which contains, according to them,
mixed surface and bulk character. The high density of bulk
states associated with this edge of the heteropolar gap, they
add further, is also expected to contribute to this feature.

3.1.2. (001)–ZnSe

In later work, Lopinskiet al. [5], Zhanget al. [6], and Chen
et al. [7] have reported experimental results on the (001)–
ZnSe system. From these new results, we find further support
to our calculated anion–type resonances and FISIM states.
Also, the upper anion valence band surface resonance has
been predicted inab initio calculations, by Park and Chadi
[22], and is in agreement with the experimental measure-
ments. Our calculated dispersion for this surface resonance
is found to be in correct correspondence with both results,

the theoretical and experimental ones (see Table I of Ref. 6).
On the other hand, Zhanget al. discuss the possibility that
some of their measured structures could be related with our
lower anion–type surface resonance and with ourBl andBs

FISIM states. Alternatively, they identify the last two states
as bulk umklapp transitions.

More recently, Chenet al. [7], in a photoemission study
of the Na/ZnSe(001) system, have identified their measured
band structure with our predicted FISIM states (Bh, Bl, Bs).
Their measured peak are for a ZnSe (100)c(2 × 2) surface
(cation terminated surface). Their structures are at 0.6, 1.6,
2.7, and 5.0 eV from the top of the valence band. The last ex-
perimental peaks can be directly related to ourBh, Bl, and
Bs states, calculated at 2.0, 2.3 and 5.3 eV from de top of the
valence band [2], respectively. Although, according to the
experimental report, the measurements have been done with
deficient angle resolved precision, we think that the experi-
mental results support widely our predictions.

The rest of the work will be devoted to discuss our theo-
retical interpretation of the FISIM states. For this purpose we
will use the already discussed experimental information for
the (001)–CdTe surface. Although, similar arguments could
be applied to the other cases.

3.2. Theoretical interpretation

We think that although at slightly different energies, the ex-
perimental results of Niles and Höchst and Gawliket al.,
report on the same non–dispersive state at∼ 4.4 eV. Niles
and Ḧochst attribute their signal to indirect transitions from
a high–density–of–states region around theX6 valence band
critical point. Gawliket al. assign this state to a mixed sur-
face and bulk character, although they found plausible the ex-
planation given by Niles and Ḧochst. We will look now at the
indications given by our calculations in this sense. First, let
us point out that we have calculated the bulk bands in agree-
ment with experiment and theab initio calculations. We have
refined the TBP to reproduce more accurately the experimen-
tal results at theX−point of the Brillouin zone, as we have
already remarked [1, 2].

We obtain the non–dispersive state as a solution of the
2D–projected bulk Green’s function (as the poles of the
Green function) at the energy of 4.4 eV for the wholeΓ−K
interval. The state appears to have a slight dispersion. In con-
trast to this, when we look at the surface Green’s function we
do not see traces of this state. This point is dealt with in detail
in Ref. 1. In this sense we conclude that the state is of semi–
infinity medium character. This is our definition of surface
induced bulk states.

To further clarify this point, we have calculated for the
(001)–CdTe unreconstructed surface the 2D density of states,
N(ω), for the (001)–CdTe unreconstructed surface, projected
onto the first 11 atomic layers from the surface into the bulk.
N(ω) is proportional to| Ψ |2, whereΨ is the semi–infinite
medium wave function for this state with energy eigenvalue
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FIGURE 2. 2D density of statesN(ω), for the unreconstructed
CdTe (001)–surface projected onto the first 11 atomic layers.N(ω)
is calculated at the energy eigenvalue –4.4 eV, corresponding to the
Bs state in Fig. 1, and integrated over the 2D Brillouin zone.N(ω)
does decay towards the surface but into the bulk it takes a constant
value, showing that theBs state is of semi–infinite character.

–4.4 eV. The projected density of states is obtained by in-
tegrating in the 2D first Brillouin zone using the method of
Cunningham [23]. Here we have used a set of 16 spe-
cial points in the 2D–BZ. For numerical convergence a small
imaginary part of 0.001 eV to the real energy variable was
added. Our result is showed in Fig. 2. From the figure it
is clear thatN(ω = −4.4 eV) does decay towards the sur-
face but from the 5th atomic layer on from the surface into
the bulk it takes a constant value, different for a cation and
for an anion atomic plane, but constant as one expects for a
bulk state. We do not find any surface character attributable to
this state. We stress that there is no exponential decay of the
amplitude as one enters the bulk as it expected for a surface
state. This state is actually neither of bulk (Bloch) character
nor of surface character, strictly speaking. It is what we call
a FISIM state.

A question remains to be addressed. Where these states
come from? To answer this question, we have checked that
the conservation law for the number of states within a band
at constantk does hold. That is to say, if we integrate the 2D
density of states over all the energy range at constantk, we
obtain the same number of states per unit lattice in the bulk
(Bloch–states) as for a system with a surface. In other words,
any spectral weight for any new state, that appears due to a

change in the boundary condition, is removed from another
one with the samek. If this is true,

∫
[Nbulk(ω,k)−Nsurface(ω,k)]dω = 0.

Nbulk being the bulk density of states for an infinite medium,
andNsurface the bulk density of states for a semi–infinite sys-
tem projected onto the (001)–surface. We have checked that
the integral over the energy is zero. Figure 3 shows this differ-
ence of the density of states for differentk–values. This result
shows indeed that the creation of a surface removes spectral
weight from one energy–state to another at the samek. Thus,
the new state is an LCAO combination of eigenfunctions of
different energy but same quantum numberk. This conserva-
tion law is a manifestation of the so–called Levinson’s theo-
rem [8, 24]. Our calculation therefore is not consistent with
a spectral weight displacement fromX6 to other values ofk,
which would violate Levinson’s theorem.

FIGURE 3. The difference of the density of states,
Nbulk(ω,k0)−Nsurface(ω,k0) , for a fixed k–value. Nbulk is
the bulk density of states for an infinite medium, andNsurf is the
bulk density of states for a semi–infinite system projected onto the
(001)–surface. This result shows that the existence of a surface
shifts spectral weight from one energy state to another at the same
k. The integral over the energy is zero, showing that the number of
states with the samek is conserved. Here the calculation is for the
Γ−point (a)),k = (2π/a)(0.5, 0) (b)), k = (2π/a)(0.75, 0) (c)),
and for theK− point (d)).
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4. Conclusions

In conclusion, we have shown that in the II–VI direct band
gap semiconductor compounds there are a new type of states
that we have called the FISIM states. They are of semi–
infinite medium character as opposed to surface character.
We have shown that the density of states, projected onto the
first ten atomic layers of the (001)–semi–infinite perfect crys-
tal, for the energy eigenvalue of –4.4 eV, remains constant
into the bulk and decays towards the surface. To better char-
acterize the FISIM–states, we have calculated the difference
between the bulk density of states for an infinite and a semi–
infinite system. We have found that the FISIM–states, that

appear in the semi–infinite system and do not appear in the
infinite one, are LCAO built up from states of different en-
ergy but with the samek. They do follow Levinson’s theo-
rem. These are an added feature of the II–VI semiconductor
valence band electronic structure and are of interest in appli-
cations as well as from the theoretical point of view.
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