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We study the quantum dynamics of tB&/(2) quasiprobability distribution (“Wigner function”) for the simple nonlinear Hamiltonian (finite
analog of the Kerr mediumil = S?). The quasiclassical approximation for the Wigner function and the corresponding evolution of mean
values are considered and compared with the exact and classical solutions.
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Se estudia la dizimica ciéntica de la fund@n de distribu@n de cuasiprobabilidad del grugti/(2) (funcion de Wigner) para un simple
hamiltoniano no lineal (el gogo finito del medio de KetH = S?2). Se consideran la aproximaci cuasidhsica para la funon de Wigner
y la evolucbn correspondiente de los valores medios. Se comparan las soluciones e&aitia yctuasiésica.

Descriptores:Funcibn de Wigner; aproxima6n cuasichsica.

PACS: 03.65.Bz; 42.50.Fx

1. Introduction to visualize nonclassical properties of a collection of two-

o level atoms T] and polarization optics §]. Note that a
The advantage of the phase-space description of a quantuggiher general construction of a covariant Wigner function
system in terms of Wigner quasiprobability function consistsior exponential-type Lie groups was introduced in Refs. 9
in that reflecting all quantum features, the Wigner functiongng 10. In the particular case of ti5€/(2) group it can be
keeps the closest correspondence with its classical countefagyced to the Stratonovich definition1].

part [1, 2]. The dynamical equation for the Wigner function  The 577(2) Wigner function is defined as follows:
related to the Heisenberg-Weyl group has the form
W,(6,0) =Tr (pw(8,9)) , ®)

HW (p,q,t) = [H(p,q), W(p,a, )5 @
' | ) M where p is the system density matrix and(6, ¢) is the
whereH (p,q) = p*/2m + V(q) is the system Hamiltonian Wigner operator
and the Moyal bracket

2S5 L
[H(p,q), W(p,q,t)] 5 B0, 0) = 2T Y7, 0,875 (4
) X ( a¢) M;M;L L,M( 7¢) L,M> ()
— Zgin | Z (9gH) g(W) _ g(H) (W)
no [2 (84 % %0, )] Hp.9W(p.a.) such that
reduces to the classical Poisson bracket in the limit- 0 Tr (6, ¢)] = 1, 25 +1 dQw(h,¢) =1 (5)
(hered) andd™) act to the factorgd andW correspond- dm - Js,

ingly). For quadratic Hamiltonians Eq. (1) coincides with the | Eq. (4) we use the spherical harmonics
equation for the classical distribution function, meanwhile in

general case it can be expanded in powes of Yo (0,8) = (=)MY; _,,(0,6)

atW(p,q,t):—gan+8qV8pW and the irreducible tensor operatorﬁé‘% (Ref. 12,
" Eq. 2.4 (6))

_ (h/2)2 63‘/83”7 =+ (2) oL +1 S
| q° 7P e ~(S m’
3! éj)w =\ 25 + 1 E gg,m;L,M 1S, m") (S,m|, (6)

The third term in this case gives the quantum correction to
the classical dynamics.

S,m’ —_ .
To provide the phase space description for spin system8€"€ Cs/m;r,ar areé the Clebsch-Gordan coefficients which
Stratonovich 3] in 1956 introduced the quasiprobability couple two representations of spthand L (0 < L < 25)

distribution function on the spher®,¢) € S. (see also toa _total spins. T_he functionW, (6, ¢) i_s covariant under
Refs. 4, 5 and 6). This function is naturally related to the©tations and provides the overlap relation

SU(2) dynamical group and we will later call it th&U (2) 25 +1 B

Wigner function. This function was proved to be very useful An /32 dQW,(0,) Wa(0,¢) = Tr(pA).  (7)
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Hered) = sin 0 df d¢ is the invariant measure on the spherewhereU is the rotation from the&U (2) group.

andWy (0, ¢) is the Wigner symbol of the operatdr, Substituting the density matrix in terms of Wigner func-
R tion (9) to the equation of motion,
Wa(0.¢) = Tr (Auw(0.9)). ®)
: : . Zatp = [H7 p] )
the density matrix can be reconstructed from the Wigner
function (3) through the obvious relation we obtain
=254:: ! /S dQ2w (0, 9)W, (0, ¢). ©) Z/S dQ (0, )0, W, (0, 9)

In this paper we will consider the dynamics of th&' (2)
Wigner function for the simplest nontrivial example of the fi-
nite level analog of the Kerr Medium [10, 13, 14]. We will
show that the leading order of the expansion in the inversdaking into account that
powers of2S + 1 (the representation dimension) leads to the A A
classical evolution of the initial distribution on the sphere. [Sz,TﬁH = MTé,SK,p
(As in the case of phase plane and the Heisenberg-Weyl dy-
namical group, one may distinguish between the classicaVe get
evolution which obeys the classical Poisson bracket and the 27 05 L
initial state which may be a quantum one.) This approxima- . _ m * ~(S)
tion describes well the initial stage of the dynamics (when 152, (6, €)= V2S+14~ M;tiL’M(Q’@ Tom
one can neglect the self-interference). It allows us to calcu-
late mean values of the spin operators and gives the results = —idyw(0, ¢). (13)
which are drastically better then the “naive” solution of the ) o ) )
Heisenberg equations of motion with decoupled correlatorsReplacing the above equation into (12) and integrating by
On the other hands, the quantum phenomena which follopats we obtain the following equation of motion for the
from the self-interference (like Shimlinger cats [10, 13]) are Wigner function
clearly beyond the scope of this semiclassical approximation.

We start in Sec. 2.1 with the case of linear dynamics. W, (0,9) = ~w0sW, (0, ¢).
The Wigner function dynamics under Kerr Hamiltonian is
discussed in Sec. 2.2. The evolution of mean values an
the comparison with the classical dynamics from the decou- _ _ _
pled correlators in the Heisenberg equations are considered W (8, 9lt) = W 6,6 — wtlt = 0),

in Sec. 3. The article ends up with Conclusions in Sec. 4. Weyhich, of course, corresponds to the above mentioned pro-
give the proof of the dynamical equation for the Wigner func-priety that under the action of a linear Hamiltonian the initial
tion in Appendix A. The useful integral representation for theWigner function rotates with respect to some axis (the direc-

SU(2) Wigner function is briefly described in Appendix B. - tjon of this axis depends on the coefficients of the Hamilto-
Inthe rest of paper we will consider only integer values ofjan in Eq. (10)) 4].

S, which corresponds to th&0O(3) group rather thaisU (2).

- /. dY [H,w(0, )] W,(0,9). (12)

Hs solution is

2.2. Kerr dynamics

2. Wigner function dynamics , . . I
Now let us consider the simplest non-linear Hamiltonian

2.1. Linear dynamics

H = xS2, (14)
Let us consider the dynamics of the Wigner function
W,(0, ¢) under the action of a Hamiltonian from the uni- which, in spite of its simplicity, leads to a number of inter-
versal enveloping algebra efi(2). First of all we note that esting features, such as, for example, generation of squeezed
due to thecovarianceof the Wigner function with respect to atomic states 1[3] and atomic Shdidinger cats 14]. Also,

rotations, its evolution under a linear Hamiltonian the Hamiltonian in Eq. (14) gives the simplest example when
the quantum dynamics differs essentially from the corre-
H =woS; +915: + 925y (10) sponding classical onel (].

To find an approximate dynamical equation for the
Wigner function under the action of the Hamiltonian (14) we
use the expansion in the powers of small parameter

is equivalent to a rotation round some axis. In other words
the equation of motion for a linear Hamiltonian (10) can be
reduced to a diagonal Hamiltonian

H— Hy=U'HU =wS., w=\/wd+g}+d3 (11) TSt
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(the inverse dimension of representation). Neglecting terms On the other hand, starting from the atomic coherent state

of ordere? one can obtain the following equation (see Ap- initially located along the:-direction, =0),
pendix A):
S2|m/2,0) = (5/2)|7/2,0),
W,(0,0) = —fcos 00, W, (8, 0)
such that
_|_XQ’3 [cos 00 W, (0, ¢) + sin 0 D30g W, (0, ¢) s 29)
1 29)!
2,0) = —= —_— 1
+ cos 00, L2W, (0, ¢)] . (15) I/2,0) 25 ; \/(S+k)!(5—k)!|k’5>’ (19)
where£? is a differential operator (Casimir operator on the (this is an eigenstate of the, operator) we obtain from
sphere): Eq. (18)
1 0 0 1 02
LP=— | ——= 0 — . 16
Lineao (Sm ae) +sm2aa¢2} B0 0,0 = e
\/25 +1
In the zero-order approximation we arrive at the following
guasiclassical equation for the distribution function, i M o8 N
X Z YLM Meosd Z Cgk,LMOékm
0W,(6,¢) = % cos 00,W, (6, 6), (17) k==
with the solution, where
S (29)! o xt
W, (0, ]t) = (9 ¢ — —cose t—0> (18) 928 (S + WIS — kIS + n)I(S —n)l’ e’

This quasiclassical Wigner function describes well the evoluln the limit.S >> 1, the Wigner function for the initial coher-
tion for timesyt < 1. Note that Eq. (17) corresponds to the €Nt state in Eq. (19) takes the following approximate form
classical evolution equation that involves the Poisson brack-

ets on the sphere (expressed in terms of the arfglgssee. B

e.g, [15]) bztweer(l thpe classical Hamiltonian l‘rﬁction and  W,(0,0]t = 0) = (sinfcos$)**~" (1 +sinfcos ),

the classical distribution function.

One observes that the Wigner function suffers the max-
imum deformation close to the poles of the sphere (in the 25-1
opposite directions at the south and north poles), meanwhilewp(g’ B|t) ~ (Singcos <¢ Xt cos 9))
the equator zone does not evolve at all. Of course, the poles €

leading to the evolution

themselves do not evolve because they corresponds to the ] xt

eigenstates of the operat6t, | + 5, S). The Wigner func- X {1 + sin 6 cos <¢ s 9)] - (20)

tion of an arbitrary eigenstaté, S) of the operatolS, has a

stationary form It is worth noting that the above equation can be rewritten as
follows:

W, (it (0, ¢) [t) ~ f2571 (i1, ) [1 + f(7i, 1)],
2L + 1

CSk
\/254- 28+ 1 Yol Sk LO> \where

which does not depend af In the limit of large represen- F(ii,t) = ny cos (thz) + n, sin (thz> .
tation dimensionsS > 1, and for the values ofk| ~ S, € 2

Wi(0, ¢) can be approximated as follows (see Appendix B)’Then from the covariance of the Wigner function one can

b+S 1S k easily recover the evolution of an arbitrary initial coherent
Wi(0,¢) = (—1)"""dp;,(26) [1 + g o8 9] ) state [3, 4],
wheredy, (9) = (k, S| exp (—ivS,) |k, S) is thed-function. W.o(7 (6, 0) [t) = W,(g~" -7 (6, 9) |t).
In particular, the Wigner function corresponding to the state _ o
S, S) takes the following simple form Hereg - p = T(g)oT~*(g), T(g) is the operator of finite ro-

tation in the2S + 1 dimensional representation of tke(2)
algebra, which transforms coherent states among themselves;
Wi—s(0, ¢|t) = Wi—s (6, ¢|t = 0) =~ cos®> 0 [1 + cosd]. T(g)|€) = e'?|&,), andii = (cos ¢sin b, sin ¢sin b, cosb).
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In the same manner, we can find evolution of the Wigner  Substituting the above expressions into Eq. (8) one gets
function for the initial superposition of atomic coherent
states. For instance, for the state

Ws,(6.6) = /S (5 + Iy, 23)

wheren; are the components of the unitary vector

1 T ™
(the Schodinger cat state on the spheret]), the Wigner
function takes the form 7i = (sin 6 cos ¢, sin 6 sin ¢, cos 0).
W, (0,6]t)=£(0, 6|t)** — Re(f(0, p+7/2[t) + icos0)**
In the same way we find

wheref (6, ¢|t) = sinf cos(¢ — e~ Lyt cos ).

The rest of the terms in Eq. (15) (diffusion-like terms) de- W%{S%Skh(t?, ®)
scribes quantum corrections to the quasiclassical motion in 1
analogy to the quasiclassical expansion in Eq. (2). Precisely = —\/(25 +3) (25 —1)S (S + L)njng, j #k, (24)
that terms are responsible for the formation of Sclimger 2
cats on the sphere.

It is worth noting that the term describing first quantum

correction in Eq. (15) vanishes when — 0 (S — o). W2 (0, ¢) = 1\/(25 +3)(25—1)S(5+1)

This property is specific for the Wigner-like quasidistribu- I 2

tion functions (for the Heisenberg-Weyl group as well as for 5 1 S(S+1)

the SU(2) group) and does not take place for other types of x (”a - 3> 3 (29)

quasidistributions (see, for examplel6] for analysis of the

Q-function evolution for thesU (2) group). This is the main - Replacing Eq. (23) into Eq. (21) and using the “quasiclas-

the analysis of quantum-classical correspondence. after integration by parts over the angl€25):
3. Evolution of average values 45y =0
dt z )
Using the overlap relation in Eq. (7) and the “classical” g4 Y 28 +1
Eq. (17) we can determine the evolution of average values g; (%) =~ 5=~ — V5 (5 +1)

of angular momentum operators:
X dS2sin 20 sin oW, (0, ¢|t),

d 28 +1 d
G =200 [ aawae. gw0.0. (@) =
™ Js, dt d 25 +1
(S,) == S5+
For this purpose we first obtain the Wigner symbols of dt 2¢ Am
S;, j = x,y, 2. Taking into account the following relations: » / dQsin 26 cos SW, (6, S t).
Sz
Sy = As(Ti-1—Tn), Comparing with the relations in Eq. (24) one can obtain
Sy = iAs(Ti—1+Th), d
SZ = \/§AST10, (22) $<Sz> = 07
d
where CT<SH.> = 7XOZS<{SZ,17 Sz}+>’
n \/S(S+1)(2S+1) t
S = ) d
. . 0 £<Sy> = xas({S: S:}+),
one can easily obtain
2 1
as = S+ . (26)
V(2S+3) (25 -1)
Tr(S:Trm] = As[6p1dm—1 —9dr10m1],
Tr(S,Try] = —iAg[61160—1+ dr16am], The equations for the second order correlators can also be
Y found. They involve the third order correlators. The solution
Tr(S.Tpm] = V2Asdriduo. of this infinite chain of equations can be obtained directly

from Eq. (18), giving, for example, for the first order mo-
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ments
(S,(t)) = S cos? 71yt (28)
(S=(t)) _25+l S(S+1) One may observe the good agreement between these two
Am curves up to timegt ~ 1.
% / Q2 cos OW,,(0, ¢ — xt cos Ot = 0)) It is easy to see that Egs. (26) coincide with the corre-
Sa P € spondent averaged quantum Heisenberg equations
25 +1 d
= -5 z = 07
VS5 +) 77 5)
d
x / Q2 cos OW, (6, 6|t = 0)) = (S.(t = 0)), 7520 = xSy, S:}4),
Sa
d
(S.(8)) :25;:1 S(S+1) 0 = x({Se, S}, (29)
v

Xt except the factotvs, which in the limitS > 1 tends to unity
X / dS2sin @ cos oW, (0, ¢ — = cosd]t)), ags = 1+ 0(S72). Itis interesting to note that the quasiclas-
Sa sical evolution equation for the Wigner function does not lead
25+1 to the classical equations of motion for the average values of
(Sy(t)) = A S(S+1) the angular momentum operators (in the sense that we do not
. vt arrive at equations with decoupled correlators). This means
X / dQsinfsin oW, (6, ¢ — = cosb|t)). that even in the limit of large dimension of representation
2 c the evolution under the Kerr Hamiltonian conserves some of
its quantum features (though, the evolution equation for the
Wigner function has a simple solution shown in Eq. (18)).

The difference between quasiclassical, Eg. (18), and clas-
sical solutions is apparent at the level of average values. In-
deed, after averaging the system of Egs. (29) over some state
and decoupling the correlators one obtains the classical sys-

9\ S+1/2
—VEEFIs+3/2) (2) Jenala, o

In particular, for the initial coherent state, Eq. (19), (the
eigenstate of, operator) the above solution leads to the fol-
lowing expression for the average values:

d
—(S,) = 0,
(Sy(t)) =0, C;t
z=xt(25+1). (27) 0020 = = 2(5y)(S),
We show in Fig. 1 the quasiclassical result (27) together with %(SQ = 2x(S:)(S.).

the exact quantum solution for the mean valu& of . . . .
a o (This system can also be obtained form the classical Hamil-

12 ——— tonian H = xS? with the Poisson bracket§S;, S;} =
Sk, 1,j,k = x,y,z.) The classical equations have a solu-
- tion,

(Sz(t))er =(Sz(0)) cos 2(S,

(0))xt

— (54(0)) sin2(5-(0))xt,
(Sy(t))er =(52(0)) sin 2(5-(0)) xt

] + (9y(0)) cos 2(5.(0))xt. (30)

These solutions are usually called parametric approximation.
Note, that if the correlators are decoupled not at the level of
the Heisenberg Egs. (29) but in the nonlinear equation of mo-
tion for the operatosS,.(¢), it leads just to a small change in
the frequency of oscillations in Eqg. (30).) One can see that
A T the “classical” solution diverges from the exact one, Eq. (28);
even for very small times. Indeed, the Taylor expansion of
FIGURE 1. Evolution of the normalized average val(&,(¢))/S the exact solution of Eq. (28) gives:
from exact formula (28) (solid line); form quasiclassical approx-

imation (27) (dashed line); from classical expression (30) (dotted
line); x = 1, S = 30. (Su(t)) ~ S —S(S—1/2)(xt)* + O (t*),

<Sx(t)>/S

Rev. Mex. Fs. 48 (4) (2002) 317-324
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while the classical solution, Eg. (30), has quite different be-and using the definition (4) we represdift,, w(6, ¢)}+ in
havior for the initial coherent state, Eqg. (19), just maintainsthe following form

constant JF
23/
S ) 0 9) = -~
{8:,0(0,0)}+ s 55 11
(Sz(t))er = S.
SRS P(S) 7 (S)
. _ x Y* (0, {T ,T,}.32
On the other hand, the classical solution (30) can be LZ:OM;L L8O\ Tio Ten + (32)
rewritten in terms of spherical anglesy, = Scos#f,
Sy = Ssinfcos ¢, Sy, = Ssinfsin ¢, The anticommutator of two irreducible tensor operators can

be presented as a linear form in irreducible tensor operators,
6 =const  @(t) = ¢(0) + 2Sxt cos b

and we see, that the quasiclassical evolution of the Wigner{ ff))’Té,S&L =v3(2L+1) Z[(_l)L - (=1"]
function, Eq. (18), corresponds to the motion of every point L

of the initial (quantum) distribution on the sphere along the S OIM { L 1 L }T(S)
classical trajectory (compare with the Heisenberg-Weyl case, LM10) g § § LM>
[17-19]).

where{ L1 L } is a6j-symbols. The values of the

S S S
4. Conclusions Clebsch-Gordan coefficients are

In summary, we have considered the evolution of $18§(2) 12
Wigner quasiprobability function on the sphere under the ac- L+1M _ {(L +M+1)(L-M+ 1)}
tion of the simplest nonlinear Hamiltonian - the “finite Kerr LMo (2L +1) (L +1) ’
medium”. We obtained the exact equation of motion for the 1/2
Wigner function and solved it for the case of large representa- Cf;fli‘f - _ [(L + M) (L~ M)}
tion dimensions. In this “quasiclassical” limit different parts (2L+1)(L+1)

of the initial distribution rotate with different velocities (de-
pending of the anglé) which leads to a deformation of the
initial distribution (without self-interference). This “quasi-

)

and we get

classical” Wigner function leads to the results which are es- 5 N
sentially different from what follows from the classical equa- {T(S)’ Tésjﬁ} — 2v/3(—1)H (L+1)" —M
tions of motion for mean values (parametric approximation). ¢ T+ L+1

The quasiclassical Wigner function describes well the system
dynamics up to timegt ~ 1 (while the parametric approxi-  J L 1 L+1 }T(S)
S S S

mation fails for these times).
B LQ—MQ{ L 1 L-1 }T(s)
. R . L S S S L—1M
Appendix A: Derivation of the dynamical equa-
tion for the Wigner function Substituting the above equation into Eq. (32) and taking into
account the values @fj-symbols

Here we will derive the dynamical equation for the Wigner
function for the case of the finite Kerr medium. Firstly, we L 1 L+1)_ (=t
note that due to Eqg. (13) s S S 2

[ (2S+L+2)(2S—L)(L+1) ]1/2
( )

[S2,0(0,9)] = {S-,[S:,0(0, )] }+ 2L+1)(2L+3)S(S+1)(25+1

(Here,{...,...}+ stands for anticommutator.) Taking into { L1 L-1 } — (=D*
account that s 5 5 2
@2S+L+1)(25—L+1)L 12
. 1)(2 1
S. = ATy, As= \/S(S+ J25+1) % [(2L+1)(2L—1)S(S+1)(2S+1) ’

3
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we obtain after some algebra

{82, (0, 9)}+ = WZ Z

L=0M=
(L27
X

M?2) ((25 +1)% - L2>

(2L + 1) (2L — 1) Yi 1M
(L41)2—M?) ((25+1)2—(L+1)2) *
i (2L +3) (2L +1) Yiim

Using the recurrence relations for the spherical harmonics

Yit1.m(0,0)/((L+1)2 — M?)

2L+ 3

= [sinf g + (L + 1) cos b] YA

YL (0, 9),

Yi1,m(0,¢)V/ (L? — M?)

, [2L, =
= [—sin@ 9 + L cosb] YA 1YL m(0,9),

we get
N 7(S)

{Szaw(0ﬂ¢)}+ m;}]ﬁz LM

X {fs(L+1)[sinfdg + (L + 1) cosb]

—fs(L)[sin@ 0p — Lcos O]} Y7 (0, ), (33)

where

fs(L) = @S+ L+ D) (@S —L+1) = %m—gsz,

_ 1
PR

After some algebra, Eq. (33) can be rewritten as follows

+sin 989} F_1(5)>7i)(97 $), (34)

where the operator functioR(c) depends on the operator of

the total angular momentug?,
£2YL,]\4(95 ¢) = L(L + 1)YLJ\4 (97 ¢)7

and

[ 2 2 2 2 4,4 1/2
F(e):[%e (2£241)+21/1—e2 (2L2+1)+e L }

In the limit of large representation dimensioss,— oo, we

which gives
. 1 el .
{S.,0(0,¢)}+ ~ L cosf — 3 <sm939
+cos O(L? + 1)) + 0(63):| w(0, o).

Substituting the above equation into Eqg. (31) and then into
Eg. (12), and integrating by parts (using the fact thais a
self-adjoin operator on the sphere) we obtain the equation of
motion in Eq. (15) for the Wigner function.

Appendix B: Approximate Wigner functions for
some special states

In this Appendix we obtain approximate expressions for the

Wigner functions for the angular momentum coherent state
andS, operator eigenstates. For this purpose we use the inte-
gral representation for the Wigner-Stratonovich operator, Eq.

(4) [20],

27 .
(0, 6) = /0 dwe 75 (), (35)

where the weight functiorf(w) is defined as follows

%Z W), (36)

Making use the integral representation (35) one can find
simple expressions fosU (2) Wigner function for different
states of angular momentum in the limit of large dimension
of representatios >> 1.

a) Eigenstate of the operatdf,,
S.|k,S) = k|k, S).
The density matrix has the form
p =k, S) (k. S].

Then from Egs. (8) and (35) we get

2T
Wi(0, ) = /0 dodS, () fw),  (37)

where

43y, (B) = (k, S|e""5 |k, S)

is the Wigner SU(2) representation function and the Euler

can expand square roots in the above equation in powers of@'9lesa, 3, are related to the set of parametess ¢, ¢)

small parameter,

B o o (20741)
Fe) ~2 e

according to

a+

w w
sin é =sinfsin —, tan 7 _ cosftan —.
2 2 2
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As expected, the Wigner function (37) does not depend orgiving
the anglep.

eq

b) SU(2) coherent statét).

For simplicity we consider a coherent state located on the

uatorl¢ = 1). The density matrix has the form
S
p= Z crcer |k, S)(n, S|,
kn=—S
1 (29)!
TS\ (S — IS + k)

The Wigner function takes the form

27
Wes(0,¢) = / dwI (0, ¢, w) f(w), (38)
0
where
S
1(9, ¢,w) = Z CkC:L<7'L, S‘e_iﬁsyw{;’ S>e—ian—i'yk
kn=—S

25
= <cos§cosa;—7+isin§sina27> ,

28
100, p,w) = (COS% —isin%sin@cosq&) .

The representations in Egs. (37) and (38) are much simpler

that corresponding expressions given in Ref. 7.

One can show that the functigi{w) in the limit case of
large representation dimensiors,> 1 takes the following
asymptotic form 20] (see also Ref. 21),

i 0
———9
S Ow

(w—m)],

fw) = (=1)% |§(w —m)

S — 00, (39)

where the limit is understood in a weak sense. This allows
us to find approximate expressions for the Wigner functions

Wp(0, ) andWes (6, ¢) giving

and(«, 8,~) are the Euler angles which can be expressed in
terms of polar angles according to

COSQCOSOH_W—COSg ‘catlrloé7—~_’y—cosé’tamE
2 2 Y 2 2’
a—-—vy_ T
2 =9 2’

o

(=1)S*T* a7, (20) {1 + gcos 0} ,

(sin @ cos ¢)*° ™ [1 + sin 6 cos ¢] .
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