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Introducci ón a las oscilaciones de neutrinos

Luis G. Cabral-Rosetti
Instituto de Ciencias Nucleares. Departamento de Fı́sica de Altas Enerǵıas. U.N.A.M.
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Muy recientemente en el Observatorio de Neutrinos Solares (SNO) de Sudbury Canada, dieron a conocer la primera evidencia experimental
de que los neutrinos producidos en el corazón del Sol cambian de identidad en su viaje hasta la Tierra. La explicación más probable de
dicho feńonomeno son las llamadasoscilaciones de neutrinos. En el presente trabajo damos una introducción did́actica a las oscilaciones
de neutrinos, tanto en el vacı́o como en medios materiales; destacando en esteúltimo caso el efecto resonante MSW. Dicho trabajo está
formulado para el caso de dos generaciones de neutrinos, sin embargo, damos un bosquejo para el caso de tres generaciones.

Descriptores:Oscilaciones de neutrinos; oscilaciones con dos especies; efecto MSW.

Recently the Solar Neutrino Observatory (SNO) group in Sudbury Canda, showed the first experimental evidence that neutrino produced in
the Sun’s core, change their flavour when they propagate. The most probably explanation of such phenomenon are theneutrino oscillation.
In this work we give a pedagogical introduction to neutrino oscillation, both in the vacum and in the material medium, emphathizing the
resonant MSW effect in the medium. This work is formulated for two neutrino generations however, we give a brief summary of three
neutrino generations.

Keywords: Neutrino oscillations; oscillations with two flavors; MSW efect.

PACS: 26.65.+t; 13.15.+g; 14.60.Pq

1. Introducción

Aunque sumamente exitoso en lo que a sus predicciones fe-
nomenoĺogicas se refiere, el modelo estándar de las interac-
ciones electrod́ebiles parece incompleto desde un punto de
vista téorico [1]. En su forma actual no es capáz de predecir
las masas de los fermiones (leptones y quarks) ni de explicar
porqúe hay varias familias de tales partı́culas.

El estudio de las propiedades de los neutrinos ha juga-
do un rol esencial en la caracterización de las interacciones
débiles y podŕıa aportar nuevos ingredientes para el desarro-
llo de futuras teoŕıas de las partı́culas elementales [2]. Entre
los aspectos de la fı́sica de los neutrinos que permanecen aún
sin ser dilucidados, cabe mencionarse la cuestión de si sus
masas son o no diferentes de cero, y en tal caso, si los estados
creados en los procesos débiles (νe, νµ, ντ ) son combinacio-
nes lineales de otros estados (ν1, ν2, ν3) con masas defini-
das [3].

Uno de los feńomenos ḿas interesantes que se presenta
cuando existe mezcla entre neutrinos masivos, son las llama-
das oscilaciones de neutrinos, es decir, transformaciones pe-
riódicas de neutrinos de un sabor en otro (por ej.,νe ­ νµ)
[4]. Debido a su interacción con la materia, neutrinos con
distintos sabores tienenı́ndices de refracción diferentes. Ello
hace que, en general, las oscilaciones se vean afectadas por
las propiedades del medio a través del cual los neutrinos se
propagan [5].

En un importante trabajo, Mikheyev y Smirnov [6] de-
mostraron que en un medio con densidad variable las ampli-

tudes de oscilación tienen un comportamiento resonante para
ciertos valores de la energı́a de los neutrinos. De esta manera,
aun cuando los parámetros de las oscilaciones (diferencias de
masas ýangulos de mezcla) sean pequeños en el vaćıo, pue-
den incrementarse notablemente cuando los neutrinos atra-
viesan medios densos como el Sol u otras estrellas.

El pasado 18 de Junio de 2001 el equipo de cientı́ficos
del laboratorio Canadiense SNO (Sudbury Neutrino Obser-
vatory) dieron a conocer la primera evidencia experimental
de que los neutrinos producidos en el interior del Sol cam-
bian desabor, i.e., cambian de identidad en su viaje del Sol
a la Tierra [7]. Todo parece indicar que la explicación más
plausible de dicho feńomeno son las oscilaciones de neutri-
nos. Es por tal motivo que nos proponemos dar una intro-
duccíon did́actica de dicho feńomeno, centŕandonos en el ca-
so de dos generaciones de neutrinos. Esto lo hacemos con la
finalidad de explicar con mayor claridad en lengua castella-
na, las ideas téoricas subyacentes. El presente trabajo es una
recopilacíon did́actica inspirada en los trabajos de P. B. Pal
[9], centŕandose en los aspectos más relevantes de la fı́sica de
neutrinos masivos y su relación con el llamadoenigma de los
neutrinos solares. El trabajo est́a organizado como sigue: en
la Sec. 2 discutimos el formalismo general de oscilaciones.
En la Sec. 3 nos introducimos a las oscilaciones de neutri-
nos en el vaćıo. De la Sec. 4 a la 10 discutimos los efectos
de la evolucíon de los neutrinos en un medio material como
el Sol y analizamos las soluciones propuestas, ası́ como el
efecto MSW. Antes de concluir el presente trabajo, en la Sec.
11 damos un bosquejo de los problemas que aparecen en un
ańalisis ḿas realista de tres generaciones. Finalmente damos
nuestras conclusiones.
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2. Formalismo general de oscilaciones

De acuerdo con el modelo estándar de las interacciones elec-
trodébiles (SM) de Weinberg-Salam-Glashow [1], los lepto-
nes se encuentran agrupados en tres familias o sabores, deno-
minados




να

α


 =




νe

e−


 ;




νµ

µ−


 ;




ντ

τ−


 (1)

y las correspondientes familias de antileptones. Las familias
se caracterizan por los números leptonicos individualesLα

(número del electŕon Le, número del múon Lµ, número del
taúonLτ ) de tal modo que:

Lα(νβ) = δαβ para neutrinos,

Lα(ν̄β) = − δαβ para antineutrinos. (2)

Las oscilaciones de neutrinos, es decir, las transiciones
periódicasνα ­ νβ entre los diferentes tipos de sabores de
neutrinos dependen del tiempo, y las condiciones necesarias
para que ocurran tales oscilaciones son que:

(a) Las diferencias de masasmνα −mνβ
no son todas ce-

ro, lo que implica que no todos los neutrinos son no
masivos.

(b) Los ńumeros lept́onicos individualesLα no son extric-
tamente conservados.

En esteúltimo caso los autoestadosLα

∣∣να

〉
, llamados

autoestados de saboren general, no son autoestados del ope-
rador de masaM , es decir,

〈
να

∣∣M
∣∣νβ

〉 6= 0 paraα 6= β. Más
bien son superposiciones lineales de autoestados de masa no
degenerados

∣∣νi

〉
con

〈
νi

∣∣M ∣∣νj

〉
= miδij y mi − mj 6= 0

parai 6= j. Las oscilaciones de neutrinos omezclade sabores
de neutrinosνα ­ νβ pueden ocurrir entonces debido a que〈
να

∣∣M
∣∣νβ

〉
es diferente de cero paraα 6= β. Las dos condi-

ciones listadas arriba son las mı́nimas extensiones al modelo
electrod́ebil est́andar SM [2].

Por otro lado, los n autoestados de sabor
∣∣να

〉
(i.e., νe, νµ,

ντ , ...) y los n autoestados de masa, tambien llamados auto-
estados f́ısicos

∣∣νi

〉
(i.e., ν1, ν2, ν3, ...) son relacionados por

una transformación unitariaU llamadamatriz de mezcla, la
cual es ańaloga a la matriz de Cabbibo-Kobayashi-Maskawua
para el sector de quarks. En el SM, todos los neutrinos son no
masivos, en cuyo caso la matrizU no tiene significado fı́sico.
Por lo tanto, al introducir la matriz de mezcla, estamos su-
poniendo impĺıcitamente que al menos uno de los neutrinos
tienemasa no nula:

∣∣να

〉
=

∑

i

Uαi

∣∣νi

〉 ↔
∣∣νi

〉

=
∑
α

U†
iα

∣∣να

〉
=

∑
α

U∗
αi

∣∣να

〉
, (3)

con

U†U = UU† = 1,

i.e.,
∑

i

UαiU
∗
βi = δαβ ,

∑
α

UαiU
∗
αj = δij . (4)

Para antineutrinos tenemos que reemplazarUαi por U∗
αi,

es decir, ∣∣ν̄α

〉
=

∑

i

U∗
αi

∣∣ν̄i

〉
. (5)

El número de paŕametros de una matrix unitarian× n es
den2 y las2n − 1 fases relativas de los2n estados de neu-
trinos, pueden redefinirse de tal modo que se dejen(n − 1)2

paŕametros independientes izquierdos. Por esto es convenien-
te tomar los 1

2n (n − 1) “ ángulos de mezcla débiles” de una
rotacíon n-dimensional y las12 (n− 1)(n− 2) las “fases que
violan CP ”.

Al ser autoestados de la matriz de masa, los estados
∣∣νi

〉
son estacionarios, es decir, tienen dependencia temporal

∣∣νi(t)
〉

= e− i Ei t
∣∣νi

〉
, (6)

con

Ei =
√

p2 + m2
i ≈ p +

1
2

m2
i

p
≈ E +

1
2

m2
i

E
,

mi << Ei , (7)

dondeE ≈ p es la enerǵıa total del neutrino y supondremos
que los neutrinos son estables. Ası́, un estado de sabor puro∣∣να

〉
=

∑
i Uαi

∣∣νi

〉
al tiempot = 0, evolucionaŕa con el

tiempo en el estado

∣∣ν〉
=

∑

i

Uαie− i Ei t
∣∣νi

〉

=
∑

i, β

UαiU
∗
βie− i Ei t

∣∣νβ

〉
. (8)

La dependencia temporal en laamplitud de transicíonpa-
ra el cambio del saborνα al saborνβ es

A(να → νβ ; t) ≡ 〈
νβ

∣∣ν(t)
〉

=
∑

i

UαiU
∗
βie− i Ei t

=
∑

i, j

Uαi · δi, je− i Ei t ·
(
U†

)
j, β

=
(
U ·D · U†

)
αβ

, (9)

con

Di, j = δi, je− i Ei t (matriz diagonal) .
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Se obtiene una expresión equivalente de la amplitud de
transicíon, insertando la Ec. (7) en la Ec. (9) y extrayendo un
factor de fase globale− i Ei t:

A′(να → νβ ; t) =
∑

i

UαiU
∗
βie− i

m2
i

2E t

=
∑

i

UαiU
∗
βie− i

m2
i

2
L
E = A(να → νβ ; t) , (10)

dondeL = ct (c = 1) es la distancia del detector, en el cual
se observaνβ desde la fuenteνα. Para unaj fija seleccio-
nada arbitrariamente obtenemos una tercera expresión de la
amplitud de transición:

A′′(να → νβ ; t) = e− i Ej t ·A(να → νβ ; t)

=
∑

i

UαiU
∗
βie− i (Ei−Ej) t

=δαβ+
∑

i

UαiU
∗
βi

[
e− i (Ei−Ej) t−1

]

= δαβ+
∑

i6=j

UαiU
∗
βi

[
e− i ∆i j − 1

]
, (11)

con

∆i j =
(
Ei − Ej

)
t =

δm2
i j

2
· L

E
(12)

donde
δm2

i j = m2
i −m2

j .

En la Ec. (11) se utiliźo la relacíon de unitariedad de la
Ec. (4). De esta forma las amplitudes de transición son da-
das por los(n − 1)2 paŕametros independientes de la matriz
unitaria (la cual determina las amplitudes de las oscilaciones)
y lasn− 1 diferencias de las masas elevadas al cuadrado (lo
cual determina la frecuencia de las oscilaciones), es decir, por
losn(n−1) paŕametros reales. SiCPse conserva en las osci-
laciones de neutrinos, desaparecen todas las fases que violan
CP y lasUαi son reales, es decirU es una matriz ortogonal
(U−1 = UT ) con (1/2)n(n − 1) paŕametros. Entonces, el
número de paŕametros para las amplitudes de transición son
(1/2)(n− 1)(n + 2).

La probabilidad de transicíonse obtiene elevando al cua-
drado el ḿodulo de las amplitudes Ec. (9):

P(να → νβ ; t) =
∣∣∣
∑

i

UαiU
∗
βie− i Ei t

∣∣∣
2

=
∑

i

∣∣∣UαiU
∗
βi

∣∣∣
2

+ 2<e
∑

j>i

UαiU
∗
βiU

∗
αjUβje− i ∆ij . (13)

Aqúı el segundo t́ermino describe la dependencia tempo-
ral (o espacial) de las oscilaciones de los neutrinos y el primer

término es la probabilidad de transición promedio, promedia-
da sobre el tiempo (distancia) o energı́a:

〈P(να → νβ)
〉

=
∑

i

∣∣∣UαiU
∗
βi

∣∣∣
2

=
∑

i

∣∣∣U∗
αiUβi

∣∣∣
2

=
〈P(νβ → να)

〉
. (14)

Midiendo las probabilidades promedio obtenemos
únicamente información sobre los parámetros de la matriz
de mezcla, pero no sobre las diferencias de las masas ele-
vadas al cuadrado. Se puede mostrar [8] de la relacíon de

unitariedad
∑

i

∣∣∣Uαi

∣∣∣
2

= 1 que
〈P(να → να)

〉
=

∑
i

∣∣∣Uαi

∣∣∣
4

es ḿınima si todas las
∣∣∣Uαi

∣∣∣ =
∣∣∣Uα

∣∣∣ son iguales. Usando la
relacíon de unitariedad (4) la probabilidad puede escribirse
tambíen como

P(να → νβ ; t) = δαβ

+2<e
∑

j>i

UαiU
∗
βiU

∗
αjUβj

[
e− i ∆ij − 1

]
. (15)

Parat = 0, es decir,∆ij = 0 tenemos por supuesto
P(να → νβ ; 0) = δαβ . Adeḿas,

∑
β P(να → νβ ; t) = 1

debido a (4).
Si se conservaCP (Uαi es real), las Ecs. (13) y (15) se

reducen a

P(να → νβ ; t) =
∑

i

U2
αiU

2
βi

+2
∑

j>i

UαiUβiUαjUβj cos∆ij

= δαβ − 4
∑

j>i

UαiUβiUαjUβj sen2
(

∆ij

2

)
. (16)

Para el cason > 2 las fórmulas de las probabilida-
des de transición son ḿas bien complicadas. Sin embar-
go el formalismo se simplifica fuertemente en el caso de
que todas las masas de los neutrinos estén bien separa-
das una de otra (hipótesis de jerarqúıa de masas), es decir,∣∣m2

i − m2
j

∣∣ ¿ ∣∣m2
i − m2

k

∣∣ parai, j 6= k. En éste caso
L/E en la Ec. (12) se incrementa desde cero de tal modo que
∆ij ¿ ∆ik = ∆ parai, j 6= k, únicamente ocurren oscila-
ciones debido a que∆ 6= 0 (oscilaciones principales); todas
las otras∆ij ≈ 0 y los paŕentesis cuadrados en las Ecs. (11) y
(15) desaparecen. De esta manera, para las oscilaciones prin-
cipales tenemos:

A(να→νβ ; t)= δαβ+
(
e− i ∆−1

)∑

i 6=j

UαiU
∗
βi

= δαβ +
(
e− i ∆ − 1

) [
δαβ − UαkU∗

βk

]

= e−i∆
[
δαβ − UαkU∗

βk

]
+UαkU∗

βk . (17)
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Elevando al cuadrado el ḿodulo deA(να → νβ ; t) se
obtiene

P(να → νβ ; t) = δαβ + 2<e

[(
e− i ∆ − 1

)
· U∗

αkUβk

·
(
δαβ − UαkU∗

βk

)]

= P(νβ → να; t) . (18)

De esta forma

P(να → να)=1−4 ·
(∣∣∣Uαk

∣∣∣
2

−Uαk

∣∣∣
4)
· sen2

(
∆
2

)
, (19)

P(να → νβ 6= να) = 4 ·
∣∣∣Uαk

∣∣∣
2∣∣∣Uβk

∣∣∣
2

· sen2
(

∆
2

)

= P(νβ → να 6= β) . (20)

Para finalizar esta sección, discutiremos brevemente la
matriz de masaM mencionada antes. Puesto que los esta-
dos

∣∣νi

〉
tienen masas definidasmi, M es diagonal en la re-

presentacíon
∣∣νi

〉
:

〈
νi

∣∣M ∣∣νj

〉
= mi δij . (21)

En la representación
∣∣να

〉
la matriz de masa tiene los ele-

mentos

〈
νβ

∣∣M ∣∣να

〉
=

∑

i, j

〈
νβ

∣∣νi

〉〈
νi

∣∣M ∣∣νj

〉〈
νj

∣∣να

〉

=
∑

i

miU
∗
αiUβi , (22)

en donde

〈
νβ

∣∣νi

〉
= U∗

βi ,

〈
νi

∣∣M ∣∣νj

〉
= mi δij ,

y

〈
νj

∣∣να

〉
= Uαj .

Si todas las masasmi son igualesmi = m (completa
degeneración), entonces

〈
νβ

∣∣M ∣∣να

〉
= mδαβ por la pro-

piedad de unitariedad (4) y no son posibles las transicio-
nesνα ­ νβ . Las masas de los autoestados de sabor

∣∣να

〉
son valores de expectación del operador de masa, es decir,
promedios ponderados de las masasmi:

mα ≡
〈
να

∣∣M ∣∣να

〉
=

∑

i

∣∣∣Uαi

∣∣∣
2

·mi, (23)

con
∑

α mα =
∑

i mi por la unitariedad (invariancia de la

traza), donde
∣∣∣Uαi

∣∣∣
2

es la probabilidad de descubrir el estado∣∣νi

〉
en

∣∣να

〉
.

3. Oscilaciones de vaćıo, caso N = 2

En esta sección, aśı como en el resto del presente trabajo,
nos restingiremos al caso de dos generaciones, a fin de expli-
car con mayor claridad las ideas teóricas involucradas en la
solucíon del problema de los neutrinos solares. El caso más
realista de tres generaciones ası́ como sus efectos y conse-
cuencias, será discutido brevemente en la Sec. 11 [9].

Analicemos la evolución en el tiempo [10] de un haz de
neutrinos que se propagan en el vacı́o. La ecuacíon de evolu-
ción en la base de los “autoestados fı́sicos”

∣∣νi

〉
es

i
d

dt

∣∣νi

〉
(t) = H◦

∣∣νi

〉
(t), (24)

en dondeH◦ es el hamiltoniano del sistema, el cual es diago-
nal en esta base:

H◦ =




E1 0

0 E2


 . (25)

Para estudiar el problema de los neutrinos solares es nece-
sario que consideremos neutrinos cuyas energı́as sean del or-
den de 1 MeV. Los experimentos de laboratorio ponen los si-
guientes ĺımites superiores en las masas de los distintos neu-
trinos [11]:

mνe < 2.2 eV ; mνµ < 0.19 MeV ; mντ < 18.2 MeV.

De esta manera se tiene quemi ¿ Ei parai = 1, 2, y en
este caso podemos usar la aproximación relativista (Ec. (7)).
Es por esta raźon que es posible usar x, la distancia viajada
por el neutrino, en vez de t como variable independiente. La
diferencia entre t y x introducirá correcciones de orden mayor
enm/E.

La evolucíon temporal de un haz de neutrinos de enegı́a
E est́a gobernado por el hamiltoniano

H◦ =

(
E +

m2
1 + m2

2

4E

)
− ∆

4E
σ3, (26)

en dondeσ3 es la matriz diagonal de Pauli.

Para proṕositos futuros, resulta conveniente reescribir la
ecuacíon de evolucíon en labase de sabor. Podemos hacer
esto f́acilmente teniendo en cuenta que, a partir de la Ec. (3),∣∣νi

〉
= U† ∣∣να

〉
, la cual nos da

i
d

dx

∣∣να

〉
= U H◦ U† ∣∣να

〉
. (27)

Para dos neutrinos del tipo Dirac, hay unángulo de mez-
cla en el vaćıoθ con0 ≤ θ ≤ π/2 y ninguna fase de violación
deCP (es decir, se conservaCP ). La matriz de mezcla U es
dada por
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U =




cosθ senθ

− senθ cosθ


 , (28)

y en la base de sabor el Hamiltoniano es dado por

H ′
◦ = U H◦ U† = E +

m2
1 + m2

2

4E

+
∆
4E



− cos2θ sen2θ

sen2θ cos2θ


 . (29)

De las relaciones (22) y (23) entre las masas de los neu-
trinosmα y mi llegamos a

me = m1 cos2 θ + m2 sen2 θ ,

mµ = m1 sen2 θ + m2 cos2 θ ,

mµe =
〈
νµ

∣∣M
∣∣νe

〉
= (m2 −m1) cosθ senθ . (30)

Resolviendo param1, m2 y θ llegamos a

m1, 2 =
1
2

[
me + mµ ∓

√
(mµ −me)2 + 4 m2

µe

]
,

tan2θ =
2 mµe

mµ −me
. (31)

De esto, podemos deducir la relación entre eĺanguloθ y los
elementos de la matrizH ′

◦ :

tan2θ =
2H12

′

H22
′ −H11

′ , (32)

dondeH ′
◦ es independiente de x, y nosotros podemos for-

malmente integrar la ecuación de movimiento para obtener la
solucíon

να(x) = exp
(
− iH ′

◦ x
)

να(0). (33)

Los valores de la energı́a debeŕan aparecer siempre con
algún sub́ındice, de tal manera que no exista posibilidad de
confusíon. Por otro lado, notemos que hay un término enH ′

◦
que es proporcional a la matriz unitaria y contribuye con una
fase global en la Ec. (33), tal térmimo no afecta eĺangulo de
mezcla, como es visto en la Ec. (32), resultando irrelevan-
te para nuestros propósitos, y por lo que podemos omitirlo.
Tendremos entonces,

H ′
◦ =

∆
4E

(
σ1 sen2θ − σ3 cos2θ

)
, (34)

y por lo tanto,

να(x) = exp

[
− i∆

4E
x

(
σ1 sen2θ − σ3 cos2θ

)]
να(0)

=

[
cos

∆
4E

x− i
(
σ1 sen2θ − σ3 cos2θ

)

× sen
∆
4E

x

]
να(0) . (35)

La probabilidad de encontrar a unνµ o unνe en un haz
que inicialmente estaba compuestoúnicamente deνe es dada
por

Pνeνµ
(x) =

∣∣∣ 〈νµ(0) | νe(x)〉
∣∣∣
2

= sen2 2θ sen2
(

∆
4E

x

)
,

Pνeνe
(x) =

∣∣∣ 〈νe(0) | νe(x)〉
∣∣∣
2

= 1− Pνeνµ(x). (36)

Notemos que la probabilidad de encontrar unνe es menor
en general que la unidad. Gribov y Pontecorvo [10] sugirie-
ron que esto podı́a ser la causa de ladisminucíon del flujo de
neutrinos del electrón observado en experimentos con neutri-
nos solares. Ası́ mismo, debido a la conservación de la pro-
babilidad

Pνeνµ + Pνeνe = 1 ,

Pνeνe
se conoce como laprobabilidad de supervivencia del

neutrino del electŕon.
Notemos, por otro lado, que estas fórmulas muestran ex-

plı́citamente que las oscilaciones sólo ocurren siθ 6= 0 y
∆ 6= 0. Su amplitud es ḿaxima paraθ = π/4 (mezcla
máxima).

4. Oscilaciones en materia uniforme

En la discusíon previa se ha supuesto que los neutrinos viajan
a trav́es del vaćıo, lo cual es una buena aproximación para el
camino entre el Sol y la Tierra. Pero los neutrinos son produ-
cidos principalmente en el interior más profundo del Sol, y
necesitan atravesar material de alta densidad antes de emer-
ger del Sol. Las oscilaciones en el Sol, o en cualquier me-
dio material, pueden ser muy diferentes de las oscilaciones
en el vaćıo. La raźon b́asica para esto, como lo dice Wol-
fenstein [4], es que las interacciones en un medio material
modifican la relacíon de dispersión de las partı́culas que via-
jan a trav́es deél. En otro contexto, estamos familiarizados
con este feńomeno para el caso de los fotones. Ellos no tie-
nen masa en el vacı́o y su relacíon de dispersión es simple-
menteE = | p |. En un medio, sin embargo, la relación de
dispersíon es ḿas complicada, lo cual puede ser interpretado
diciendo que el fot́on desarrolla una masa efectiva, y debido
a esto, no viaja con velocidadc en un medio material.

Las relaciones de dispersión esencialmente dan la energı́a
de una partı́cula en funcíon de su momento. De esta manera,
en el lenguaje cúantico, una diferente relación de dispersión
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significa un diferente hamiltoniano del sistema. De esta for-
ma, da una evolución diferente para la función de onda. Para
un haz de neutrinos que viajan a través del material solar, la
evolucíon es diferente de aquella que exhibirı́a el mismo haz
viajando en el vaćıo.

El medio solar, por supuesto, esno uniforme. Antes de
comenzar una discusión de la propagación del neutrino en tal
medio, consideremos primero el caso más simple de un haz
de neutrinos viajando a través de un medio de densidad uni-
forme. Como ya mencionamos las interacciones con el medio
afectan la relación de dispersión de los neutrinos. Para cuan-
tificar este efecto [4], consideremos la dispersión de un neu-
trino en materia. B́asicamente el material solar está compues-
to de electrones, protones y neutrones. De estos, el neutrino
electŕonico (νe) puede tener interaciones de corriente carga-
da únicamente con el electrón. El neutrino del muon (νµ),
por otro lado, participarı́a en las interacciones de corriente
cargada solamente si los muones estuvieran presentes, pero
las temperaturas del núcleo solar no son lo suficientemente
altas para que esta condición sea satisfecha y lo mismo suce-
de para el neutrino del tau (ντ ). Por consiguiente, de ahora en
adelante, consideraremos que las contribuciones de corriente
cargada afectan sólo aνe. El diagrama de Feynman para es-
te proceso está dado en la Fig. 1. Esto da la amplitud (en la
norma de ’t Hooft-Feynman,ξ = 1):

(
ig√
2

)2 {
ēL(p1)γλνeL(p2)

} −igλρ

q2 −M2
W

×
{

ν̄eL(p3)γρeL(p4)
}

, (37)

donde el śımbolo eL(p) representa la componente izquier-
da para la energı́a positiva del campo del electrón y
q2 = (p2 − p1)2.

Para las temperaturas del núcleo solar, la dependencia
en el momento del propagador W puede ser despreciada,
i.e. q2 ¿ M2

W . Usando la definicíon de la constante de
Fermi

GF√
2

=
g2

8M2
W

, (38)

obtenemos el lagrangianoefectivopara interacíon de corrien-
te cargada

Lefec = −4GF√
2

{
ēL(p1) γλ νeL(p2)

}{
ν̄eL(p3) γλ eL(p4)

}

= −4GF√
2

{
ēL(p1) γλ eL(p4)

}{
ν̄eL(p3) γλ νeL(p4)

}
, (39)

FIGURA 1. La dispersíon de corriente cargada de los neutrinos del
electŕon con los electrones.

donde la segunda igualdad es obtenida vı́a la transforma-
ción de Fierz1. Para la dispersión hacia adelante, donde
p2 = p3 = p, el cuadrimomento del neutrino no cam-
bia. Observando tal situación, seŕıa imposible saber que un
fenómeno de dispersión ha tenido lugar. En tal caso pensare-
mos simplemente que el neutrino se está propagando con un
cuadrimomentop. Por consiguiente, esto darı́a la siguiente
contribucíon a la propagación delνe:

−4GF√
2

〈
ēγλ

(
1− γ5

2

)
e

〉
ν̄eL(p) γλ νeL(p) , (40)

despúes de promediar.
La temperatura del ńucleo solar tiene un valor mucho me-

nor que la masa del electrón. Por lo tanto podemos considerar
que los electrones son no relativistas, en cuyo caso los pro-
medios involucrados en la Ec. (40) dan lo siguiente:

〈
ē γλ γ5 e

〉 ∼ esṕın,
〈
ē γi e

〉 ∼ velocidad,
〈
ē γ0 e

〉 ∼ Ne . (41)

Los electrones no están polarizados en el Sol, de tal ma-
nera que el valor esperado de espı́n es cero. El promedio de
velocidad en el medio termal también se hace cero. De lo
anterior obtenemos la siguiente contribución al lagrangiano
efectivo de las interacciones de corriente cargada:

−
√

2 GF Ne ν̄eL γ0 νeL . (42)

1 NOTA: La transformacíon de Fierz es:[ū1γα(1− γ5)u2][ū3γα(1−
γ5)u4] = −[ū1γα(1 − γ5)u4][ū3γα(1 − γ5)u2]. Para la derivación de
esta y otras identidades de Fierz, ver por ejemplo el libro de C. Itzykson and
J. B. Zuber,Quantum Field Theory, Mc. Graw-Hill, (1980), p. 160.
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Ahora, consideraremos la contribución de corriente neu-
tra. La interaccíon efectiva es

Lefec = −4GF√
2

{
f̄(p1)γλ

(
I3L

(
1− γ5

2

)

−Qsen2 θW

)
f(p2)

}{
ν̄(p3) γλ νL(p4)

}
, (43)

donde f significa electrones, protones y neutrones. El simbolo
ν puede ser tanto paraνe o νµ, dado que ambos tienen iguales
interacciones de corriente neutra. La contribución para la pro-
pagacíon hacia adelante puede ser determinada exactamente
en la misma forma como en el caso anterior de corriente car-
gada. Uno obtiene la siguiente contribución al lagrangiano
efectivo:

−
√

2GF

[∑

f

Nf

(
If

3L − 2sen2 θW Qf
)]

ν̄γ0νL . (44)

En esta ecuación, If
3L, denota el tercer componente de

isoesṕın débil para el fermíon f, y Qf es la carga eléctrica
del mismo. Para el electrón, prot́on y neutŕon, los valores de
estas cantidades son los siguentes:

I3L Q

e − 1
2 −1

p 1
2 1

n − 1
2 0

Gracias a esto se observa que en la Ec. (44), las contri-
buciones del protón y el electŕon se cancelan en un medio
neutro dondeNe = Np. Y el término de corriente neutra al
lagrangiano efectivo entonces se reduce a:

1√
2

GF Nn

(
ν̄eL γ0 νeL + ν̄µL γ0 νµL

)
. (45)

Resumiendo, las contribuciones debidas a corriente neu-
tra y cargada, tomadas juntas, añaden los siguientes términos
al lagrangiano efectivo, los cuales son cuadráticos en los cam-
pos del neutrino:

Lefec = −
∑

l = e,µ

ν̄lL γ0 Vνl
νlL, (46)

donde

Vνe =
√

2 GF

(
Ne − 1

2
Nn

)
,

Vνµ = − 1√
2

GF Nn . (47)

El significado de tales términos lo podemos entender me-
diante la ecuación de Dirac

{
γ0 E − Γ · p − m

}
Ψ = γ0 V Ψ . (48)

Rearreglando los términos

γ0

(
E − V

)
Ψ =

{
Γ · p + m

}
Ψ (49)

y elevando al cuadrado ambos miembros, finalmente obtene-
mos

E =
√

p2 + m2 + V . (50)

De esta manera, V se añade a la energı́a para un momento
dado. En este sentido, V será llamada la energı́a potencial. La
ecuacíon de evolucíon en materia está por consiguiente dada
por

i
d

dx

∣∣να

〉
= H

∣∣να

〉
, (51)

donde, usando la Ec. (50), podemos escribir el hamiltoniano
como

H=H ′
◦+




√
2 GF

(
Ne − 1

2Nn

)
0

0 − 1√
2

GF Nn


 , (52)

en dondeH ′
◦ es el hamiltoniano en el vacı́o, dado por la

Ec. (34). De esta manera llegamos a que

H = E +
m2

1 + m2
2

4E
− 1√

2
GF Nn +

1
2E

M̃2; (53)

como antes E es la magnitud de la energı́a del neutrino y

M̃2 =
1
2



− ∆ cos2θ + 2A ∆ sen2θ

∆ sen2θ ∆ cos2θ


 , (54)

donde hemos definido

A ≡ 2
√

2 GF Ne E . (55)

El ángulo de mezcla efectivo en materia,θ̃, est́a dado en
forma ańaloga a la Ec. (32) por

tan2θ̃ =
2H12

H22 −H11

=
∆ sen2θ

∆ cos2θ −A
(56)
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y los vectores propios estacionarios son

ν̃1 = νe cosθ̃ − νµ senθ̃,

ν̃2 = νe senθ̃ + νµ cosθ̃ . (57)

Analizando los vectores propios se encuentran rasgos in-
teresantes. Consideremos que elángulo de mezcla en el vacı́o
es pequẽno, entonces, paraNe → 0, θ̃ → θ, tal queν̃1 ' νe.
Para el otro extremo tenemos que cuandoNe → ∞, θ̃ → π

2 ,
tal queν̃1 ' νµ. En otras palabras, el estado propio de ma-
sa inferior es casi puramenteνe si la densidad de materia se
anula, y es casi puramenteνµ si la densidad de materia es
muy grande. Este hecho tiene consecuencias muy importan-
tes. La relacíon enerǵıa-momento en materia está dada por
los valores propios de la matriz̃H, los cuales son

Ẽα = E − 1√
2

GF Nn +
m̃2

α

2E
, (58)

donde

m̃2
1,2 =

1
2

[(
m2

1 + m2
2 + A

)

∓
√(

∆ cos2θ −A
)2

+ ∆ sen2 2θ

]
. (59)

Estos valores propios han sido graficados en la Fig. 2 co-
mo funcíon de A. La figura también muestra los elementos
diagonales de la matriz̃H, los cuales son los valores espe-
rados de energı́a para los estadosνe y νµ. De la figura se

puede ver quẽE1 est́a cercano a
〈
Ẽνe

〉
para densidades ba-

jas mientras que está cercano a
〈
Ẽνµ

〉
para densidades altas.

Esto trae consigo el hecho de queν̃1 es principalmenteνe a
bajas densidades y principalmenteνµ a altas densidades. Lo
opuesto es cierto parãν2.

Si un medio tiene una densidad dada porA = ∆ cos2θ,
los dos elementos diagonales son iguales. En este caso, la
Ec. (56) muestra que elángulo de mezcla efectivo esπ4 , lo
cual nos habla de que los estadosνe y νµ est́an mezclados de
forma ḿaxima en los estados propios. La naturaleza de esta
mezcla ḿaxima es mejor entendida si, de la Ec. (56), escribi-
mos abajo la expresión para sen2 2θ̃:

sen2 2θ̃ =
∆2 sen2 2θ(

∆ cos2θ −A
)2

+ ∆2 sen2 2θ
. (60)

Para apreciar el significado fı́sico del lado izquierdo de la
ecuacíon anterior, necesitamos regresar a la Ec. (36), la cual
da la probabilidad de supervivencia y conversión de un haz de
νe viajando a traves del vacı́o. Las probabilidades correspon-
dientes para un haz viajando a través de un medio uniforme

FIGURA 2. Enerǵıas efectivas de neutrinos en un medio. La canti-
dad A es proporcional a la densidad del número de electrones. Las
lı́neas continuas son las energı́as para los estados propios fı́sicos,
las punteadas son los valores esperados de energı́a para los esta-
dos de sabor. La escala en el eje vertical es arbitraria. Elángulo de
mezclaθ en el vaćıo se ha tomado que es 0.1 para la gráfica.

pueden ser obtenidas reemplazandoθ por θ̃ y ∆ por la dife-
rencia de masa efectiva en el medio. Tomando el promedio
del t́ermino dependiente de x, obtenemos

1− P̄νeνe = P̄νeνµ =
1
2

sen2 2θ̃ . (61)

De esta manera, el término del extremo izquierdo de la
Ec. (60) es proporcional a la probabilidad promedio de con-
versíon. El t́ermino del lado derecho muestra que, como una
función de A, la probabilidad de conversión tiene la siguiente
clase de comportamiento:

Constante(
A−AR

)2 + Γ2
. (62)

Ésta es exactamente la expresión para una resonancia
Breit-Wignerde amplitudΓ y centrada enAR (ver Fig. 3).

Aśı, lo importante de la Ec. (60) puede ser resumido co-
mo sigue: la probabilidad de conversión, como una función
de A, tiene unaresonanciaen

AR = ∆ cos2θ, (63)

con amplitud

Γ = ∆ sen2θ (64)
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FIGURA 3. La curva del sen2 2 eθ muestra la forma resonante. El
ángulo de mezclaθ en el vaćıo es de 0.1 para la gráfica.

Mikeyev y Smirnov [6] fueron los primeros en darse
cuenta de la importancia de la presencia de tal resonancia en
el contexto del problema de los neutrinos solares.

5. Conversíon resonante del neutrino

La observacíon crucial de Mikeyev y Smirnov [6] fue que
los neutrinos producidos en las profundidades del Sol, en ge-
neral, pasan a través de una región de densidad resonante en
su camino hacia fuera del Sol. Para ver cómo efecta esto la
propagacíon de los neutrinos, primeramente tenemos que de-
rivar la ecuacíon de evolucíon de los estados própios “ins-
tantáneos” paramateria con densidad no uniforme, como en
el Sol. Comenzaremos con la ecuación para los estados de
sabor,

i
d

dx

∣∣να

〉
=

1
2E

M̃2
∣∣να

〉
. (65)

Ésta es la misma que la Ec. (53), excepto que omitimos
los t́erminos proporcionales a la matriz identidad, debido a
que no afectan las probabilidades.

Ahora

∣∣να

〉
= Ũ

∣∣ν̃i

〉
, (66)

dondeŨ es una matriz similar a aquella que definimos en la
Ec. (28), con eĺanguloθ reeplazado por̃θ, el ángulo de mez-
cla efectivo en materia. Reescribiendo la ecuación de evolu-
ción como

i
d

dx

(
Ũ

∣∣ν̃i

〉)
=

1
2E

M̃2 Ũ
∣∣ν̃i

〉
. (67)

Tomando la derivada, debemos recordar que, en la mate-
ria no uniforme,θ̃ y consecuentementẽU son diferentes en
diferentes posiciones. De aquı́ que

i Ũ
d

dx

∣∣ν̃i

〉
+ i

(
d

dx
Ũ

)
∣∣ν̃i

〉
=

1
2E

M̃2 Ũ
∣∣ν̃i

〉
. (68)

Usando la unitariedad de la matriz̃U , obtenemos la ecua-
ción de evolucíon para los estados fı́sicos

∣∣ν̃i

〉
:

i
d

dx

∣∣ν̃i

〉
=

(
1

2E
Ũ† M̃2 Ũ − i Ũ† d

dx
Ũ

)
∣∣ν̃i

〉
. (69)

El términoŨ† M̃2 Ũ tambíen es obtenido para la materia
uniforme, y da, independientemente de los términos propor-
cionales a la matriz unitaria, losvalores propios instantáneos
m̃2

1 y m̃2
2 en las entradas de la diagonal. El otro término puede

ser calculado usando la formula explı́cita de U a partir de la
Ec. (28). De todo ello obtenemos [12]

i
d

dx




ν̃1

ν̃2


 =




m2
1

2E i deθ
dx

−i deθ
dx

m2
2

2E







ν̃1

ν̃2


 . (70)

Notemos que si(dθ̃/dx) = 0, ν̃1 y ν̃2 son de hecho esta-
dos propios estacionarios. Este es el resultado que se obtuvo
para un medio uniforme. Para un medio no uniforme como el
del Sol, tendremos que resolver esta ecuación para aśı poder
hallar diferentes probabilidades de supervivencia.

6. Solucíon adiabática

Para ciertas situaciones muy particulares, es fácil hallar una
solucíon a la Ec. (70).Éste es el caso cuandod

eθ
dx es pe-

quẽna, de tal manera que podemos hacer uso dela aproxi-
macíon adiab́atica. Posteriormente cuantificaremos qué tan
pequẽna debeŕa de serd

eθ
dx . Asumiremos aqúı que la condi-

ción adiab́atica es la ḿas relevante y que se encuentra satis-
fecha [12, 13]. En este caso,̃ν1 pasaŕa pŕacticamente como
ν̃1, que corresponde a una superposición diferente deνe y νµ

en diferentes puntos. Lo mismo es cierto paraν̃2, y esto puede
suprimir el flujo de neutrinos.

Supongamos queAo → ∞ (i.e., Ne → ∞), donde el
sub́ındice “ 0 ”, denotaŕa las cantidades en el punto de pro-
duccíon. De las Ecs. (56) y (57), tenemos entonces que

θ̃ → π

2
, i.e., νe ' ν̃2 . (71)

Este haz dẽν2 sale del Sol, en dondeA = 0. Y allı́

ν̃2 = ν2 = νe senθ + νµ cosθ . (72)
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INTRODUCCIÓN A LAS OSCILACIONESDE NEUTRINOS 375

La probabilidad de encontrarνe en el haz es dada por∣∣〈νe

∣∣ν2

〉∣∣2. Poniendo el superı́ndice “(ad)” para recordar que
estamos tratando con la solución adiab́atica y podemos escri-
bir

P (ad)
νeνe

= sen2 θ, para A0 →∞ . (73)

Debemos recordar que comenzamos con un haz el cual
era casi puramenteνe. Despúes que emerge del Sol, vemos
que la probabilidad de encontrar al mismoνe en el haz es
sen2 θ. Si θ es pequẽno, esto puede significar una tremenda
supresíon de esta especie.Ésta es la esencia principal del me-
canismo resonante de conversión de los neutrinos, el cual es
usualmente llamado “efecto Mikeyev-Smirnov-Wolfenstein” o
más brevemente “efecto MSW” despúes de los artı́culos pio-
neros de estos autores [4, 6].

En general, en el punto de creación, elángulo de mezcla
efectivo no es(π/2), sino que tiene alǵun valor θ̃0. En este
caso,

νe = ν̃1 cosθ̃0 + ν̃2 senθ̃0 . (74)

De esta manera, hay una probabilidad cos2 θ̃0 de que el
neutrino sea producido como uñν1. Si eso sucede, viajará
fuera del Sol como uñν1, donde puede ser detectado co-
mo unνe con una probabilidad cos2 θ. Esto contribuye con
un t́ermino cos2 θ̃0 cos2 θ a la probabilidad de superviven-
cia Pνeνe . Alternativamente el neutrino puede ser producido
comoν̃2, con una probabilidad sen2 θ̃0. En este caso, la pro-
babilidad de que sea detectado, comoνe es sen2 θ. Uniendo
estos dos casos, obtendremos la probabilidad de superviven-
cia total:

P (ad)
νeνe

= cos2 θ̃0 cos2 θ + sen2 θ̃0 sen2 θ

=
1
4

(
1 + cos2θ̃0

)(
1 + cos2θ

)

+
1
4

(
1− cos2θ̃0

)(
1− cos2θ

)

=
1
2

[
1 + cos2θ̃0 cos2θ

]
. (75)

La probabilidad de conversión aνµ estaŕa entonces dada
por

P (ad)
νeνµ

= 1− P (ad)
νeνe

=
1
2

[
1− cos2θ̃o cos2θ

]
. (76)

Más formalmente, para la detección de unνe a una dis-
tancia x del punto de producción, podemos escribir

P (ad)
νeνe

(x) =
∣∣∣
〈
νe(x)

∣∣νe(0)
〉∣∣∣

2

=

∣∣∣∣∣
∑

αα′

〈
νe(x)

∣∣να′(x)
〉 〈

να′(x)
∣∣να(0)

〉

× 〈
να(0)

∣∣νe(0)
〉
∣∣∣∣∣

2

, (77)

introduciendo el conjunto completo de estadosνα. Los pro-
ductos internos ḿas a la derecha y ḿas a la izquierda dan los
elementos de la matriz de mezcla en los puntos de detección
y produccíon.

El elemento medio de la matriz da una fase correspon-
diente a la propagación adiab́atica de los estadosνα, la cual
es

exp

(
i

∫ x

0

dx′ Ẽα(x′)

)
. (78)

Aśı, tenemos que

P (ad)
νeνe

(x) =

∣∣∣∣∣e
(
i
R

dx′ fE1

)
cosθ̃0 cosθ

+ e
(
i
R

dx′ fE2

)
senθ̃0 senθ

∣∣∣∣∣

2

=
1
2

[
1 + cos2θ̃0 cos2θ + sen2θ̃0 sen2θ

× cos

( ∫ x

0

dx′
(
Ẽ2 − Ẽ1

))]
. (79)

Los valores dẽE2 y Ẽ1 dependen del momento del haz de
neutrinos. En las Ecs. (75) y (76), asumiremos que el coseno,
cuyo argumento es la integral de la diferencia de las energı́as
desaparece cuando sumamos sobre todo el rango de momen-
tos de los neutrinos detectados en un experimento terrestre.

7. Efectos no adiab́aticos

Los efectos no adiabáticos inducen transiciones entre los es-
tadosν̃1 y ν̃2. Más adelante, mostraremos que para valores
realistas de los parámetros, tales efectos son importantes sólo
cerca de la región de resonancia [14]. Para otras regiones, la
aproximacíon adiab́atica es una buena aproximación y puede
ser usada sin problemas. En la región de resonancia, debemos
resolver la ecuación de propagación de manera exacta, asu-
miendo alguna forma simplificada para el perfil de densidad
que sea aproximadamente válido en esa región. A partir de
dicha solucíon podemos hallar la probabilidadPc de que en
dicha regíon tenga lugar la transición de un estado propio a
otro. Supongamos un estadoνe que es producido en el inte-
rior del Sol y que sobrevive como tal con una probabilidad
Pνeνe , si las condiciones fueran adiabáticas. En el caso no
adiab́atico, es posible que todavı́a pueda continuar como un
νe y la probabilidad de dicho evento serı́a de1−Pc. Por otro
lado, situaciones en las cuales debieron haber terminado en
un νµ en el caso adiab́atico, pueden alcanzar en estadoνe en
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el caso no adiab́atico si ocurre una transición. Tomando en
cuenta los efectos no adiabáticos, tenemos [15]

Pνeνe
=

(
1− Pc

)
P (ad)

νeνe
+ Pc P (ad)

νeνµ

=
1
2

[
1 +

(
1− 2 Pc

)
cos2θ̃0 cos2θ

]
, (80)

donde las probabilidades adiabáticas fueron tomadas de las
Ecs. (75) y (76). Despúes, encontraremosPc en t́erminos de
los paŕametros fundamentales∆ y θ. Una vez que esto es
conocido, la Ec. (80) da una formula analı́tica para determi-
nar la probabilidad de supervivencia de unνe viajando hacia
afuera del Sol.

Cosideremos, para esto, un neutrino que es producido en
la mitad ḿas lejana del Sol. Existe una cierta probabilidad no
nula de que viajará hacia la Tierra. Si esto es ası́, pasaŕa a
través de la regíon del ńucleo solar. Si este neutrino es creado
lo suficientemente lejos del centro en el Sol, donde la densi-
dad es ḿas baja que la densidad de resonancia, cruzará una
vez dicha regíon en su camino hacia el centro del Sol. Des-
pués de esto, cruzará de nuevo la región de resonancia, esta
vez en su camino hacia fuera del Sol. Razonando de mane-
ra similar al caso anterior, podemos hallar la probabilidad de
supervivencia en este caso [16]. Aquı́, P (ad)

νeνe
seŕa multiplica-

da por la probabilidad de que el neutrinocrucecerca de una
región de resonancia, pero que no cruce cerca de la otra. De
esta manera,

Pνeνe
=

[(
1−Pc

)2

+
(
Pc

)2
]
P (ad)

νeνe
+2Pc

(
1−P (no ad)

)
P (ad)

νeνµ

=
1
2

[
1 +

(
1− 2 Pc

)2

cos2θ̃0 cos2θ

]
. (81)

Aśı, las Ecs. (80) y (81) nos dan expresiones analı́ticas pa-
ra la probabilidad de supervivencia en el caso general de que
podamos expresarPc como una funcíon de los paŕametros del
problema.

8. El parámetro adiabático

Retomaremos ahora la matriz hamiltoniana de la Ec. (70).
Las soluciones adiabáticas se obtuvieron suponiendo queθ̃
es un paŕametro que varı́a muy ligeramente. Cuantificaremos
ahora este enunciado, lo cual también llevaŕa a una plausible
expresíon paraPc. Dicho de manera ḿas precisa, la condición
adiab́atica significa que los términos fuera de la diagonal en
la matriz de la Ec. (70) son mucho menores que los términos
de la diagonal principal. Al escribir la ecuación de evolucíon,
omitimos los t́erminos proporcionales a la matriz unidad por
conveniencia. Tales términos modifican los elementos diago-
nales, pero sin embargo, mantendrán su diferencia sin cam-
bio. De esta forma, en lo que a los elementos diagonales se
refiere, no es el valor de cada uno de ellos por separado lo

que es relevante, sino su diferencia. Por consiguiente, la con-
dición adiab́atica es dada por

∣∣∣∣∣
dθ̃

dx

∣∣∣∣∣ ¿
∣∣m̃2

1 − m̃2
2

∣∣
2E

. (82)

Usando la expresión parãθ en la Ec. (56) tendremos

dθ̃

dx
=
√

2GF E
∆sen2θ(

∆cos2θ−A
)2

+ ∆2 sen2 2θ
· dNe

dx
. (83)

FIGURA 4. Las ĺıneas śolidas dan el paŕametro adiab́aticoκ(x) co-
mo funcíon de la distancia del núcleo solar, para varios valores de
los paŕametros∆/E. El ángulo de mezcla en el vacı́o ha sido toma-
do como 0.1. La altura de las lı́neas punteadas es proporcional a los
valores de sen2 2eθ para un neutrino producido en el núcleo solar,
con el pico indicando el punto de resonancia. Notemos el cambio
de escala en la gráfica superior.
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Los valores propios de la masa elevados al cuadrado fue-
ron dados en la Ec. (59). Usándolos, reducimos la condición
adiab́atica en la Ec. (82) a la forma

∣∣∣∣∣
dNe

dx

∣∣∣∣∣ ¿

[(
∆ cos2θ −A

)2

+ ∆2 sen2 2θ

]3/2

2
√

2 GF E2 ·∆ sen2θ
. (84)

Retomando la expresión para eĺangulo de mezcla efec-
tivo de la Ec. (60), la expresión anterior puede ser reescrita
como

κ(x) À 1 , (85)

donde la cantidad

κ(x) ≡

(
∆
E

)2

2
√

2 GF

· sen2 2θ

sen3 2θ̃
· 1∣∣∣dNe

dx

∣∣∣
(86)

es el llamado “parámetro adiab́atico”, el cual depende de la
posicíon v́ıa θ̃ y (dNe/dx). Si la densidad es muy alta en
algún punto,θ̃ → (π/2) y κ(x) llega a ser muy grande. Por
el contrario, si la densidad de la materia se anula en algun
lugar, θ̃ → θ, y de nuevoκ(x) seŕa grande a menos queθ
tenga un valor cercano a(π/4). En la Fig. 4 se graficaκ(x)
para varios valores de∆/E y θ, asumiendo que el perfil de
densidad está dado por [17]

Ne(r) = Ne(0) exp

(
− a z2

z + b

)
, (87)

dondez = r/R¯. Los valores de los parámetros a, b yNe(0)
que fueron usados son presentados en la Tabla I.Ne(0) da el
valor de la densidad de electrones en el centro del Sol, ex-
presada en términos del ńumero de Avogadro de partı́culas
por cm3:

NAV O = 6.03× 1023/cm3 (88)

Los valores de los parámetros presentados en la Tabla I
dan un buen ajuste de los valores deNe obtenidos del mode-
lo solar est́andar, y seǵun puede verse en la Fig. 5.

De la Ec. (86), es obvio que la condición adiab́atica es
más dificil de satisfacer en el punto de resonancia, donde
el sen2θ̃ es ḿaximo. En efecto en todos los casos mostra-
dos en la Fig. 5 las regiones alejadas del punto de resonancia
pueden siempre ser tratadas adiabáticamente [14]. La proba-
bilidad Pc de transicíon introducida anteriormente depende
únicamente de las condiciones cerca de la resonancia. El va-
lor del paŕametro adiab́aticoκ(x) evaluado en la resonancia
lo llamaremos simplemente comoκR, el cual puede obtener-
se de la Ec. (86) poniendo sen2θ̃ = 1. Si hacemos uso de la
expresíon para la densidad resonante

TABLA I. Medidas analı́ticas para las densidades de electrones y
neutrones en el Sol. De la referencia [17]. Los paŕametros dados
aqúı deben ser puestos en la forma funcional de la Ec. (87).

Cantidad N(0)/N a b

Ne 98,8 11,1 0,15

Nn 48,4 11,1 0,02

Ne − 1
2

Nn 74,6 11,1 0,20

FIGURA 5. Los puntos son obtenidos de los cálculos del modelo
solar est́andar. La ĺınea śolida es donde se ajusta la Ec. (87).

NR =
∆ cos2θ

2
√

2 GF E
(89)

que resulta de la Ec. (63) y de la definición para A, nos queda

κR ≡ ∆
E
· sen2 2θ

cos2θ
· 1∣∣∣ d

dx ln Ne

∣∣∣
R

. (90)

Por supuesto siκR À 1, entonces la propagación es
adiab́atica en todas partes, mientras que, siκR

<∼ 1, enton-
cesPc es apreciable.

Es claro quePc debe de ser ḿas grande para valores ma-
yores deE, lo cual significa que cuanto ḿas enerǵeticos sean
los neutrinos deben cruzar más rapidamente. CuandoE → 0,
Pc debe desaparecer. Tambien,Pc no puede ser un polinómio
enE dado que el cruce de niveles es esencialmente un efecto
no perturbativo. Estas consideraciones sugirieron una forma
de solucíon exponencial dada por Haxton y Parke [18],

Pc = exp
(
− κR F

)
, (91)

donde la cantidadF es independiente deE y depende de la
forma como vaŕıaNe cerca de la resonancia.
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Por otro lado, D’Olivo [19] usando la aproximación de
Magnus, obtuvo una expresión anaĺıtica para la probabilidad
de transicíon cuando los efectos no adiabáticos comienzan a
ser importantes, es decir cuandoκR

<∼ 1, la cual reproduce
el lı́mite adiab́atico y considera efectivamente la salida des-
de la adiabaticidad cuando nos movemos hacia el regimen
no adiab́atico o tambien conocido como regimen repentino,
reproduciendo satisfactoriamente en forma general la proba-
bilidad de supervivencia del neutrino solar como una función
de la enerǵıa. Dicha formula se comporta cualitativa y cuan-
titativamente mejor que la Ec. (91) citada arriba, para todo el
rango de valores de energı́a de los neutrinos, sin hacer uso de
un perf́ıl espećıfico de densidad.

9. La aproximación semicĺasica

La probabilidad de transición no adiab́atica entre dos estados
fue calculada independientemente por Landau [20], Zener
[21] y Stückelberg [22] en el contexto de los problemas en
fı́sica nuclear, y fue aplicada al presente caso por Parke [15]
y por Haxton [23]. Para encontrar el comportamiento princi-
pal en la aproximación semicĺasica, podemos usar el método
de Landau de la trayectoria compleja [24].

Este ḿetodo da

ln (Pc) = − 2 =m
[
S1(t1, t∗) + S2(t∗, t2)

]
, (92)

dondeS1(t1, t∗), por ejemplo, denota la acción para el movi-
miento del haz de neutrinos en el estadoν̃1 de alǵun tiempo
inicial t1 a un tiempo de transiciónt∗, el cual especificaremos
más adelante. Después del tiempot∗ es usada la acción en el
estadoν̃2 hasta alǵun tiempo finalt2 cuando el haz de neu-
trinos proviene de la región no adiab́atica. Las partes imagi-
narias de la acción permanecen sin ser afectadas si tomamos
t1 = t2 = tR, siendotR el tiempo en el cual el haz de neutri-
nos cruza el punto de resonancia.

De esta manera,

ln (Pc) = − 2 =m

∫ t∗

tR

dt
(
Ẽ2 − Ẽ1

)
, (93)

dondeẼα son los estados propios de energı́a en el medio da-
dos por la Ec. (58). Cambiando la variable de integración de
t a A, obtenemos

ln (Pc) = − 1
E
=m

∫ A∗

AR

dA(
dA/dx

)

×
√(

∆ cos2θ −A
)2 + ∆2 sen2 2θ , (94)

donde como antes estamos usando t y x en forma intercam-
biable y hemos reemplazadodA

dt por dA
dx . El lı́mite inferior de

esta integral esAR = ∆ cos2θ. El lı́mite superior,A∗, es el
valor de A en el “punto de transicíon” mencionado anterior-
mente. En el ḿetodo de Landau,́este es el valor de A para el

cual los dos valores propios coinciden, es decir,Ẽ1 = Ẽ2. De
la Fig. 2, vemos que esto no sucede para ningún valor real de
A. De hecho de las Ecs. (58) y (59) tenemos que

A∗ = ∆ e± 2 i θ, (95)

el cual es complejo. Ası́, la integracíon de la Ec. (93) ten-
drá que ser hecha para valores complejos de A. Es por esta
raźon que este ḿetodo es llamado elmétodo de trayectorias
complejas.

Para evaluar la integral necesitamos saber cuál es la for-
ma de A como una función de x en la región de resonancia.
Si la variacíon es lineal,dA/dx es constante y podemos sa-
carla fuera de la integral. Si este valor es positivo, usamos el
exponente positivo en la Ec. (95) tal queln Pc es negativo. Si
dA/dx es negativo, usamos el exponente negativo de la Ec.
(95). En cualquier caso cambiando la variable de integración
de A aa =

(
A−∆ cos2θ

)
/ ∆ sen2θ, tenemos:

ln (Pc) = − ∆2 sen2 2θ

E
∣∣∣dA/dx

∣∣∣
R

=m

∫ i

0

da
√

1 + a2

= − ∆2 sen2 2θ

E
∣∣∣dA/dx

∣∣∣
R

· π

4
. (96)

Recordando queAR = ∆ cos2θ, podemos también es-
cribir como

ln (Pc) = − ∆ sen2 2θ

E cos2θ
· 1∣∣∣ d

dx ln A
∣∣∣
· π

4
. (97)

Esto muestra que en la Ec. (91), debe tomarseF = π/4, es
decir,

Pc = exp
(
− π

4
κR

)
. (98)

Por supuesto, este resultado se basa en la suposición de
que A es una función lineal de x cerca de la resonancia, lo
cual puede parecer un poco drástico. Para una disminución
exponencial en la densidad solar cercana a la resonancia se
obtiene [25] F = π/4

(
1 − tan2 θ

)
. Esto es de interés

fı́sico, dado que la densidad solar tiene de hecho una varia-
ción exponencial para una región amplia en el Sol. Sin em-
bargo, para la mayorı́a de los valores deθ que son de interés,
la diferencia en el caso exponencial y el lineal es insignifi-
cante. De esta manera, en lo que sigue tomaremos la forma
más simple, es decir,F = π/4.

10. El ĺımite extremo no adiab́atico

El método de Landau descrito arriba es un método semi-
clásico y nos da el término principal en el lı́mite de grandes
valores del exponente. CuandoκR es muy pequẽno (¿ 1), la
expresíon paraPc dada por la Ec. (98) no es satisfactoria. La
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limitación de la Ec. (98) puede ser entendida si analizamos
un ejemplo simplificado [26].

Consideremos un haz de neutrinos viajando a través de la
frontera entre un medio uniforme y el espacio vacı́o. La pro-
pagacíon es obviamente adiabática para el medio uniforme,
aśı como para el vaćıo, dado que ambos medios tienen densi-

dades uniformes. Pero en el borde, hay un abrupto cambio
de densidad tal que(dNe/dx) → ∞, lo cual significa que
si tomamos la Ec. (86),κ(x) → 0, esto es, la situación es
altamente no adiab́atica. Si denotamos por “x ” a un punto
en lo ḿas profundo del medio y por “y ” a otro punto en la
parte externa (en el vacı́o), es posible escribir la probabilidad
de transicíon como

Pc ≡
∣∣∣
〈
ν2(y)

∣∣∣ν̃1(x)
〉∣∣∣

2

=

∣∣∣∣∣
∑

l

〈
ν2(y)

∣∣∣ν2(y′)
〉〈

ν2(y′)
∣∣∣νl(y′)

〉〈
νl(y′)

∣∣∣νl(x′)
〉〈

νl(x′)
∣∣∣ν̃1(x′)

〉〈
ν̃1(x′)

∣∣∣ν̃1(x)
〉∣∣∣∣∣

2

, (99)

dondex′ es un punto justo dentro del medio yy′ est́a fuera
del medio (en el vaćıo), en los dos lados de la frontera pla-
na. Los estados de sabor son continuos a través del borde, es
decir,

〈
νl(y′)

∣∣ νl(x′)
〉

= 1. Usando la matriz de mezcla en
materia y en el vaćıo y despreciando todos los términos de
interferencia, obtenemos

Pc = sen2
(
θ̃ − θ

)
. (100)

Si por ejemplo el medio es muy denso,θ̃ → π
2 tal que

Pc = cos2 θ . (101)

Éste no es el lı́mite que obtenemos de la Ec. (91), el cual
nos daPc → 1 cuandoκR → 0. La diferencia es significativa
si θ no es pequẽna. Para convencernos de que la Ec. (101) da
el resultado correcto en contraste con el resultado incorrec-
to de la Ec. (91), deberemos trabajar la expresion de laPc

dentro de la expresión para la probabilidad de supervivencia
dada por la Ec. (80). Esto nos dará, usandõθ0 = π/2,

Pνeνe = 1− 1
2

sen2 2θ . (102)

Ésta es la probabilidad de supervivencia promedio de la
enerǵıa en el vaćıo, como la obtenida en la Ec. (61).Éste es
el resultado esperado coñθ = π

2 , pues no hay oscilaciones en
el medio como puede ser visto poniendo elángulo de mezcla
igual aπ/2 en la Ec. (36). Las oscilaciones pueden ocurrir
sólo despúes de que los rayos escapan hacia el vacı́o y por
consiguiente el resultado del lı́mite de vaćıo es recuperado.

Llegando a estar convencidos de las limitaciones de la
forma exponencial paraPc en la Ec. (91) deberemos buscar
una f́ormula mejor.Ésta puede ser obtenida por soluciones
exactas de la ecuación de propagación. Es por esto que usual-
mente se emplean los estados de sabor directamente. Comen-
zando con la Ec. (51) e inmediatamente después podemos es-
cribir las dos ecuaciones diferenciales de primer grado para
νe y νµ. Eliminando aνµ de estas ecuaciones obtenemos

ν̈e + i
(
H̃11 + H̃22

)
ν̇e

+
(
H̃2

12 − H̃11H̃22 + i
˙̃

H11

)
νe = 0 , (103)

en donde hemos retomado el hecho que solo el elementoH̃11

es dependiente de x, [ver la Ec. (54)]. Defineremos ahora una
nueva variable

ae = exp

(
i

∫ x

dx′ H̃11(x′)

)
νe , (104)

la cual difiere de la variable vieja sólo por una fase y por con-
siguiente no afecta las probabilidades. En términos de esta
nueva variable, la ecuación anterior se transforma en [27]

äe + i
(
H̃22 − H̃11

)
ȧe + H̃2

12 ae = 0 . (105)

Es necesario resolver la ecuación precedente y para ello
necesitamos poner lãH11 que es funcíon de x. Una vez que se
ha hecho esto, la probabilidad de supervivencia a una cierta

distancia x estará dada por
∣∣∣ae (x)

∣∣∣
2

.

En principio, si nosotros somos capaces de resolver la
Ec. (105) para el perfil de densidad del Sol, entonces ob-
tendremos una respuesta exacta para las probabilidades de
supervivencia de los neutrinos solares. Esto, sin embargo,
no puede ser hecho debido a que el perfil de densidad so-
lar tiene una forma complicada. Es por ello que resolvemos
la Ec. (105) solo cerca de la región de resonancia, asumiendo
alguna formasimplepara la variacíon de la densidad, la cual
seŕıa aproximadamente válida en esa limitada región .

La solucíon exacta en esta región da la probabilidadPc de
transicíon cerca de la región de resonancia, la cual está dada
por 1−

∣∣ae

∣∣2. Una vez hecho esto, podemos usar la Ec. (80)
o la Ec. (81) para encontrar la probabilidad de supervivencia
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despúes de que el haz de neutrinos ha atravezado el material
solar.

La solucíon exacta de la Ec. (105) fue primeramente he-
cha para una variación lineal de la densidad [15], pero desde
entonces se ha resuelto para otros perfiles de densidad [28].
Todas estas soluciones dan la forma

Pc =
exp

(
− κR F

)
− exp

(
− κR F

sen2 θ

)

1− exp
(
− κR F

sen2 θ

) , (106)

en dondeF se ha calculado usando el método de Landau-
Zener. Notemos que paraκR → 0, esto nos dará el ĺımite
correcto de la Ec. (102). Donde esta forma es aceptable pa-
ra todas las soluciones conocidas, es más, se ha conjeturado
[26] que dicha forma funciona bien aun prescindiendo de la
naturaleza de la variación de la densidad.

Resumiendo la solución de la ecuación de evolucíon pa-
ra el rayo de neutrinos dada por la Ec. (70), tenemos que la
probabilidad de que unνe sobreviva como unνe est́a dada
por

Pνeνe
=

1
2

[
1 +

(
1− 2Pc

)n

cos2θ̃0 cos2θ

]
, (107)

donden es1 o 2 dependiendo si las resonancias hayan sido
encontradas una o dos veces,θ̃0 es elángulo de mezcla efec-
tivo en el punto donde el neutrino es producido y está dado
por

tan2θ̃0 =
∆
E sen2θ

∆
E cos2θ − 2

√
2 GF N0

, (108)

siendoN0 la densidad del ńumero de electrones en el punto
de produccíon. Para la probabilidad de transición Pc, usare-
mos la expresión más simple

Pc = exp

(
− π

4
· ∆
E
· sen2 2θ

cos2θ
· 1∣∣∣ d

dx ln Ne

∣∣∣
R

)
, (109)

la cual es v́alida si la variacíon de la densidad es lineal cerca
de la resonancia.

Para calcularPνeνe para neutrinos de una energı́a dada,
necesitamos dos clases de información. Primero, necesitamos
conocer el perfil de densidad de electrones en el Sol, de tal
manera que ası́ podamos conocerN0 donde es producido el
neutrino. El perfil tambíen nos daŕa la cantidad

∣∣∣ d
dx ln Ne

∣∣∣
en el punto de resonancia, el cual aparece en la expresión
paraPc. Segundo, necesitamos los parámetros f́ısicos de la
part́ıcula del problema, especificando de nuevo elángulo de
mezclaθ y la diferencia de las masas elevadas al cuadrado∆.

11. Solucíon con tres generaciones

Es posible en principio generalizar las fórmulas obtenidas en
el caso de dos generaciones para incluir los efectos de la ter-
cera generación, es decir, incluir el tercer sabor del neutrino
(ντ ). Para el caso de las oscilaciones en el vacı́o, podemos
escribir cualquier estado de sabor en general como

∣∣νl

〉
=

∑

j

Ul j

∣∣νj

〉
, (110)

donde eĺındice j corre sobre todos los estados propios de
masa. Si se crea un haz deνl al tiempot = 0, su evolucíon
en el tiempo estará gobernada por

∣∣νl (t)
〉

=
∑
α

e− i Eα t Ulα

∣∣να

〉
. (111)

La probabilidad de encontrar el estado de saborνl′ en este
estado está dada por

Pνlνl′ (t) =
∣∣∣
〈
νl′

∣∣νl(t)
〉∣∣∣

2

=
∑

α,β

∣∣∣UlαU∗
l′αU∗

lβUl′β

∣∣∣

× cos
[(

Eα − Eβ

)
t− ϕll′αβ

]
, (112)

donde
ϕll′αβ = arg

(
Ulα U∗

l′α U∗
lβ Ul′β

)
. (113)

Usando la aproximación Eα À mα como antes, pode-
mos usar la Ec. (6) para escribir [29]

Pνlνl′ (x) =
∑

α,β

∣∣∣Ulα U∗
l′α U∗

lβ Ul′β

∣∣∣

×cos

(
∆αβ

2E
x− ϕll′αβ

)
, (114)

donde
∆αβ ≡ m2

α −m2
β . (115)

Como en el caso de dos generaciones, hay algunas re-
giones permitidas donde los valores de∆ est́an cercanos a
10− 10 eV 2. Pero, con tres generaciones, algún nuevo tipo
de soluciones son también posibles. Por esto, vamos a con-
siderar que estamos en un rango de valores de∆αβ donde
(∆αβ/2E)x À 1 para enerǵıas t́ıpicas de neutrinos solares.
La enerǵıa completamente promediada abarca entonces los
términos conα 6= β y tendremos que

P̄νlνl′ =
∑
α

∣∣∣Ulα

∣∣∣
2 ∣∣∣Ul′α

∣∣∣
2

. (116)
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Para proceder algunos autores [9] toman la siguiente pa-
rametrizacíon de los elementos de la matriz de mezcla de
Cabbibo - Kobayashi - Maskawa (CKM):

Ue1 = cosθ1, Ue2 = senθ1 cosθ2,

Ue3 = senθ1 senθ2 . (117)

Entonces,

P̄νeνe = cos4 θ1 + sen4 θ1

(
cos4 θ2 + sen4 θ2

)
. (118)

A diferencia del caso de dos generaciones donde
P̄νeνe À 1/2, aqúı podemos tener āPνeνe

tan bajo co-
mo 1/3. Esto puede ser consistente con las probabilidades
de 2σ que se encuentran en los experimentosHomestake y
Kamiokande. La solucíon para lośangulos est́a mostrada en
la Fig. 6. Los valores de las diferencias de masas elevadas al
cuadrado tienen que ser mucho más grandes de10−10 eV 2

y est́an acotados superiormente por los lı́mites que imponen
los experimentos terrestres.

Es relativamente fácil de calcular las correspondientes
probabilidades si tomamos en cuenta los efectos de la ma-
teria, ya que la propagación en el medio es adiabática. Si-
guiendo los argumentos que llevan a la Ec. (75), tenemos

P (ad)
νlνl′

=
∑
α

∣∣∣Ũlα

∣∣∣
2 ∣∣∣Ul′α

∣∣∣
2

, (119)

dondeŨ es la matriz de mezcla efectiva en el punto donde
el neutrino es producido. Esto pareceengãnosamente simple.
La partepesadainvolucra la determinación deŨ en t́erminos

FIGURA 6. Soluciones de oscilación en el vaćıo para el proble-
ma del neutrino solar con tres generaciones de neutrinos. Las
diferencias de masas elevadas al cuadrado se han asumido que
sonÀ 10−10 eV 2. El interior de las curvas interna y externa son
consistentes con los datos de los niveles2 σ y 3 σ respectivamente.

de la densidad del medio y la energı́a de los neutrinos. El
ańalisis exacto para el caso de tres generaciones [30] esver-
daderamente complicadodado que involucra la solución de
una ecuacíon ćubica. Algunas t́ecnicas de solución aproxima-
da han sido tratadas en la literatura [31].

De la discusíon de dos generaciones es obvio que dos re-
sonancias ocurriran en el caso de tres generaciones. En un
diagrama como el de la Fig. 2 estas resonancias tienen lugar
cuando

〈
Eνe

〉
cruza

〈
Eνµ

〉
y

〈
Eντ

〉
, respectivamente. Cuan-

do las dos están muy separadas, las dos resonancias pueden
ser tratadas independientemente una de la otra.

Pero aun entonces la confrontación con los datos experi-
mentales está verdaderamente complicada por muchas razo-
nes. El espacio solución es mucho mayor dado que involucra
dos diferencias de masas elevadas al cuadrado, es decir,∆21

y ∆31, aśı como tambien los treśangulos de mezcla. En gene-
ral, hasta las fases que violan CP pueden aparecer en la matriz
de mezcla, haciendo el problema más frustrante. Sin embar-
go, los resultados de los experimentos pueden no estar corre-
lacionados en el sentido de que uno de ellos puede mostrar
una “reduccíon” en flujo porque deνe’s se est́an convirtiendo
a νµ’s, mientras que el otro puede mostrar una “reduccíon”
porque deνe’s se est́an convirtiendo aντ ’s [32].

Los efectos no adiabáticos haŕan el problemamás com-
plicado. Introducen transiciones entre diferentes estados es-
tacionarios. Si denotamos la probabilidad de transición de un
estadõνα a un estadõνβ porP c

αβ , entonces

Pνlνl′ =
∑

α,β

∣∣∣Ũlα

∣∣∣
2 ∣∣∣Ul′β

∣∣∣
2

P c
αβ . (120)

ParaN generaciones, hay a lo más(N − 1)2 cantidades
independientes, dado queP c

αβ debe satisfacer las relaciones

∑
α

P c
αβ = 1 y

∑

β

P c
αβ = 1 ,

lo cual se sigue de la unitariedad. Sin embargo, las cantidades
P c

αβ , en general, no pueden ser calculadas analı́ticamente.
Algunas conjeturas se han hecho donde las resonancias están
bien separadas [33–36].

12. Conclusiones

Hemos revisado las bases teóricas de las oscilaciones de neu-
trinos en el vaćıo y en medios materiales para el caso de dos
generaciones. Hemos puesto especialénfasis a la conversión
resonante del neutrino en el Sol (el llamado efectoMSW) y
hemos revisado de forma somera el caso de tres generacio-
nes. Esperamos que este trabajo sirva al lector de inspiración
para profundizar sus conocimientos en lafı́sica de los neutri-
nos masivos, pues estamos seguros que los neutrinos tendrán
mucho que decir en la construcción de un modelo téorico más
allá del modelo estándar.
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Rev. Mex. F́ıs. 48 (4) (2002) 366–383
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