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Muy recientemente en el Observatorio de Neutrinos Solares (SNO) de Sudbury Canada, dieron a conocer la primera evidencia experimental
de que los neutrinos producidos en el coraziel Sol cambian de identidad en su viaje hasta la Tierra. La expicads probable de

dicho feronomeno son las llamadascilaciones de neutrino&€n el presente trabajo damos una introdaalidactica a las oscilaciones

de neutrinos, tanto en el viaccomo en medios materiales; destacando enidstao caso el efecto resonante MSW. Dicho trabaj@ est
formulado para el caso de dos generaciones de neutrinos, sin embargo, damos un bosquejo para el caso de tres generaciones.

Descriptores: Oscilaciones de neutrinos; oscilaciones con dos especies; efecto MSW.

Recently the Solar Neutrino Observatory (SNO) group in Sudbury Canda, showed the first experimental evidence that neutrino produced in
the Sun’s core, change their flavour when they propagate. The most probably explanation of such phenomenpauwrimthescillation

In this work we give a pedagogical introduction to neutrino oscillation, both in the vacum and in the material medium, emphathizing the
resonant MSW effect in the medium. This work is formulated for two neutrino generations however, we give a brief summary of three
neutrino generations.

Keywords: Neutrino oscillations; oscillations with two flavors; MSW efect.

PACS: 26.65.+t; 13.15.+0; 14.60.Pq

1. Introduccion tudes de oscilabn tienen un comportamiento resonante para
ciertos valores de la enéegde los neutrinos. De esta manera,

&un cuando los pametros de las oscilaciones (diferencias de
masas yangulos de mezcla) sean pefjas en el vao, pue-

Aunque sumamente exitoso en lo que a sus predicciones fi
nomenobgicas se refiere, el modelo astlar de las interac-

ciones electrogbiles parece incompleto desde un punto deden incrementarse notablemente cuando los neutrinos atra-

vista tébrico [1]. En su forma actual no es dapde predecir viesan medios densos como el Sol u otras estrellas.
las masas de los fermiones (leptones y quarks) ni de explicar _ _ ]
porgLe hay varias familias de tales gartlas. El pasado 18 de Junio de 2001 el equipo de diens

del laboratorio Canadiense SNO (Sudbury Neutrino Obser-
El estudio de las propiedades de los neutrinos ha jugatory) dieron a conocer la primera evidencia experimental
do un rol esencial en la caracterizaide las interacciones de que los neutrinos producidos en el interior del Sol cam-
débiles y podia aportar nuevos ingredientes para el desarrobian desabor, i.e., cambian de identidad en su viaje del Sol
llo de futuras tedas de las paitulas elementales2]. Entre ~ ala Tierra []. Todo parece indicar que la explicaoi mas
los aspectos de lasica de los neutrinos que permanecén a plausible de dicho fedmeno son las oscilaciones de neutri-
sin ser dilucidados, cabe mencionarse la caastie si sus nos. Es por tal motivo que nos proponemos dar una intro-
masas son o no diferentes de cero, y en tal caso, si los estadésccidn didactica de dicho febmeno, cenindonos en el ca-
creados en los proceso8hiles ¢., v, v,) son combinacio- SO de dos generaciones de neutrinos. Esto lo hacemos con la
nes lineales de otros estados, (-, ;) con masas defini- finalidad de explicar con mayor claridad en lengua castella-
das BJ. na, las ideas feicas subyacentes. El presente trabajo es una
recopilacon didactica inspirada en los trabajos de P. B. Pal
Uno de los febmenos ras interesantes que se presentd 9], centéndose en los aspectofigrelevantes de lésica de
cuando existe mezcla entre neutrinos masivos, son las llamaeutrinos masivos y su reléci con el llamad@nigma de los
das oscilaciones de neutrinos, es decir, transformaciones peeutrinos solareskl trabajo est organizado como sigue: en
riodicas de neutrinos de un sabor en otro (porgj= v,)  la Sec. 2 discutimos el formalismo general de oscilaciones.
[4]. Debido a su interacon con la materia, neutrinos con En la Sec. 3 nos introducimos a las oscilaciones de neutri-
distintos sabores tiendndices de refracon diferentes. Ello  nos en el vaio. De la Sec. 4 a la 10 discutimos los efectos
hace que, en general, las oscilaciones se vean afectadas piérla evoluadn de los neutrinos en un medio material como
las propiedades del medio a téavdel cual los neutrinos se el Sol y analizamos las soluciones propuestascasio el
propagan J]. efecto MSW. Antes de concluir el presente trabajo, en la Sec.
11 damos un bosquejo de los problemas que aparecen en un
En un importante trabajo, Mikheyev y Smirno¥] [de-  arélisis mas realista de tres generaciones. Finalmente damos
mostraron que en un medio con densidad variable las ampliruestras conclusiones.



INTRODUCCON A LAS OSCILACIONES DE NEUTRINOS 367

2. Formalismo general de oscilaciones con
U= yUt =
De acuerdo con el modelo asidar de las interacciones elec- vy =uvut =1,
trodébiles (SM) de Welnberg-SaIam-GIashpw],ﬂos lepto- ie. Z UniU5; = 60 Z UaiUZ; =655 . (4)
nes se encuentran agrupados en tres familias o sabores, deno- - =~
minados
Para antineutrinos tenemos que reemplazarpor U,
Ve v, » v, es decir,
= ; ; oy Vo) =Y _Us|7) - (5)
« e I T i

y las corrt'es_pondlentles ,fam|I|asIdetanfulept_or:je_zs_aLalsefBam|Ilas El namero de pametros de una matrix unitariex n es
S€ caracterizan por IoIMeros [eptonicos individuales, den?ylas2n — 1 fases relativas de ldx estados de neu-

(nﬂmero del elecon L., numero del mon L,,, numero del trinos, pueden redefinirse de tal modo que se dgjen 1)2
tawon L) de tal modo que: parametros independientes izquierdos. Por esto es convenien-
te tomar los;-(n — 1) “angulos de mezclaébiles de una
Lo(v) = 0up para neutrinos, rotacbn n-dimensional y Ia%(n — 1)(n — 2) las “fases que
violan CP".
Al ser autoestados de la matriz de masa, los estadbs
Las oscilaciones de neutrinos, es decir, las transicioneZ0n estacionarios, es decir, tienen dependencia temporal
peribdicasy, = vg entre los diferentes tipos de sabores de
neutrinos dependen del tiempo, y las condiciones necesarias

L (v3) = — dap para antineutrinos (2

para que ocurran tales oscilaciones son que: vi(t)) = €7 Fiuy), (6)
(a) Las diferencias de masas,, — m,,, no son todas ce- gn
ro, lo que implica que no todos los neutrinos son no
masivos.
1m? 1m?
(b) Los mimeros lepinicos individualed., no son extric-  Ei = /p* +m? =p+ 3 i FE+ 3 E )
tamente conservados. p
m; << E;, (7)

En estelltimo caso los autoestaddsl|ya>, llamados
autoestados de saben general, no son autoestados del ope
rador de masa/, es decir{v,|M|v3) # 0 paraa # . Mas
bien son superposiciones lineales de autoestados de masa
degenerado$;) con (v;|M|v;) = m;d;; y m; —m; # 0
parai # j. Las oscilaciones de neutrinosnezclade sabores
de neutrinos/, = v pueden ocurrir entonces debido a que
(vo|M|vg) es diferente de cero para# 3. Las dos condi- ) = Z U,.e-ibit

1

dondeF = p es la ener@ total del neutrino y supondremos
gue los neutrinos son establesiAm estado de sabor puro
29) = 3=, Uailvi) al iempot = 0, evolucionag con el
tiempo en el estado

Vi)

=D UailU; €75
i

ciones listadas arriba son lagmimas extensiones al modelo
electroekbil estndar SM 2].

Por otro lado, los n autoestados de sgbg) (i.e., v, vy,

v, ...) Y l0s n autoestados de masa, tambien llamados auto-

estados’lfsicos|ui> (i.e, v1, v, v3, ...) SON relacionados por La dependencia temporal endeplitud de transidin pa-

una transformaéin unitarial llamadamatriz de mezclaa ra el cambio del sabor, al sabom; es

cual es aaloga a la matriz de Cabbibo-Kobayashi-Maskawua

para el sector de quarks. En el SM, todos los neutrinos son no

masivos, en cuyo caso la mattizno tiene significadai$ico. A(va — vgit) = <y5 ]u(t)) _ Z U, UL @ iBit

Por lo tanto, al introducir la matriz de mezcla, estamos su- ’ ; A

poniendo impkitamente que al menos uno de los neutrinos

tienemasa no nula = Uai-06; ;€71 Fit. (UT) 4
J, B

]

vg) - 8)

[va) = 2 Uailvi) = |vi) =(v-p-vt) )

ap
= Z U:a’ya> = ZU;z

Va>; (3) con A
D; ;= 5i7je*lE"’t (matriz diagonal) .
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Se obtiene una expré@si equivalente de la amplitud de

LUISG. CABRAL-ROSETTI

término es la probabilidad de tranginipromedio, promedia-

transicbn, insertando la Ec. (7) en la Ec. (9) y extrayendo unda sobre el tiempo (distancia) o erierg

factor de fase globd® — Fi t:

m3

ZUwUﬁz e

oo

t

th

A/( Vo — Vﬁ7

N

m2
2

B = A(vg — vpit) (10)

=> UaiU;€7"

dondeL = ¢t (¢ = 1) es la distancia del detector, en el cual
se observa/g desde la fuente,. Para ungj fija seleccio-
nada arbitrariamente obtenemos una tercera expres la
amplitud de transi@in:

A (Vg — vgit) = €7 FI L Ay, — vg;t)
= ZUMUEZ»E*”EI‘*EJ‘”

faaﬁZUmUm[e (BmEy)t ]

= 5cxﬁ+z chiU,;;i |:eiiAij - 1:|; (11)
i#]
con s
(B _E mi; L
Aij = (E Ej)t— - (12)
donde
5m?j =m? —m?.

En la Ec. (11) se utilia la relacon de unitariedad de la
Ec. (4). De esta forma las amplitudes de trarisicion da-
das por logn — 1)? paametros independientes de la matriz

unitaria (la cual determina las amplitudes de las oscilaciones)
y lasn — 1 diferencias de las masas elevadas al cuadrado (lo
cual determina la frecuencia de las oscilaciones), es decir, por

losn(n—1) paametros reales. §lP se conserva en las osci-

<77(1/,JK — 1/5)> = Z ’UMUEi 2 —

Z ’Uinﬁi i

<77(1/5 — Va)> . (14)

Midiendo las probabilidades promedio obtenemos
Unicamente informabn sobre los pa@ametros de la matriz
de mezcla, pero no sobre las diferencias de las masas ele-
vadas al cuadrado. Se puede mostr&} de la relacbn de

=1que(P(va = va)) = 22; |Uni

es mnima si todas la: aLson iguales. Usando la

relacbn de unitariedad (4) la probabilidad puede escribirse
tambien como

P(vo — vs;t) = dap

+2Re > UailU5Us;Ups [ €125
j>i
Parat = 0, es decir,A;; = 0 tenemos por supuesto
P(va — vp;0) = dap. Ademas, > 5 P(va — vgit) = 1
debido a (4).
Si se conserv@’ P (U,; es real), las Ecs. (13) y (15) se
reducen a

1} . (15)

Z (mU[J'z

+QZUQiUmUajUﬁj COSA,;j
=0ap =4 UailUpiUa;Ug; sert

7>
> ( 2 ) (16)
>

Para el caso: > 2 las formulas de las probabilida-

P(vo — vs;t)

laciones de neutrinos, desaparecen todas las fases que viof#$ de transién son nas bien complicadas. Sin embar-

CPy lasU,; son reales, es dedit es una matriz ortogonal
(U~' = UT) con(1/2)n(n — 1) paametros. Entonces, el
nimero de pametros para las amplitudes de trar@sicson
(1/2)(n — 1)(n + 2).

La probabilidad de transidn se obtiene elevando al cua-
drado el nbdulo de las amplitudes Ec. (9):

2
P(ve — vp;t) = ’ZUaiUEie*int

3 Ui i

+2Re > UailUpUs;Us € 180

Jj>i

(13)

go el formalismo se simplifica fuertemente en el caso de
que todas las masas de los neutrinoredtien separa-
das una de otrah{pbtesis de jerargia de masas es decir,

|m? — m?| < |m? — m?| parai, j # k. Enéste caso
L/Eenla Ec. (12) se incrementa desde cero de tal modo que
A;; < Ay, = A parai, j # k, Unicamente ocurren oscila-
ciones debido a quA # 0 (oscilaciones principalgstodas

las otrag\\;; ~ 0y los paéntesis cuadrados en las Ecs. (11) y
(15) desaparecen. De esta manera, para las oscilaciones prin-
cipales tenemos:

Ava—vgit)= 5a5+( e-is- )Z Uil
i#]

) o

= b + (eﬂA — UakUs,

Aqui el segundoérmino describe la dependencia tempo-

_ —iA _ * *
ral (o espacial) de las oscilaciones de los neutrinos y el primer =€ Paﬁ U“’“Uﬁ’“} FUeaUpe - (17)

Rev. Mex. 5. 48 (4) (2002) 366-383



INTRODUCCON A LAS OSCILACIONES DE NEUTRINOS 369

Elevando al cuadrado elddulo deA(v, — vs;t) se 3. Oscilaciones de véao, caso N = 2
obtiene
P(va — vg;t) = dap + 2Re (e*iA - 1) U Usk En esta secon, a$ como en el resto del presente trabajo,
nos restingiremos al caso de dos generaciones, a fin de expli-
car con mayor claridad las idea®tias involucradas en la
solucbn del problema de los neutrinos solares. El cags m
realista de tres generacione$ asmo sus efectos y conse-

(18) cuencias, sérdiscutido brevemente en la Sec. 1. |
Analicemos la evoluéin en el tiempo 10] de un haz de

neutrinos que se propagan en eligat.a ecuadn de evolu-
cion en la base de lostitoestadosi§icos |u,> es

-(%B—UMU&)

=P(vg — va;t) .
De esta forma

2 4 2 A d
Plva — ya)_1_4-(\Uak ~Uar| ) -se 5 | 19 i 2| (t) = Ho |vi)(8), (24)
Pl s £ ) 1 ‘U ) Q‘U k‘z _ser? A en dondef, es el hamiltoniano del sistema, el cual es diago-
a Vg7 Va a s nal en esta base:
Py — vt ). (20) oo
H, = . (25)

Para finalizar esta secui, discutiremos brevemente la
matriz de masavl mencionada antes. Puesto que los esta-
dos|z/i> tienen masas definidas;, M es diagonal en la re-
presentadn |v; ): Para estudiar el problema de los neutrinos solares es nece-
sario que consideremos neutrinos cuyas éasrgean del or-
den de 1 MeV. Los experimentos de laboratorio ponen los si-

(il Mlvs) = midi; . (1) guientesimites superiores en las masas de los distintos neu-

En la representadh |v,, ) la matriz de masa tiene los ele- trinos [11]:

mentos
my,, < 22eV; my, < 0.19 MeV ; m, < 18.2 MeV.

(s Mva) = > _ (vs|vi)(wi Mv;){v; |va)
i, De esta manera se tiene que < E; parai = 1,2,y en
. este caso podemos usar la aproxirdagielativista (Ec. (7)).
- ZmaniUﬁi ’ (22) Es por esta ram que es posible usar x, la distancia viajada
! por el neutrino, en vez de t como variable independiente. La

en donde diferencia entre ty x introdudrcorrecciones de orden mayor
( ’ Y= U3 enm/E.
velvi) = i La evolucbn temporal de un haz de neutrinos de éaeg
E esh gobernado por el hamiltoniano
<I/i|M|Vj> =m; 6ij s
y g —p mi+my) A 26
° ( T TuE 48 7% (26)

<l/j’Va> = Uaj .
Si todas las masas:; son igualesn; = m (completa o qonder, es la matriz diagonal de Pauli.
degeneradin), entoncegvs|M|v,) = md.p por la pro-

piedad de unitariedad (4) y no son posibles las transicioécuzgéi %l:gig?us q{ﬁtiﬁgézgltgecgg\éigigt;izsﬁgfgrIa
nesv, = vg.Las masas de los autoestados de sahor

son valores de expectaci del operador de masa, es decir esto ficilmente teniendo en cuenta que, a partir de la Ec. (3),
' v = Ut
promedios ponderados de las masas |vi) = U' |va), la cual nos da

. i L) = UH, U o) @7)
dz

M = (V| M|va) = Z‘UM

con) . ma = » .m; por la unitariedad (invariancia de la Para dqs neutrinos del tipo Dlr_ac, hayamgulo d_e m,e_z-
claenelvam6 con0 < § < w/2y ninguna fase de violagn

traza), dond%Um es la probabilidad de descubrir el estadoge o p (es decir, se conserd@P). La matriz de mezcla U es
lvi) enfvy). dada por

Rev. Mex. 5. 48 (4) (2002) 366-383
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cosh send
U= : (28)
— send cosd

y en la base de sabor el Hamiltoniano es dado por

2+77L2
H =UH, T — E my T my
o=U U + 15
A — €c0s260 sen26
+E . (29)
sen26 c0s20

De las relaciones (22) y (23) entre las masas de los neuRor

trinosm,, y m; llegamos a

me = m, cOS 0 +m, sert o ,

m, =m, sertd+m, cos

Mye = (Vu|M|ve) = (ms — m,) cos send . (30)

Resolviendo parau,, m., y 6 llegamos a

1
my . = i[me'f'm#q: \/(m# 77’TL6)2 +4mfm )

2 My,

tan260 = (32)

my, —Mme
De esto, podemos deducir la relacientre engulofd y los
elementos de la matri# :

2Ho'

tan2g = ——2
Hy' — Hyy

(32

donde H! es independiente de x, y nosotros podemos for-
malmente integrar la ecudixi de movimiento para obtener la

solucibn
va(z) = exp( —iH! x) Va(0). (33)

Los valores de la eneig debean aparecer siempre con
algin subndice, de tal manera que no exista posibilidad d

confusbn. Por otro lado, notemos que hay @émtino enH,

gue es proporcional a la matriz unitaria y contribuye con un
fase global en la Ec. (33), tatmimo no afecta éingulo de

mezcla, como es visto en la Ec. (32), resultando irrelevan-
te para nuestros prépitos, y por lo que podemos omitirlo.

Tendremos entonces,

A
H = 1B (01 semn2f — o3 00529) , (34)

e

a

y por lo tanto,

Vo(z) = exp[ - %m (01 sen2f — oy cos%')l V4 (0)

A .
cosEx —1 (01 sen2f — o3 cos20)

A
X Sen-—zx

1B Vo (0) . (35)

La probabilidad de encontrar a w) o unv, en un haz
gue inicialmente estaba compuegticamente de, es dada

Poo, () = | u(0) | ve(a)) || = sert 20 ser (ﬁ;x>,

P (&) = | 00) [ e} [ =1 = P, @) (36)

Notemos que la probabilidad de encontracues menor
en general que la unidad. Gribov y Ponteconid)] [sugirie-
ron que esto pdd ser la causa de @isminucon del flujo de
neutrinos del elechn observado en experimentos con neutri-
nos solares. Asnismo, debido a la conservaci de la pro-
babilidad

Puavu, + Pl/eye =1 )

P,,,. se conoce como lprobabilidad de supervivencia del
neutrino del elecibn.

Notemos, por otro lado, que estasriiulas muestran ex-
plicitamente que las oscilacionesls ocurren sif # 0y
A # 0. Su amplitud es @xima para¥ = w/4 (mezcla
maxima).

4. Oscilaciones en materia uniforme

En la discushn previa se ha supuesto que los neutrinos viajan
a tra\es del vam, lo cual es una buena aproximacipara el
camino entre el Sol y la Tierra. Pero los neutrinos son produ-
cidos principalmente en el interioras profundo del Sol, y
necesitan atravesar material de alta densidad antes de emer-
ger del Sol. Las oscilaciones en el Sol, o en cualquier me-
dio material, pueden ser muy diferentes de las oscilaciones
en el vago. La radn basica para esto, como lo dice Wol-
fenstein [], es que las interacciones en un medio material
modifican la relad@n de dispergin de las partulas que via-
Jan a traes deél. En otro contexto, estamos familiarizados
con este feeameno para el caso de los fotones. Ellos no tie-
nen masa en el vazy su reladbn de dispergin es simple-
menteE = | p |. En un medio, sin embargo, la relénide
dispersbn es nas complicada, lo cual puede ser interpretado
diciendo que el fdin desarrolla una masa efectiva, y debido
a esto, no viaja con velocidaden un medio material.

Las relaciones de dispedsi esencialmente dan la enierg
de una paitula en fundbn de su momento. De esta manera,
en el lenguaje cantico, una diferente relam de dispersin

Rev. Mex. 5. 48 (4) (2002) 366-383
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significa un diferente hamiltoniano del sistema. De esta for- _
ma, da una evoluén diferente para la fungh de onda. Para vV (p ) e (p )
un haz de neutrinos que viajan a teavdel material solar, la e 2 1
evolucbn es diferente de aquella que exHibiel mismo haz
viajando en el vdo.
El medio solar, por supuesto, as uniforme Antes de
comenzar una discu®i de la propagaén del neutrino en tal
medio, consideremos primero el casasrsimple de un haz W (q = p - p )
de neutrinos viajando a tras de un medio de densidad uni- 2 1
forme. Como ya mencionamos las interacciones con el medic
afectan la reladin de disper$in de los neutrinos. Para cuan-
tificar este efecto 4], consideremos la dispedsi de un neu-
trino en materia. Bsicamente el material solar @sompues-
to de electrones, protones y neutrones. De estos, el neutrini @ = (l? ) vV (19 )
electbnico () puede tener interaciones de corriente carga- 4 e 13
da Unicamente con el eleén. El neutrino del muoni,),
por otro lado, participda en las interacciones de corriente FIGURA 1. La dispergin de corriente cargada de los neutrinos del
cargada solamente si los muones estuvieran presentes, p&tecton con los electrones.
las temperaturas delinleo solar no son lo suficientemente
altas para que esta condinisea satisfecha y lo mismo suce- donde la segunda igualdad es obtenida ha transforma-
de para el neutrino del tau,(). Por consiguiente, de ahora en Cion de Fierz!. Para la disperén hacia adelante, donde
adelante, consideraremos que las contribuciones de corrierte = Ps = p, €l cuadrimomento del neutrino no cam-
cargada afectard® av,. El diagrama de Feynman para es- bia. Observando tal situdm, sera imposible saber que un
te proceso eétdado en la Fig. 1. Esto da la amplitud (en |afenomeno de dispergi ha tenido lugar. En tal caso pensare-

norma de 't Hooft-Feynmarg, = 1): mos sjmplemente que el nefutr.ino seéqsrtopagandlo con un
cuadrimoment. Por consiguiente, esto darla siguiente

contribucbn a la propagadn delv,:

(\’/%) {EL(pl)'V/\VeL(pz)}qQ_—i%

4G, |- A(l—% >_
- ey e ) Ver(p) Y Ver(p) 5 (40)
< { e a)vpec o)}, (37) V2 < 2
donde el @nbolo ¢, (p) representa la componente izquier- despiés de promediar.
da para la enefg positiva del campo del elebwr y La temperatura delircleo solar tiene un valor mucho me-
@ = (p» — ;)2 nor que la masa del eleétr. Por lo tanto podemos considerar

Para las temperaturas ddlateo solar, la dependencia que los electrones son no relativistas, en cuyo caso los pro-
en el momento del propagador W puede ser despreciadmedios involucrados en la Ec. (40) dan lo siguiente:
i.e. ¢> <« M2. Usando la definiéin de la constante de

Fermi
<é% s e> ~ espn,
Gr g (38) (€7, €) ~ velocidad,
S o8M2’
V2 v (evoe) ~ N, . (41)
obtenemos el lagrangiamdectivopara interadn de corrien-
te cargada Los electrones no et polarizados en el Sol, de tal ma-
nera que el valor esperado de iesps cero. El promedio de
4G, velocidad en el medio termal tan&n se hace cero. De lo
Lefec =— 7 {éL (p1) v VeL(pQ)}{DeL(p3) Ya eL(P4)} anterior obtenemos la siguiente contritfircial lagrangiano
efectivo de las interacciones de corriente cargada:
= 2O e )7 a0} {7es (0 1 v )} (39)
/2 €c\P1) 7 erL(pa Ver\P3) Y Ver\P4) 7\/§GF Ne Vs Yo Ver - (42)
1 NOTA: La transformadn de Fierz esiii; v* (1 — 5 )uz][@37va (1 —
v5)ua] = —[@17*(1 — v5)ua][uzy* (1 — v5)u2]. Para la derivaéin de

estay otras identidades de Fierz, ver por ejemplo el libro de C. Itzykson and
J. B. ZuberQuantum Field TheoryMc. Graw-Hill, (1980), p. 160.
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Ahora, consideraremos la contribaoide corriente neu- El significado de talegtminos lo podemos entender me-
tra. La interac@n efectiva es diante la ecuaéin de Dirac
4G - 1-—
Cefecz_\/g{f(pl),yk<jm< 2'75> {%E - T-p - m}\If:'yOV‘II. (48)

Rearreglando logtminos

—Qsert 9w> f(p2) } {V(ps) I Vi (pa) }7 (43)

donde f significa electrones, protones y neutrones. El simbolo o (E B V) V= {F Pt m}\y (49)
v puede ser tanto para o v, dado que ambos tienen iguales
interacciones de corriente neutra. La contribugiara la pro-
pagacbn hacia adelante puede ser determinada exactamert®®s
en la misma forma como en el caso anterior de corriente car-

y elevando al cuadrado ambos miembros, finalmente obtene-

gada.. U.no obtiene la siguiente contribueial lagrangiano B \/]m LV (50)
efectivo:
De esta manera, V séade a la enefg para un momento
. dado. En este sentido, V $édfamada la enefg potencial. La
— A RNy , . L -
VG, Z Ny (I 3 — 25817 0,,Q )] 7vve - (44)  ecuachn de evoludn en materia eatpor consiguiente dada
f

por
En esta ecuabn, I/,,, denota el tercer componente de
isoesjin debil para el fermdn f, y @/ es la carga éktrica

del mismo. Para el eleémn, probn y neutbn, los valores de i 4 Vo) = H|va), (51)
estas cantidades son los siguentes: dx
I,, Q donde, usando la Ec. (50), podemos escribir el hamiltoniano
] como
e| -3 -1
p 5 1 \/§ GF (Ne - %Nn> 0
H=H,+ , (52)
n —% 0 0 - % GF Nn

) o .
Gracias a esto se observa que en la Ec. (44), las contgh dondefi; es el hamiltoniano en el vex; dado por la

buciones del pran y el electon se cancelan en un medio EC- (34)- De esta manera llegamos a que

neutro dondeV, = N,. Y el termino de corriente neutra al

lagrangiano efectivo entonces se reduce a: m? 4+ m? 1 1 —
H=E + —*——2 - — G N, + =—= M?* (53
+ 7 Cr + o M5 (39)
1 _ _
2 Gr Ny (VeL Yo Ver + Vur Yo VML) : (45)  comoantesEesla magnitud de la emeidel neutrino y
Resumiendo, las contribuciones debidas a corriente neu-
tra y cargada, tomadas juntafiaden los siguienteéitminos . — A cos20 + 24 A sen2
al lagrangiano efectivo, los cuales son ciéidos en los cam- M? = 3 , (54
pos del neutrino: A sen26 A cos26
donde hemos definido
Eefec = - Z Uip Yo Vl/l Vi, (46)
l=e,pu
El angulo de mezcla efectivo en matefiaest dado en
1 f al la Ec. (32
Vue:\/ﬁGF Ne_iNn ’ orma araloga a la Ec. (32) por
1 ~ 2H,. A sen2d
Vi, =— —G Nn . a7 tan26 = 2 = 56
o Vo “7) H,, — H, Acos20— A (56)
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y los vectores propios estacionarios son

7, = v, cosf — v, send,
U, = v, sem) + v, cosf . (57)

Analizando los vectores propios se encuentran rasgos in-
teresantes. Consideremos quéargjulo de mezcla en el viac
es pequRo, entonces, pad, — 0, 6 — 0, tal quer, ~ v,. Vo T "“
Para el otro extremo tenemos que cuando— oo, § — I,
tal querv, ~ v,. En otras palabras, el estado propio de ma-
sa inferior es casi puramenig si la densidad de materia se
anula, y es casi puramenig si la densidad de materia es
muy grande. Este hecho tiene consecuencias muy importan
tes. La reladn energa-momento en materia éstlada por T~ v
los valores propios de la matriZ, los cuales son 1

m?, Ne — 0 05 1.0 15 20 25 ~ -
2E (°8) 0 — 0 -

A/ (A cos 2 0)

1
E.—FE——G,N, +
Vo

donde FIGURA 2. Enerdas efectivas de neutrinos en un medio. La canti-
dad A es proporcional a la densidad déhrero de electrones. Las
_ 1 lineas continuas son las enieg para los estados propidsi€os,
mf,g =9 (mf +m; + A) las punteadas son los valores esperados de iengaga los esta-
dos de sabor. La escala en el eje vertical es arbitrariangillo de

5 mezclad en el vaéo se ha tomado que es 0.1 para lafga.
$\/(A cos26 — A) +Aser?20 | . (59) -
pueden ser obtenidas reemplazafigmr 6 y A por la dife-

: : ) . rencia de masa efectiva en el medio. Tomando el promedio
Estos valores propios han sido graficados en la Fig. 2 C%el rmino dependiente de x, obtenemos

mo funcidn de A. La figura tami@gn muestra los elementos
diagonales de la matri#/, los cuales son los valores espe-
rados de enefg para los estadas y v,. De la figura se 1-pP

veve = P,
puede ver qué?’, esh cercano a(EV> para densidades ba-

verp

= % sert 26 . (61)

. . , ~ ) De esta manera, ebitmino del extremo izquierdo de la
Jas mientras que estercano <E"u> para densidades altas. Ec. (60) es proporcional a la probabilidad promedio de con-
Esto trae consigo el hecho de guees principalmente. a  yerspn. El €rmino del lado derecho muestra que, como una
bajas densidades y principalmeniea altas densidades. Lo fyncion de A, la probabilidad de convesitiene la siguiente

opuesto es cierto para. _ clase de comportamiento:
Si un medio tiene una densidad dada do= A cos26,

los dos elementos diagonales son iguales. En este caso, la
Ec. (56) muestra que @ngulo de mezcla efectivo €g, lo —_—.
cual nos habla de que los estadey v, estin mezclados de (A - AR) + 1?2

forma maxima en los estados propios. La naturaleza de esta

mezcla naxima es mejor entendida si, de la Ec. (56), escribi-B E?/tva es Sxactarlr}er(\jt[(? la expcgslpr;;a una égsoganma
mos abajo la expren para seh20: reit-Wignerde amplitudl’ y centrada em ; (ver Fig. 3).

Asi, lo importante de la Ec. (60) puede ser resumido co-
mo sigue: la probabilidad de conveéisj como una funéin
AZ? sert 26 de A, tiene unaesonanciaen

5 (60)
(A c0s20 — A) + A2 sert 20

Constante

(62)

sert 20 =

. o o A = A cos26, (63)
Para apreciar el significadsfco del lado izquierdo de la

ecuacbn anterior, necesitamos regresar a la Ec. (36), la cualon amplitud

da la probabilidad de supervivencia y conversile un haz de

v, vigjando a traves del vax Las probabilidades correspon-

dientes para un haz viajando a teaxde un medio uniforme ['= A sen2d (64)
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| Tomando la derivada, debemos recordar que, en la mate-
A ria no uniformef y consecuentementé son diferentes en
diferentes posiciones. De ddqque

1.2

o~ d S d =\ - 1 — ~ -
ZU*x’VO Jrz(de) |V¢>:ﬁM2U|V¢>. (68)

20

Usando la unitariedad de la matfiz obtenemos la ecua-
cion de evoludn para los estadoisfcos]y~i>:

sen

i 4 177;>_<1(7?1T456—7:z7?;i(7> 7,) . (69)

2F
I | | | - El terminoUt M2 U también es obtenido para la materia
0.0 0.5 1.0 1.5 2.0 uniforme, y da, independientemente de lesitinos propor-
A/(A cos) cionales a la matriz unitaria, leglores propios instad@neos

m2y nA{j en las entradas de la diagonal. El o&mtino puede
FIGURA 3. La curva del seh2 & muestra la forma resonante. El  ser calculado usando la formula ebgita de U a partir de la
angulo de mezclé en el vato es de 0.1 para la gfica. Ec. (28). De todo ello obtenemog 2|

Mikeyev y Smirnov p] fueron los primeros en darse )
cuenta de la importancia de la presencia de tal resonancia en d I o ig—f I

el contexto del problema de los neutrinos solares. i e = . (70)

V. _;df my V.
? Y4 2E 2

5. Conversbn resonante del neutrino _ o
Notemos que s{df/dx) = 0, 15 y v, son de hecho esta-

La observadn crucial de Mikeyev y Smirnov 6] fue que  dos propios estacionarios. Este es el resultado que se obtuvo
los neutrinos producidos en las profundidades del Sol, en ggara un medio uniforme. Para un medio no uniforme como el
neral, pasan a tr&g de una regn de densidad resonante en del Sol, tendremos que resolver esta eduapiara aspoder
su camino hacia fuera del Sol. Para vémo efecta esto la hallar diferentes probabilidades de supervivencia.
propagadn de los neutrinos, primeramente tenemos que de-
riva( la ecuadn de eyolucﬁm de_los estado_s @pios ‘ins- 6. Solucbn adiabatica
tantaneo$ paramateria con densidad no uniformeomo en
el Sol. Comenzaremos con la ecuatipara los estados de Para ciertas situaciones muy particulares,aed hallar una
sabor, solucbn a la Ec. (70)Este es el caso cuandd es pe-
queha, de tal manera que podemos hacer ustadgroxi-
. d 1 — macbn adiakatica. Posteriormente cuantificaremoséqian
Y [Va) = g M [Ver) - (65)  pequéia debea de ser® . Asumiremos aduque la condi-
, ) __ cion adialatica es la ras relevante y que se encuentra satis-
Esta es la misma que la Ec. (53), excepto que omitimogachy [12,13]. En este casay; pasad practicamente como
los terminos proporcmnalg; a la matriz identidad, debido ., que corresponde a una superpdsidiferente de/, y v,
que no afectan las probabilidades. en diferentes puntos. Lo mismo es cierto pary esto puede
Ahora suprimir el flujo de neutrinos.
Supongamos qud, — oo (i.e, N. — oo), donde el
sulindice “ 0 ", denota& las cantidades en el punto de pro-

|Va> =U ’Vi>’ (66) duccbn. De las Ecs. (56) y (57), tenemos entonces que

dondeU es una matriz similar a aquella que definimos en la
Ec. (28), con ehngulod reeplazado pof, el angulo de mez- 5 T . ~ (71)

. . o p 0— —, id.e., Ve~=U,
cla efectivo en materia. Reescribiendo la ecbaale evolu- 2
cion como Este haz de, sale del Sol, en dondé = 0. Y alli
cd o~ 1 T T~
e (U |Vv>) T 9E M=U |Vl> : (67) Uy = Uy = Ve SENY + v, COSH . (72)
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La probabilidad de encontrar, en el haz es dada por introduciendo el conjunto completo de estadgsLos pro-
|(velvs) |2. Poniendo el superdice “(ad)” para recordar que ductos internos is a la derecha y &s a la izquierda dan los
estamos tratando con la soloniadiatatica y podemos escri- elementos de la matriz de mezcla en los puntos de détecci

bir
Pled) —

Vele

sertd, para A, — oc. (73)

Debemos recordar que comenzamos con un haz el cu
era casi puramente.. Despés que emerge del Sol, vemos
gue la probabilidad de encontrar al mismoen el haz es
sert . Sif es pequio, esto puede significar una tremenda
supresdn de esta especista es la esencia principal del me-
canismo resonante de convérside los neutrinos, el cual es
usualmente llamadcefecto Mikeyev-Smirnov-Wolfenstein
mas brevementeefecto MSWdespiés de los artulos pio-
neros de estos autoreg, §].

En general, en el punto de cre@ej elangulo de mezcla
efectivo no eqr/2), sino que tiene algn valord,. En este
caso,

ve = 17, COSH, + 17, send, . (74)

De esta manera, hay una probabilidad’¢@sde que el
neutrino sea producido como uR. Si eso sucede, viajar
fuera del Sol como umw;, donde puede ser detectado co-
mo unv, con una probabilidad cé¢. Esto contribuye con
un termino codd, cog ¢ a la probabilidad de superviven-

y produccoén.

El elemento medio de la matriz da una fase correspon-
giente a la propagaon adiafatica de los estadas,, la cual

cia P,,,, . Alternativamente el neutrino puede ser producido

como,, con una probabilidad s%ﬂNO. En este caso, la pro-
babilidad de que sea detectado, comas sef§. Uniendo

estos dos casos, obtendremos la probabilidad de superviven-

cia total:

P = cos 0, cog 0 + sert 4, sert §
- i(l + 005250) (1 + c0329)
+ i(l - 005250) (1 - cos29>

1 ~
=3 {1 + c0s26, 00529} . (75)

La probabilidad de conveisi av,, estad entonces dada
por

Pplad)

Vely

(76)

1 ~
=1-PF) = 5 {1 — €0s20, cos29} .

Mas formalmente, para la dete@gide unv, a una dis-
tancia x del punto de producui, podemos escribir

P(ad)

PG

’ 2

‘<Ve(:c)|ye(0)>

Z <V6(x) |Vo/(x)> <Vo/(x) |Va(0)>

ao’

2

x (va(0)|re(0))| , (77)

)
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exp(z’ / ax’ EL(:H)) . (78)
0
Asi, tenemos que
-R /E= ~
0 (x) = |€@ (¢ a' 1) cosf, cosh
R 2
+€ (i @' 1) send, send
1 ~ ~
=3 1 + cos26, cos26 + sen26, sen26
X COS / dz’' (E:—Evl) . (79)
0

Los valores de?fv2 y Evl dependen del momento del haz de
neutrinos. En las Ecs. (75) y (76), asumiremos que el coseno,
cuyo argumento es la integral de la diferencia de las éaerg
desaparece cuando sumamos sobre todo el rango de momen-
tos de los neutrinos detectados en un experimento terrestre.

7. Efectos no adialaticos

Los efectos no adidticos inducen transiciones entre los es-
tadosv, y v,. Mas adelante, mostraremos que para valores
realistas de los pametros, tales efectos son importantes s
cerca de la re@in de resonancialf]. Para otras regiones, la
aproximacbn adialatica es una buena aproximaweiy puede

ser usada sin problemas. En la fegde resonancia, debemos
resolver la ecuabn de propagadhn de manera exacta, asu-
miendo alguna forma simplificada para el perfil de densidad
que sea aproximadamentalido en esa regn. A partir de
dicha soluddn podemos hallar la probabilidd® de que en
dicha regdn tenga lugar la transizn de un estado propio a
otro. Supongamos un estadoque es producido en el inte-
rior del Sol y que sobrevive como tal con una probabilidad
P,..., si las condiciones fueran adtiras. En el caso no
adiafatico, es posible que todavpueda continuar como un
v. ¥ la probabilidad de dicho evento s&del — P.. Por otro
lado, situaciones en las cuales debieron haber terminado en
unv, en el caso adidliico, pueden alcanzar en estaden
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el caso no adiddtico si ocurre una transimi. Tomando en que es relevante, sino su diferencia. Por consiguiente, la con-
cuenta los efectos no adiros, tenemos1p] dicion adialatica es dada por

. _ (ad) (ad) ~ — —
P (1= P) it + ] - -
1 . dx 2F
=3 [1 + (1 — 2PE> c0s26, cos26| , (80)

donde las probabilidades adétras fueron tomadas de las ~ Usando la expreéh para) en la Ec. (56) tendremos
Ecs. (75) y (76). Desps, encontraremaB, en £rminos de

los pametros fundamentaled y 6. Una vez que esto es -

conocido, la Ec. (80) da una formula aitiah para determi- ~ d¢ V2, E Aser2f ~dN,

dx (Acoss-4) Y A2serpoy 0@

83
nar la probabilidad de supervivencia dewrviajando hacia dx (83)

afuera del Sol.

Cosideremos, para esto, un neutrino que es producido en
la mitad nés lejana del Sol. Existe una cierta probabilidad no
nula de que viaja hacia la Tierra. Si esto esiapasaa a

T T T T T

480

traves de la redin del ricleo solar. Si este neutrino es creado 360 | ]
lo suficientemente lejos del centro en el Sol, donde la densi- i

dad es ras baja que la densidad de resonancia, céuaaa M g
vez dicha redin en su camino hacia el centro del Sol. Des- 120 | ]

pués de esto, cruzarde nuevo la regn de resonancia, esta

vez en su camino hacia fuera del Sol. Razonando de mane

ra similar al caso anterior, podemos hallar la probabilidad de 24
supervivencia en este cast6]. Aqui, P se@a multiplica-
da por la probabilidad de que el neutriocecerca de una
region de resonancia, pero que no cruce cerca de la otra. D¢ 12
esta manera,

18

- 6
<
Poo=|(1-P)+(P) | Pep+2p. (1-Po )P @,
5}
. , ~ - 18
=3 1+ (1 — 2Pc) cos24, cos29] . (81) j 12
e
~ 6
Asi, las Ecs. (80) y (81) nos dan expresionesiiaak pa- *
ra la probabilidad de supervivencia en el caso general de que
podamos expresdt, como una fun@n de los paametros del 74
problema.
18
8. El parametro adiabatico 12

Retomaremos ahora la matriz hamiltoniana de la Ec. (70).
Las soluciones adidticas se obtuvieron suponiendo cue
€s un paametro que vaa muy ligeramente. Cuantificaremos
ahora este enunciado, lo cual takllevaé a una plausible
expresbn paraP.. Dicho de manera &s precisa, la condian
adialatica significa que lostminos fuera de la diagonal en ®
la matriz de la Ec. (70) son mucho menores queéosiinos

de Ia diagonal prlpC|paI. A esgrlblr la ecuamde.evollljmn, mo funcbn de la distancia del(rtleo solar, para varios valores de
omitimos los érminos proporcionales a la matriz unidad por los paBmetrosA / E. El angulo de mezcla en el viacha sido toma-
conveniencia. Talegtminos modifican los elementos diago- 45 como 0.1. La altura de lambas punteadas es proporcional a los
nales, pero sin embargo, mantemalisu diferencia sin cam- yajores de seh28 para un neutrino producido en dlcleo solar,
bio. De esta forma, en lo que a los elementos diagonales s@n el pico indicando el punto de resonancia. Notemos el cambio
refiere, no es el valor de cada uno de ellos por separado ke escala en la gfica superior.

0.0 0.2 0.4 0.6 0.8 1.0

FIGURA 4. Las Ineas 6lidas dan el péametro adiaéticox(x) co-
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Los valores propios de la masa elevados al cuadrado fue-
ron dados en la Ec. (59). @sdolos, reducimos la conditi  TapLA I. Medidas andticas para las densidades de electrones y

adiatatica en la Ec. (82) a la forma neutrones en el Sol. De la referencia?]. Los paametros dados
3/2 aqu deben ser puestos en la forma funcional de la Ec. (87).
2
(A cos26 — A) + A? ser? 29‘| Cantidad N(0)/N a b
dN, N. 98,8 11,1 0,15
g 7 5 . (84)
x 2vV2G, E? - A sen2f N, 48,4 11,1 0,02
Retomando la expresi para elangulo de mezcla efec- Ne — 3 Nn 74,6 1,1 0,20
tivo de la Ec. (60), la expresn anterior puede ser reescrita
como —~
o 20
z
k(z) > 1, (85) z
1.0
donde la cantidad =
2 & 0.0
(é) 720 1 =
E se
k(z) = . e (86) =
2V2G,  sert26 ‘W @
es el llamado parametro adialtico’, el cual depende de la

posicon via 0 y (dN./dz). Si la densidad es muy alta en ' ' ' '
algln punto,§ — (7/2) y x(z) llega a ser muy grande. Por
el contrario, si la densidad de la materia se anula en algur
lugar,d — 6, y de nuevox(x) sela grande a menos que
tenga un valor cercano(a/4). En la Fig. 4 se grafica(z)

para varios valores da/E'y 6, asumiendo que el perfil de Figura 5. Los puntos son obtenidos de Id@aulos del modelo

0.2 0.4 0.6 0.8 1.0

P/R@

densidad eétdado por 7] solar esindar. Lainea $lida es donde se ajusta la Ec. (87).
az? A cos26
N.(r) = N.(0)exp| — , 87 N, = 2050 89
(" <>p< Z+b> @) nm (89)

dondez = r/R. Los valores de los pametros a, b W, (0) que resulta de la Ec. (63) y de la defidicipara A, nos queda
gue fueron usados son presentados en la TatNa(D) da el
valor de la densidad de electrones en el centro del Sol, ex-

presada enérminos del imero de Avogadro de péctilas Fp = A sert2y 1 . (90)
por em3: L cos20 L In N,
T e R
Novo = 6.03 x 1023 /em? (88) Por supuesto sk, > 1, entonces la propagdui es

adiatatica en todas partes, mientras que/;;,§i§ 1, enton-

Los valores de los pametros presentados en la Tabla | cesP. es apreciable.
dan un buen ajuste de los valoresdeobtenidos del mode- Es claro queP, debe de ser &8 grande para valores ma-
lo solar eshndar, y se@n puede verse en la Fig. 5. yores deF, lo cual significa que cuantoas energticos sean

De la Ec. (86), es obvio que la condici adialatica es  los neutrinos deben cruzaasirapidamente. Cuandd— 0,
mas dificil de satisfacer en el punto de resonancia, dond&. debe desaparecer. Tambiéf,no puede ser un polimio
el ser2d es maximo. En efecto en todos los casos mostra<en E dado que el cruce de niveles es esencialmente un efecto
dos en la Fig. 5 las regiones alejadas del punto de resonandia perturbativo. Estas consideraciones sugirieron una forma
pueden siempre ser tratadas adtidamente 14]. La proba-  de soluobn exponencial dada por Haxton y Parkis][
bilidad P, de transicbn introducida anteriormente depende
Unicamente de las condiciones cerca de la resonancia. El va-
lor del paBmetro adiaético x(z) evaluado en la resonancia P. = exp( — Knp F), (91)
lo llamaremos simplemente comg, el cual puede obtener-
se de la Ec. (86) poniendo s&th = 1. Si hacemos uso de la donde la cantidad” es independiente d€ y depende de la
expresbn para la densidad resonante forma como vaia N, cerca de la resonancia.
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Por otro lado, D'Olivo [9] usando la aproximaoh de  cual los dos valores propios coinciden, es ddcir= E,. De
Magnus, obtuvo una exprési analtica para la probabilidad la Fig. 2, vemos que esto no sucede parainingalor real de
de transidbn cuando los efectos no ad&lros comienzan a A. De hecho de las Ecs. (58) y (59) tenemos que
ser importantes, es decir cuandg < 1, la cual reproduce
el limite adialatico y considera efectivamente la salida des- _

. .. . . A :Aej:219 (95)
de la adiabaticidad cuando nos movemos hacia el regimen * )
no adiatatico o tambien conocido como regimen repentino,

reproduciendo satisfactoriamente en forma general la proba-, hech | leios de A E ¢
bilidad de supervivencia del neutrino solar como una fomci fa que ser necha para valores Compi€jos de A. £S por esta

de la ener@a. Dicha formula se comporta cualitativa y cuan- razon que este ktodo es llamado ehétodo de trayectorias

titativamente mejor que la Ec. (91) citada arriba, para todo e?omplejas

rango de valores de enéagle los neutrinos, sin hacer uso de Zarz evaluar la |?te9ra:jnece3|tlamo§_ se(ijel es la for.-
un perfl espedfico de densidad. ma de A como una funon de x en la re@in de resonancia.

Si la variacon es linealdA/dx es constante y podemos sa-
) . S carla fuera de la integral. Si este valor es positivo, usamos el
9. La aproximacion semichsica exponente positivo en la Ec. (95) tal queP, es negativo. Si

. " Lo dA/dz es negativo, usamos el exponente negativo de la Ec.
La probabilidad de transign no adiahtica entre dos estados (95). En cualquier caso cambiando la variable de integraci
fue calculada independientemente por Land&d],[Zener de A aq — (A N 00529)/ A sen26, tenemos:
[21] y Stuckelberg £2] en el contexto de los problemas en
fisica nuclear, y fue aplicada al presente caso por Parke [ _

i inci- A? sert 20
y por Haxton P3]. Para encontrar el comportamiento princi In (P.) = Sm da m

| cual es complejo. Asla integracbn de la Ec. (93) ten-

pal en la aproximadin semichsica, podemos usar ektodo YT g ‘dA/da: 0
de Landau de la trayectoria complej24]. R
Este nétodo da A2serf20 9
In(P) = —2%m [sl(tl,t*) + Sz(t*,tz)] . (92) =TT ‘dA/dx = (96)
R
dondeS, (t,, t..), por ejemplo, denota la a@ri para el movi- Recordando quel, — A cos26, podemos tamn es-
miento del haz de neutrinos en el estadale aldin tiempo cribir como '
inicial ¢, a un tiempo de transion .., el cual especificaremos Asert 20 1 -
mas adelante. Despa del tiempd, es usada la adon en el In (P.) = (97)

i€ SP8 | _ ECOSQG"ilnA"Zl'
estadov, hasta algn tiempo finalt, cuando el haz de neu- dz

trinos proviene de la regn no adiahtica. Las partes imagi-
narias de la acon permanecen sin ser afectadas si tomamo
t, =t, = tg, siendot el tiempo en el cual el haz de neutri-
nos cruza el punto de resonancia.

gsto muestra que en la Ec. (91), debe toméfse- 7/4, es
ecir,

™
De esta manera, P = exp( -2 n-R) ) (98)
ta — Por supuesto, este resultado se basa en la suposlei
In (P.)=-23m / dt (E2 - El) : (93)  que A es una funén lineal de x cerca de la resonancia, lo
tr

cual puede parecer un pocacadtico. Para una dismindci
dondeE,, son los estados propios de erargn el medio da- exponencial en la densidad solar cercana a la resonancia se
dos por la Ec. (58). Cambiando la variable de integnacie ~ Obtiene P5] F' = /4 Sl — tar? 9)- Esto es de intés

ta A, obtenemos fisico, dado que la densidad solar tiene de hecho una varia-
cion exponencial para una régi amplia en el Sol. Sin em-
) A JA bargo, para la may@ de los valores_ de que son de mtexs 3
In(P)=——Sm / o la diferencia en el caso exponencial y el lineal es insignifi-
E AR (dA/dx) cante. De esta manera, en lo que sigue tomaremos la forma

mas simple, es decif = /4.

X \/(A cos26 — A)2 + A2 sert 20, (94)

. 10. El limite extremo no adiakatico
donde como antes estamos usando t y x en forma intercam-

biable y hemos reemplazadﬁ por%. El limite inferiorde  El método de Landau descrito arriba es ugtodo semi-
esta integral esl, = A cos26. El limite superiorA,, es el  clasico y nos da eErmino principal en elimite de grandes
valor de A en el punto de transi@dn’ mencionado anterior- valores del exponente. Cuandg es muy pequio (< 1), la
mente. En el ratodo de Landalgste es el valor de A para el expresbn paraP, dada por la Ec. (98) no es satisfactoria. La
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limitacion de la Ec. (98) puede ser entendida si analizamodades uniformes. Pero en el borde, hay un abrupto cambio

un ejemplo simplificado 26]. de densidad tal queiN,./dx) — oo, lo cual significa que
Consideremos un haz de neutrinos viajando &sale la  si tomamos la Ec. (86);(z) — 0, esto es, la situabh es

frontera entre un medio uniforme y el espacioivata pro- altamente no adiadtica. Si denotamos porX” a un punto

pagacbn es obviamente adiabca para el medio uniforme, en lo mas profundo del medio y pory” a otro punto en la

ad como para el vdo, dado que ambos medios tienen densi-parte externa (en el var), es posible escribir la probabilidad

| de transiocbn como

2
P =|(nw)|7@)]
2
= ‘Z (1)) )| Y ) | e)) (@ |7 @) W72 @) |7 @) | (99)
l

dondez’ es un punto justo dentro del media/{est fuera
del medio (en el vdo), en los dos lados de la frontera pla-
na. Los estados de sabor son continuos @ akel borde, es -
decir, (v, (y') | n(2)) = 1. Usando la matriz de mezclaen v, + (Hu + H22) Ve
materia y en el vdo y despreciando todos loériminos de )
interferencia, obtenemos +(flz — H, H,, +i ﬁ:) ve =0, (103)

P =sen (5_ 9), (100)  endonde hemos retomado el hecho que solo el elendénto

es dependiente de X, [ver la Ec. (54)]. Defineremos ahora una

Si por ejemplo el medio es muy dengo- Z tal que nueva variable

P.=cos 0. (101) a. = exp (Z / dx’ HNM(x’)> Ve , (104)
Este no es eliinite que obtenemos de la Ec. (91), el cual

nos daP, — 1 cuandox, — 0. La diferencia es significativa |3 cual difiere de la variable viej@® por una fase y por con-

si ¢ no es pequea. Para convencernos de que la Ec. (101) dajguiente no afecta las probabilidades. Enrtinos de esta
el resultado correcto en contraste con el resultado incorre¢peva variable, la ecudsi anterior se transforma er7]

to de la Ec. (91), deberemos trabajar la expresion di, la
dentro de la expresn para la probabilidad de supervivencia

dada por la Ec. (80). Esto nos dausandd, = /2, Q.+ (ﬁ; _ f]:) .+ H%a,=0.  (105)
1 . .
P, =1 Lsertog. (102) Es_necesarlo resolver la eCMJ_precedente y para ello
eve 2 necesitamos poner l,, que es fundn de x. Una vez que se

. - . : _ ha hecho esto, la probabilidad de supervivencia a una cierta
Esta es la probabilidad de supervivencia promedio de la P P

enerda en el vaio, como la obtenida en la Ec. (6Bste es  distanciax estardada po+ae (l’)’
el resultado esperado cén= Z, pues no hay oscilacionesen  En principio, si nosotros somos capaces de resolver la
el medio como puede ser visto poniendé@egulo de mezcla Ec. (105) para el perfil de densidad del Sol, entonces ob-
igual an/2 en la Ec. (36). Las oscilaciones pueden ocurrirtendremos una respuesta exacta para las probabilidades de
sblo despés de que los rayos escapan hacia elosgcpor ~ supervivencia de los neutrinos solares. Esto, sin embargo,
consiguiente el resultado déite de vato es recuperado.  No puede ser hecho debido a que el perfil de densidad so-
Llegando a estar convencidos de las limitaciones de Iar tiene una forma complicada. Es por ello que resolvemos
forma exponencial par&, en la Ec. (91) deberemos buscar la Ec. (105) solo cerca de la régi de resonancia, asumiendo
una Hrmula mejor.Esta puede ser obtenida por solucionesalguna formasimplepara la variadn de la densidad, la cual
exactas de la ecudni de propagadn. Es por esto que usual- sefia aproximadamenteilida en esa limitada regn .
mente se emplean los estados de sabor directamente. Comen- La solucbn exacta en esta régi da la probabilidad,. de
zando con la Ec. (51) e inmediatamente désguodemos es- transicbn cerca de la regh de resonancia, la cual astada
cribir las dos ecuaciones diferenciales de primer grado pangor1 — |ae]2. Una vez hecho esto, podemos usar la Ec. (80)
ve Y v,. Eliminando a,, de estas ecuaciones obtenemos o la Ec. (81) para encontrar la probabilidad de supervivencia
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despiés de que el haz de neutrinos ha atravezado el materidll. Solucbn con tres generaciones
solar.

La solucbn exacta de la Ec. (105) fue primeramente he-ES posible en principio generalizar ldgrhulas obtenidas en
cha para una variat lineal de la densidad1§], pero desde el caso de dos generaciones para incluir los efectos de la ter-

entonces se ha resuelto para otros perfiles de densitiid [ C€ra generadn, es decir, incluir el tercer sabor del neutrino
Todas estas soluciones dan la forma (v;). Para el caso de las oscilaciones en eiavapodemos

escribir cualquier estado de sabor en general como

b exp( — kg F) - EXD( - ge’?g*;) (106) |v) = ZJ: U |vi) (110)

‘ 1—ep( - 5)
donde elindice j corre sobre todos los estados propios de
en dondeF se ha calculado usando ektodo de Landau- masa. Si se crea un haz deal tiempot = 0, su evolucdn
Zener. Notemos que para, — 0, esto nos dar el imite  en el tiempo estargobernada por
correcto de la Ec. (102). Donde esta forma es aceptable pa-
ra todas las soluciones conocidas, é€snse ha conjeturado

— —iEqt
[26] que dicha forma funciona bien aun prescindiendo de la |1/, (t)> = Z € Via |er> (111)
naturaleza de la varigm de la densidad. @
Resumiendo la solugn de la ecuadin de evoludn pa- La probabilidad de encontrar el estado de saba@n este

ra el rayo de neutrinos dada por la Ec. (70), tenemos que lestado estdada por
probabilidad de que un, sobreviva como uw, est dada

por 2
Poyw (1) = | (v (0)
n ~
P, = 3 1+ (1 — 2PC> €0s24, cosQG] , (107) = Z ’UzaUﬁaUzEUz’ﬁ
B8
donden es1 o 2 dependiendo si las resonancias hayan sido X cos[(Ea - Eg)t - gp”/aﬁ} , (112)

encontradas una o dos vecéses elangulo de mezcla efec-
tivo en el punto donde el neutrino es producido yaestido  donde

por buap = arg (U Uia Ujy Usg) . (113)
A Usando la aproximaén E, > m, como antes, pode-
7 senz6 mos usar la Ec. (6) para escribi29]

tan2f, = ,
0 £ cos20 — 2v2 Gy Ny

(108)

siendolV, la densidad delimero de electrones en el punto Po, (2) = Z ‘Ula Ui Uig Uvp

de producdn. Para la probabilidad de tranginiP,, usare- @B
mos la expregin mas simple As
X C0S %x—gpl,/aﬁ , (114)
A ? 260 1
P.=exp| — ™ 4 s . . (109) donde
4 E cos26 ’% InN, Agp =m2 —mj. (115)
R

| | es alida si | iadn de la densidad es lineal Como en el caso de dos generaciones, hay algunas re-
(?eﬁ:ieiz:z;n;: avaria@n de la densidad es lineal cerca giones permitidas donde los valores fleestn cercanos a
: . ) 10~ 10 eV2. Pero, con tres generaciones, (agiuevo tipo
Para calcula®®,,. para neutrinos de una en@glada, ge spluciones son tanéi posibles. Por esto, vamos a con-
necesitamos dos clases de inforndaciPrimero, necesitamos  gjqerar que estamos en un rango de valores\gg donde
conocer el perfil de densidad de electrones en el Sol, de taly 5/2E)z > 1 para eneris fpicas de neutrinos solares
- . a :
manera que apodamos conocel, donde es prgdumdo el La energa completamente promediada abarca entonces los
neutrino. El perfil tamk@n nos da la cantidad I In Ne’ términos cor # 3y tendremos que
en el punto de resonancia, el cual aparece en la egpresi
paraP,. Segundo, necesitamos los @aetros fsicos de la -
parfcula del problema, especificando de nuevargulo de P, = Z ‘Ula
mezclad y la diferencia de las masas elevadas al cuadfado a

2 2
‘Ul’a

(116)

Rev. Mex. Fs. 48 (4) (2002) 366-383



INTRODUCCON A LAS OSCILACIONES DE NEUTRINOS 381

Para proceder algunos autoreé tbman la siguiente pa- de la densidad del medio y la engrgle los neutrinos. El
rametrizaddn de los elementos de la matriz de mezcla dearélisis exacto para el caso de tres generaciofésegver-
Cabbibo - Kobayashi - Maskawa (CKM): daderamente complicadiado que involucra la solum de
una ecuadin dibica. Algunasécnicas de soluéh aproxima-
da han sido tratadas en la literatural Jf

Ue; = sent sendy . (117) De la discusin de dos generaciones es obvio que dos re-
sonancias ocurriran en el caso de tres generaciones. En un
diagrama como el de la Fig. 2 estas resonancias tienen lugar

P,,,. =cos 0, +sert 6; (cos' 0, +sert 6,) . (118) cuando(E,, ) cruza(E,, )y (E,, ), respectivamente. Cuan-
do las dos eéin muy separadas, las dos resonancias pueden
A diferencia del caso de dos generaciones dond@er tratadas independientemente una de la otra.

:i' ”S”f 3>>E tt)/ 2, Zgg pgdi:)nnos_ Ecznteer a%ayiatan rgzje(l)bﬁ%-a de Pero aun entonces la confrontticon los datos experi-
/3. Esto pu ser sistente ¢ S P i Mentales edtverdaderamente complicada por muchas razo-
nes. El espacio solumn es mucho mayor dado que involucra

de 20 que se encuentran en los experimerifmsnestake y
:;aé?éoéarl%esl‘vzlzc;gfgg f;asrziﬁir;%?;zs dzsfnr;]s;;rgﬁee\l/aegasd?s diferencias de masas elevadas al cuadrado, esflecir,
cuadr.ad.o tienen que ser muchasrgrandes de0-1° ¢V )?Agl, ad como tambien Ips tre@ngulos de mezcla. En gene- _
_ A _ ral, hasta las fases que violan CP pueden aparecer en la matriz
y esén acotados superiormente por [sites que imponen de mezcla, haciendo el problemasrfrustrante. Sin embar-
go, los resultados de los experimentos pueden no estar corre-

los experimentos terrestres.
lacionados en el sentido de que uno de ellos puede mostrar

Es relativamente&cil de calcular las correspondientes
probabilidades si tomamos en cuenta los efectos de la M3ha ‘reducchbri’ en flujo porque de.’s se estn convirtiendo
av,'s, mientras que el otro puede mostrar unedticcon’

teria, ya que la propagdmsi en el medio es adiakica. Si-
guiendo los argumentos que llevan a la Ec. (75), tenemos porque dev.’s se esin convirtiendo a,’s [32].
Los efectos no adidtticos han el problemanas com-

Pl — Z ‘aa 7 (119)  plicada Introducen transiciones entre diferentes estados es-
o > tacionarios. Si denotamos la probabilidad de trabsicie un

- . _ estada/, a un estade; por P, entonces

dondeU es la matriz de mezcla efectiva en el punto donde

U., =cosby, U., =send; cosbs,

Entonces,

2 2
’Ul’a

~ |2 2
el neutrino es producido. Esto paresggdiosamente simple Py, = Z ‘U,a ‘Uﬂﬁ Ps . (120)
La partepesadanvolucra la determinaén deU en &rminos o,p
1.0

T T T I
ParalN generaciones, hay a loas(N — 1)? cantidades

independientes, dado qu&’; debe satisfacer las relaciones

08 | -
D Pp=1 y D Pj=1,
N 0.6 | - e B
D
N - . B . B
= lo cual se sigue de la unitariedad. Sin embargo, las cantidades
@ 04 | 4 3> €N general, no pueden ser calculadas atieamente

Algunas conjeturas se han hecho donde las resonandias est
bien separadas3$-36].

02 L 0.39 |

12. Conclusiones

0.0 ] ] ] ]

Hemos revisado las basesétieas de las oscilaciones de neu-
trinos en el vam y en medios materiales para el caso de dos
generaciones. Hemos puesto espeaidiasis a la conversin

Sen 0 resonante del neutrino en el Sol (el llamado eféd®W\) y
FIGURA 6. Soluciones de oscilam en el vao para el proble- hemos revisado de forma somera .eI caso de fres _ge,n_eragio-
ma del neutrino solar con tres generaciones de neutrinos. Ladi€s: Esperamos que este tr_ab_ajo Slrva’a_l lector de |ns{pnl_’aC|
diferencias de masas elevadas al cuadrado se han asumido gféra profundizar sus conocimientos efiisica de los neutri-
son> 1071° ¢V2. El interior de las curvas interna y externa son NOS Masivospues estamos seguros que los neutrinos éendr
consistentes con los datos de los nivélesy 3 o respectivamente.  mucho que decir en la construonide un modelo t&ico mas

alla del modelo egindar.

0.0 0.2 0.4 0.6 0.8 1.0
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