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With the availability of high frequency data and new techniques for the management of noise in signals, we 

revisit the question, can we predict financial asset prices? The present work proposes an algorithm for next-

step log-return prediction. Data in frequencies from 1 to 15 minutes, for 25 high capitalization assets in the 

Mexican market were used. The model applied consists on a wavelet followed by a Long Short-Term Memory 

neural network (LSTM). Application of either wavelets or neural networks in finance are common, the novelty 

comes from the application of the particular architecture proposed. The results show that, on average, the 

proposed LSTM neuro-wavelet model outperforms both an ARIMA model and a benchmark dense neural 

network model. We conclude that, although further research (in other stock markets, at higher frequencies, etc.) 

is in order, given the ever increasing technical capacity of market participants, the inclusion of the LSTM neuro-

wavelet model is a valuable addition to the market participant toolkit, and might pose an advantage to 

traditional predictive tools. 

JEL Classification: C45, C53, C88, G14, G17. 

Keywords: market efficiency, high frequency data, LSTM neural network, wavelet. 

Con la disponibilidad de datos de alta frecuencia y nuevas técnicas para la filtración de señales, es pertinente 

preguntarse una vez más ¿podemos predecir los precios de los activos financieros? El presente trabajo propone 

un algoritmo para la predicción de retorno logarítmico del siguiente periodo. Se usan datos en frecuencias de 1 

a 15 minutos, para 25 activos de alta capitalización en el mercado accionario mexicano. El modelo consiste en la 

aplicación de una wavelet seguida de una red neuronal de tipo Long Short-Term Memory (LSTM). En la literatura 

comúnmente se encuentra el uso de wavelets o de redes neuronales en aplicaciones financieras, la novedad de 

nuestro trabajo radica en la arquitectura particular que proponemos. Los resultados muestran que, en 

promedio, el modelo de neuro-wavelet propuesto supera tanto a un modelo ARIMA como a un modelo de red 

neuronal densa de referencia. Podemos concluir que, aunque más investigación es necesaria, dada la creciente 

capacidad técnica actual de los participantes del mercado, la inclusión del modelo LSTM neuro – wavelet al 

abanico de herramientas disponibles es de mucho valor, pues podría representar una ventaja sobre las 

herramientas predictivas tradicionales. 

Clasificación JEL: C45, C53, C88, G14, G17. 

Palabras clave: eficiencia de mercados, datos de alta frecuencia, redes neuronales LSTM, ondeletas. 

 

A
b

st
ra

ct
 

R
e

su
m

e
n

 

Revista Mexicana de Economía y Finanzas, Nueva Época 
 

Volumen 17 Número 1, Enero – Marzo 2022, pp. 1-23, e570 
 

DOI: https://doi.org/10.21919/remef.v17i1.570 
 

 
(Received: November 5, 2020, Accepted: March 10, 2021. 

Published: September 23, 2021) 
 



 
2 

 

 

REMEF (The Mexican Journal of Economics and Finance) 
Neuro-wavelet Model for price prediction in high-frequency data in the Mexican Stock market 

1. Introduction 
 

Price predictability of a particular security is at the core of the activities of thousands of workers in 

the financial industry. From an academic standpoint, whether asset prices can be predicted using 

historical information relates to the evolution of the Efficient Market Hypothesis (EMH). In his 

seminal work, Fama (1970) describes an efficient market as one in which prices incorporate new 

information quickly and rationally. The EMH implies that if a market were to be efficient, prices will 

reflect all past and present information and any newly acquired information would be incorporated 

into the price instantaneously. If this hypothesis holds, then prices would follow a random walk and 

it would not be possible to generate and earn excess profits systematically (Malkiel, 2003). Simply 

put, as all the information is already incorporated into the price, the EMH implies that due to the 

stochastic behavior of prices, they cannot be predicted using past or present data.  

Building over this hypothesis, the process of price forecasting typically assumes, not without 

an observational support, that markets are not efficient, therefore a price structure to be predicted 

can be expected. As stated by Hayek (1945), a price system plays a crucial role in incorporating 

information, the more relevance of such information, the greater the benefit that one agent can obtain 

in comparison to others. Under this perspective, it is common to find studies exploring the predictive 

possibility using daily, weekly or monthly returns. However, with the increasing availability of tools 

that allow the management and analysis of higher frequency data, new contributions can be made to 

the EMH’s framework.  

Violations to the EMH are known as anomalies, a term introduced by Ball (1978), and have 

been thoroughly discussed, both with high and low frequency data. Hendershott and Riordan (2011) 

argue that financial instrument prices have non-stationary and non-linear behavior due to the variety 

of agents operating in a given market, each with a different investment horizon and objective and 

covering the range from long term investors to intraday speculators to algorithms operating from a 

server in a datacenter. All agents affect the market not only individually but from their collective 

actions. The result of this interaction is encoded in a single price signal. Cohen et al. (2002) state that 

large investors contribute to the efficiency of markets by, first, accelerating the incorporation of 

information in prices and, second, by offsetting the irrational behavior of individual investors.  

However, there are studies that argue that a diversity in participants in the market, with 

different positions, strategies, points of view and behaviors, creates a signal with noise, resulting in 

a price signal with very complex behavior (Black, 1986; Jefferies et al., 2001; Giardina and Bouchard, 

2003). One argument for this complex behavior is that the EMH does not account for network latency. 

Latency is the delay between a signal and a response, which is crucial for price formation, and when 

market participants have different latencies they will receive the same information at a slight time 

offset, and even if they all shared the same strategy, they would commit transactions asynchronously 

(Kirilenko and Lamacie, 2015). 

It becomes clear that there is a need to develop modeling tools capable of incorporating non-

linear elements that, by construction, can capture the complexity of the price generating process.  

Some of the most common stock price forecasting methods include ARIMA, GARCH, Ordinary 

Least Squares, and Maximum Likelihood, all of which have been widely studied (Ariyo et al, 2014). 

However, building on the price forecasting literature that deals with complex signals, large amounts 
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of high frequency data, and non-linear relationships in data, in the present work we propose the use 

of tools from the fields of Digital Signal Processing and Machine Learning as an attempt to outperform 

the traditional models when dealing with non-linear behavior of asset prices. 

The proposed methodology consists of 2 steps. The first one involves the decomposition of 

the log-returns signal into simpler components based on methods in the field of Digital Signal 

Processing (DSP). These methods are commonly used for audio, image, and video processing, as well 

as data compression in order to decompose a complex signal into more manageable and simpler 

signals. In the context of financial price time series, the Wavelet transform has been used to split the 

single price signal with all its inherent complexity into several time series, each representing the 

behavior of the original signal across different frequency bands (Reboredo and Rivera-Castro, 2013; 

Chang and Fang, 2008; Caetano and Yoneyama, 2007). The expected result of this step is that by using 

wavelets to break up one time series into several time series (divided by frequency) and feeding them 

as inputs to the neural network model, the neural network will more easily learn how to use the 

short- and long-term information within the original signal. Due to the properties of the wavelet 

transform, all information in the original signal is retained in its wavelet representation. 

After the wavelet transform, the second step consists of stacking a neural network. It is a 

Machine Learning technique that is able to capture the non-linear behavior contained in the prices. 

This Neurowavelet model has been used on traffic forecasting (Dunne and Ghosh, 2013), in 

streamflow forecasting (Mehr et al., 2013; Kisi, 2008), solar wind prediction (Nappoli et al., 2010). In 

financial time series analysis, the Neurowavelet model has been found to have superior performance 

to ARIMA and ARIMAX (Ortega and Khashanah, 2014). Building on the work of Ortega and Khashanah 

(2014), the novelty of this work lies in the use of a Maximal Overlap Discrete Wavelet Transform 

(MODWT) decomposition and a Long-Short Term Memory neural network and to predict the next 

period-return for frequencies of 1, 5 and 15 minutes.  

The empirical strategy consists of using the information of the 25 most liquid assets in the 

Mexican Stock Exchange to perform their next-step prediction and compare the results with two 

alternative tools. The benchmark for this Wavelet-LSTM model is a Wavelet-Dense model, which uses 

a typical dense hidden layer instead of the LSTM hidden layer. Additionally, a conventional ARIMA 

(Box and Jenkins, 1970) model is also considered.  

Our findings show that the Wavelet-LSTM outperforms, on average, both models. The 

remainder of the paper is structured as follows. The next section presents the literature review on 

wavelets, neural networks, and neuro-wavelets in finance. An explanation of the methodological 

aspects of the proposed model is found in the third section, followed by the description of data and 

the results of the empirical strategy. Concluding remarks are found in the last section. 
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2. Literature Review 
 

2.1 Wavelets 
 

Just as Ramsey (1999) stated, the contribution of wavelets to the finance field had great potential. By 

that time, several contributions had already been made, which can be reviewed in his work. Other 

noteworthy contributions are the work of Dremin and Leonidov (2008) where they filtered stock 

prices with a wavelet transform and found that the filtered series is characterized by volatility 

autocorrelation with large amplitude.  

Caetano and Yoneyama (2007) use a wavelet decomposition to explain abrupt changes in 

stock prices while Aktan et al. (2009) propose the use of wavelets for the estimation of systematic 

risk in the Istanbul stock exchange, and Bruzda (2019) proposed their use to measure 

macroeconomic risk.  

Building on their findings, we use a particular type of wavelet, the MODWT. This wavelet has 

been used to study asset prices because, as described by Zhu et al. (2014), it is useful to transform 

non-stationary and long-range dependent data into stationary and short-range dependent. On that 

end, Ardila and Sornette (2016) use the MODWT to analyze financial cycles. Ismail et al. (2016) 

compare a MODWT-EGARCH and a MODWT-GARCH model for prediction in African stocks, while 

Gupta et al. (2018) use a MODWT-VAR model to review the relationship between returns and volume 

in stock markets in India and China. Applications of MODWT for the Mexican or Latin-American case 

are, at most, scarce.  

 

2.2 Neural networks 
 

Neural networks are a Machine Learning tool used primarily for regression or classification tasks to 

approximate a function. They have also been used extensively in the study of financial data. However, 

some of the most notable works related to their performance in price forecasting, to our knowledge, 

are the ones by Maciel and Ballini (2008), Khashei and Bijari (2010), Adnan et al. (2011), Maknickiene 

and Maknickas (2012), and Ariyo et al. (2014), who found that a simple neural network outperforms 

SARIMA and GARCH models as well as other simple forecasting methods.  

The type of neural network that seems to be a better fit for financial time series, particularly 

when modeling prices, is the recurrent neural network (RNN) due to its theoretical ability to retain 

information across time steps, Oancea and Ciucu (2014).  

A problem that arises in practice is the difficulty for the RNN to reliably remember 

information from past time steps due to a phenomenon known as the Vanishing Gradient (Pascanu 

et al, 2013). Long-Short-Term-Memory (LSTM) is a type of RNN with gates that prevent the gradient 

from vanishing or exploding. LSTM introduces the concept of self-loops with context-conditioned 

weights. With a gated self-loop the time scale can be changed dynamically based on the input 

sequence. LSTM networks have been very successful in handwriting recognition, speech recognition, 

machine translation, and image captioning.  
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To that end, Fisher and Krauss (2018) state that LSTM is a suitable model for application in 

finance, although not much has been done. They find the LSTM outperforms a random forest, a deep 

neural net, and a logistic regression classifier when predicting the direction of change in the S&P500 

index. 

In a similar vein, Siami-Namini and Namini (2018) compare a LSTM neural network to ARIMA 

for the forecasting of financial data and find that former outperforms the latter. Choi and Lee (2018) 

use a series of stacked LSTM networks to predict financial time series and conclude that the model 

can capture non-linear behavior, while Hanson (2017) uses a LSTM neural network to forecast stock 

indices and shows that the outputs of the LSTM networks are similar to those obtained by ARMA and 

GARCH, but the neural network outperforms when predicting the direction of change. 

 

2.3 Neurowavelets 
 

Aussem and Murtag (1997) made one of the first works applying a wavelet decomposition and a 

neural network, they used a dynamic recurrent neural network trained on each resolution scale with 

the temporal-recurrent backpropagation algorithm and tested it on sunspots time series data.  

The present work does not follow the neuro-wavelet concept introduced by Murtagh et al 

(2004), who define a wavelet network as a neural network in which activation functions have been 

replaced by wavelet functions. Instead, what we take a stance by using the concept of a neurowavelet 

as a layered model using first a wavelet transform, and then a neural network. 

Such a model has been used in the prediction of financial time series by Minu et al. (2010), 

who find that a neurowavelet model outperforms GARCH and simple feedforward neural network 

models (FFNN models), while Zhang et al. (2001) used neurowavelet and FFNN models to forecast 

futures contracts and passed the forecast to a money management system to generate trades. They 

found that the neurowavelet model doubled the profit per trade.  

More recently, Jamazi and Aloui (2012) use a wavelet and a multilayer backpropagation 

neural network to predict oil prices, they find the model performs better than the backpropagation 

neural network. Bao et al. (2017) use a wavelet transform followed by stack autoencoders and then 

a LSTM neural network for the forecast of the next day closing price for six market indices and their 

futures. They find their model outperforms a recurring neural network. 

On the realm of high frequency data, Ortega and Khashanah (2014) apply a neurowavelet 

approach to 1-minute frequency data of Apple AAPL stock prices. They apply a non-decimated Haar 

wavelet decomposition followed by the Jordan (1997) and Elman (1990) networks, due to their 

ability to capture temporal patterns. They compare one, three and five-step ahead forecasting to 

ARIMA and ARIMAX and find that the neurowavelet model outperforms the other models. Arevalo et 

al. (2018) propose a discrete wavelet transform (DWT) and a deep neural network (DNN) to forecast 

one-minute and 3-minute log-returns of 19 stocks in the Dow Jones Index, and they find that the 

model has an accuracy rate between 64% and 76%. Our work is directly inspired by both studies and 

builds on them by proposing a neurowavelet model that uses Long Short-Term Memory (LSTM) 

units, which have internal logical gates that provide the model with an increased ability to remember 

data from previous time steps and to model even more complex non-linear behavior.  

To the best of our knowledge, there is no existing literature that combines the Wavelet 

transform with an LSTM neural network in the context of high frequency price data. 
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3. Methodology 
 

3.1 Wavelets and Neurowavelets 
 

The proposed methodology consists of 2 steps. The first one involves the decomposition of the log-

returns signal into simpler components using a MODWT transform, while the second one consists in 

stacking a neural network, commonly known as Neurowavelet. 

Wavelets are an extension of Fourier analysis used to analyze nonstationary signals. 

According to Otazu (2008), the most important difference is that the Wavelet transform is defined in 

both the spatial frequency and spatial location, while the Fourier transform is only defined in spatial 

frequency. The Maximal Overlap Discrete Wavelet Transform (MODWT) is appropriate in the price 

forecasting process as it is time invariant (Percival and Walden, 2000).  

Given the discrete wavelet transform with wavelet filter {ℎ𝑗,𝑖} and scaling filter {𝑔𝑗,𝑖}, the 

MODWT filters are defined as ℎ̅𝑗,𝑖 = ℎ𝑗,𝑖/2𝑗/2 and �̅�𝑗,𝑖 = 𝑔𝑗,𝑖/2𝑗/2. Then, if we have a time series {𝑋𝑡}, 

the wavelet coefficients at level 𝑗 are described by equations 1 and 2: 

 

�̅�𝑗,𝑖 = ∑ ℎ̅𝑗,𝑖𝑋𝑡−𝑖𝑚𝑜𝑑𝑁
𝐼𝑗−1

𝑖=0
     (1) 

 

�̅�𝑗,𝑖 = ∑ �̅�𝑗,𝑖𝑋𝑡−𝑖𝑚𝑜𝑑𝑁
𝐼𝑗−1

𝑖=0
      (2) 

 

On the other hand, neural networks are Machine Learning tools used primarily for regression 

or classification tasks to approximate a function 𝑓∗. An important property of neural networks is their 

ability to model nonlinear behavior. Neurons –building blocks for function approximation machines 

that achieve statistical generalization– can be linear or nonlinear, and a combination of nonlinear 

neurons will result in a nonlinear network. Thus, the nonlinear behavior is not held at a neuron in 

particular, but rather spread across the network. 

The basic elements of a neuron are: i) the connections between neurons –each carrying a 

weight that can be positive or negative–, ii) an adder –to sum the weighted input signals–; and iii) an 

activation function –to limit the amplitude of the output of a neuron in a linear or nonlinear manner–

. The neuron can then be defined as shown in equations 3 and 4: 

 

𝑢𝑘 = ∑ 𝑥𝑗𝑤𝑘𝑗
𝑚
𝑗=1        (3) 

 

𝑦𝑘 = 𝛾(𝑏𝑘 + 𝑢𝑘)      (4) 

 

Where, 𝑥1, … , 𝑥𝑚 are the input signals; 𝑤𝑘1, … , 𝑤𝑘𝑚 are the weights of neuron 𝑘; 𝑢𝑘 is the 

combined linear output of the weighted input signals; 𝑏𝑘 is the bias weight, 𝛾(. ) is the activation 

function. 𝑦𝑘  is the output signal of the neuron. The bias weight 𝑏𝑘 applies an affine transformation to 

the output 𝑢𝑘. 
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Unsupervised learning algorithms attempt to learn a structure within a dataset without 

explicitly linking an input state with an output state. The learning algorithm used here falls strictly 

under supervised learning. It is necessary to have a training set with a number of inputs that 

correspond to known outputs –target response–. The network is presented with a training example 

and the network weights are adjusted in order to minimize the error or the distance between the 

predicted response and the expected response. 

In a neural network, neurons can be stacked layer upon layer, where every layer feeds its 

output as the input to the next layer. The output is directed, so there are no feedback connections, 

thus there is no recurrence. A feedforward neural network (FFNN) is defined as described by 

equation 5. 

 

𝑦 = 𝑓(𝑥; 𝜃)       (5) 

 

Where 𝜃 represents the parameters that best approximate 𝑓∗. Each sample 𝑥 has a 

corresponding label 𝑦 ≈  𝑓∗(𝑥), which specifies what the output layer must be at every point 𝑥. The 

learning algorithm iterates to modify the parameters 𝜃, the weights of every neuron, to reach the 

desired output. The training data provides no indication to the learning algorithm about what it 

should do with the parameters or layers in the model, so it must decide how to best use these layers 

to approximate  𝑓∗.  

The layers between the input layer and the output layer are known as hidden layers. By 

adding more hidden layers, the network can extract higher order statistics. Hidden layers are usually 

vectors, and their dimensionality determines the width of the model. Each element of the vector 

represents a neuron. This representation allows neurons to work as parallel units. 

Neural networks are referred to in the form 𝑚 − ℎ1 − ℎ2 − 𝑞 where 𝑚 is the number of 

source nodes, ℎ1 and ℎ2 the number of neurons in the hidden layers, and 𝑞 the number of neurons in 

the output layer. Thus a 10 − 5 − 1 network has 10 inputs, 1 output, and 5 neurons in a single hidden 

layer.  

Recurrent neural networks (RNN) are best suited to process sequential data 𝑥(1), … , 𝑥(𝜏) 

(Roman and Jameel, 1996) which is the case for financial market price data. A FFNN is modified with 

a connection that provides feedback, so it becomes a recurrent neural network.  

Recurrent nueral networks can scale to longer sequences than other types of networks. In 

that sense, the RNN updates the equations 6, 7 and 8 for every timestep between 𝑡 = 1 and 𝑡 = 𝜏:  

 

𝑎(𝑡) = 𝑏 + 𝑊ℎ(𝑡−1) + 𝑈𝑥(𝑡),      (6) 

 

ℎ(𝑡) = tanh(𝑎(𝑡)),      (7) 

 

𝑜(𝑡) = 𝑐 + 𝑉ℎ(𝑡).      (8) 

 

Where 𝑏 and 𝑐 are bias vectors, and matrices 𝑈 (input to hidden), 𝑉 (hidden to output) and 

𝑊 (hidden to hidden).  
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A problem that arises in RNN is that long term dependencies are not properly captured by 

the model because the gradients over timesteps either vanish or explode, resulting in instability 

during optimization (Pascanu et al., 2013). The exponentially smaller weights of long-term 

interactions eventually become so small that they lose effect. A widely used optimization algorithm 

to minimize the loss function during neural network training is stochastic gradient descent (Sirigiano 

and Spiliopoulos, 2017). This is the algorithm used in the empirical strategy of this work. 

Because the computational cost of additive cost functions is 𝑂(𝑚), as the training set grows, 

the training time required increases significantly. To solve this problem, stochastic gradient descent 

approximately estimates the expectation of the gradient using a minibatch of samples.  A minibatch 

Β = {𝑥(1), … , 𝑥(𝑚′)} is drawn uniformly from the training set, where 𝑚′ has a fixed size. Fitting a 

training set with billions of samples using updates from hundreds of samples is now possible, yet it 

is still a rather time-consuming task. The estimate of the gradient is given by equation 9. 

 

𝑔 =
1

𝑚′ ∇𝜃 ∑ 𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃).𝑚′

𝑖=1       (9) 

 

And it follows the estimated gradient in equation 10: 

 

𝜃 ← 𝜃 − 𝜖𝑔.       (10) 

 

Where 𝜖 is the learning rate.  

However, in practice the learning rate is not fixed, it decreases gradually over time, so that 

the learning rate at iteration 𝑘 is 𝜖𝑘. For that, the conditions shown in equations 11 and 12 have to 

be met in order to guarantee convergence: 

 

∑ 𝜖𝑘
∞
𝑘=1 = ∞,       (11) 

 

∑ 𝜖𝑘
2∞

𝑘=1 < ∞.       (12) 

 

As pointed out by Goodfellow et al., (2016), linear decay of the learning rate is often used in 

practice, which has the structure specified in equation 13: 

 

𝜖𝑘 = (1 − 𝛼)𝜖0 + 𝛼𝜖𝜏,      (13) 

 

Where 𝜏 is the iteration and 𝛼 =
𝑘

𝜏
, and 𝜖. Selecting the learning rate is a balance between 

learning speed and avoiding instability. If 𝜖0 is too large then the learning curve oscillates and the 

cost function increases, if set too low learning becomes slow and may become stuck.  
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3.2 Long Short-Term Memory (LSTM) neurowavelets 
 

Finally, the LSTM is a type of RNN with gates that prevent the gradient from vanishing or exploding 

(Hochreiter and Schmidhuber, 1997). LSTM introduces the concept of self-loops with context-

conditioned weights.  

With a gated self-loop, the time scale can be changed dynamically based on the input 

sequence. Each unit is composed of LSTM cells, and each cell has the same inputs and outputs as a 

common recurrent network, with more parameters and a system of gates for flow control. Let 𝑓𝑖
(𝑡)

 

represent a gate unit, for timestep 𝑡 and cell 𝑖, then it can be defined as shown in equation 14: 

 

𝑓𝑖
(𝑡)

= 𝜎 (𝑏𝑖
𝑓

+ ∑ 𝑈𝑖,𝑗
𝑓

𝑥𝑗
(𝑡)

𝑗 + ∑ 𝑊𝑖,𝑗
𝑓

ℎ𝑗
(𝑡−1)

𝑗 )    (14) 

 

Where 𝑏𝑓 is the bias, 𝑈𝑓 the input weights, and 𝑊𝑓 the recurrent weights. The external input 

gate unit can then be expressed as seen in equation 15: 

 

𝑔𝑖
(𝑡)

= 𝜎 (𝑏𝑖
𝑔

+ ∑ 𝑈𝑖,𝑗
𝑔

𝑥𝑗
(𝑡)

𝑗 + ∑ 𝑊𝑖,𝑗
𝑔

ℎ𝑗
(𝑡−1)

𝑗 )    (15) 

 

And the output gate 𝑞𝑖
(𝑡)

 is described by equation 16 and 17: 

 

𝑞𝑖
(𝑡)

= 𝜎 (𝑏𝑖
0 + ∑ 𝑈𝑖,𝑗

0 𝑥𝑗
(𝑡)

𝑗 + ∑ 𝑊𝑖,𝑗
0 ℎ𝑗

(𝑡−1)
𝑗 )    (16) 

 

ℎ𝑖
(𝑡)

= tanh (𝑠𝑖
(𝑡)

) 𝑞𝑖
(𝑡)

      (17) 

 

Where the internal state 𝑠𝑖
(𝑡)

 is updated as shown in equation 18, leading to the internal 

logical gates in LSTM solving the vanishing gradient problem. 

 

𝑠𝑖
(𝑡)

= 𝑓𝑖
(𝑡)

𝑠𝑖
(𝑡−1)

+ 𝑔𝑖
(𝑡)

 𝜎 (𝑏𝑖 + ∑ 𝑈𝑖,𝑗𝑥𝑗
(𝑡)

𝑗 + ∑ 𝑊𝑖,𝑗ℎ𝑗
(𝑡−1)

𝑗 ).   (18) 

 

3.3 Activation Function and Architecture 
 

To get the output from one layer to the next in the neural network, an activation function is used. 

There is a wide variety of them and Gomes et al (2011) present a comprehensive review of activation 

functions in finance.  

For the present work, the selected activation function is the sigmoid, which is described in 

equation 19, and which has an 𝑆 shaped graph. We use this activation function because it is non-

linear, therefore it can capture non-linear behavior, and it is differentiable at every point. 

 

𝛾(𝑣) =
1

𝑒−𝑡+1
.       (19) 
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The structure of the network determines how many neurons it has, the connections between 

them, and how the layers are stacked. The stacking of layers is what gives depth to the model.  

The first layer can then be defined as shown in equation 20, 

 

ℎ(1) = 𝑔(1)(𝑊(1)𝑇𝑥 + 𝑏(1)).      (20) 

 

The second layer is shown in equation 21, 

 

ℎ(2) = 𝑔(2)(𝑊(2)𝑇ℎ(1) + 𝑏(2)).      (21) 

 

And layer 𝑛 is shown in equation 22, 

 

ℎ(𝑛) = 𝑔(𝑛)(𝑊(𝑛)𝑇ℎ(𝑛−1) + 𝑏(𝑛)).     (22) 

 

 

The universal approximation theorem (Hornik et al, 1989; Cybenko 1989) states that a 

feedforward network with a linear output layer and one or more hidden layers with any activation 

function can approximate any Borel measurable function from one finite-dimensional space to 

another with any desired non-zero error if the network has enough hidden units.  

The derivatives of the feedforward network can also approximate the derivatives of the 

function. Any continuous function on a closed and bounded subset of ℝ𝑛 is Borel measurable and 

therefore may be approximated by a neural network. While the universal approximation theorem 

states that a large enough feedforward network can represent the function, it doesn't guarantee that 

the training algorithm is able to learn that function. The theorem does not say how large the network 

must be. Therefore, our strategy consists in comparing two types of architecture, a dense architecture 

– where every node in a layer is connected to every other node in the forward layer–, and a LTSM 

architecture. 

 

3.4 Optimization and Backpropagation 
 

Optimization in neural networks consists of finding the parameters 𝜃 for a neural network to reduce 

the cost function 𝐽(𝜃) according to a performance measure 𝑃. This way the performance measure 𝑃 

is optimized indirectly. The cost function is defined by equation 23: 

 

𝐽(𝜃) = 𝐸(𝑥,𝑦)~𝑝𝑑𝑎𝑡𝑎
𝐿(𝑓, (𝑥; 𝜃), 𝑦).     (23) 

 

Where 𝐿 is the per example loss function, 𝑓(𝑥; 𝜃) is the predicted output for input 𝑥, �̂�𝑑𝑎𝑡𝑎 is 

the empirical distribution, and 𝑦 is the target output.  

To minimize the objective function, the expectation is taken from the data generating 

distribution 𝑝𝑑𝑎𝑡𝑎 and not only over the finite training set, as shown in equation 24: 
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𝐽(𝜃) = 𝐸(𝑥,𝑦)~𝑝𝑑𝑎𝑡𝑎
𝐿(𝑓, (𝑥; 𝜃), 𝑦).     (24) 

 

In order to transform a machine learning problem into an optimization problem we minimize 

the expected loss on the training set by replacing the true distribution 𝑝(𝑥, 𝑦) with the empirical 

distribution �̂�(𝑥, 𝑦). To minimize the empirical risk, this is shown in equation 25: 

 

𝐸(𝑥,𝑦)~�̂�𝑑𝑎𝑡𝑎
[𝐿(𝑓, (𝑥; 𝜃), 𝑦)] =

1

𝑚
∑ 𝐿(𝑓, (𝑥(𝑖); 𝜃), 𝑦(𝑖)),𝑚

𝑖=1    (25) 

 

A word of caution must be made regarding this approach as the empirical risk minimization 

can lead to overfitting - a situation where the model memorizes the training set and cannot be 

generalized properly for samples outside the training set.  

Finally, backpropagation is the method used to allow a neural network to learn by itself. If a 

neuron 𝑗 is fed by a layer of neurons before it, the induced local field produced at the input of the 

activation function associated with neuron 𝑗 is as described by equation 26: 

 

𝑣𝑗(𝑛) = ∑ 𝑤𝑗𝑖(𝑛)𝑦𝑖(𝑛).𝑚
𝑖=0      (26) 

 

Where 𝑚 is the total number of inputs applied to neuron 𝑗. The function signal 𝑦𝑖(𝑛) at the 

output of a neuron 𝑗 at iteration 𝑛 is given by equation 27: 

 

𝑦𝑖(𝑛) = 𝛾(𝑣𝑖(𝑛)).      (27) 

 

The backpropagation algorithm applies a correction Δ𝑤𝑗𝑖(𝑛) to the weight 𝑤𝑗𝑖(𝑛) which is 

proportional to the partial derivative 𝜕𝜖(𝑛)/𝜕𝑤𝑗𝑖(𝑛), which represents a sensitivity factor, 

determining the direction of search in weight space for the weight 𝑤𝑗𝑖. This is shown in equation 28 

 

Δ𝑤𝑗𝑖(𝑛) = −𝜂
𝜕𝜖(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
,      (28) 

 

Where 𝜂 is the learning rate parameter for the backprogapation algorithm. 

 

4. Data and Results 
 

Figure 1 depicts the proposed methodology. The target output of our forecast is the log-return for 

one timestep in the future. Therefore, the two steps involved are:  

 

1. Apply a MODWT to decompose the signal of log-returns. 

2. Fit a LSTM neural network to the filtered data. The optimization target is the Mean squared 

error (MSE). 

 

While this seems enough to build and train a Wavelet-LSTM neural network, in practice there 

are many hyperparameters inherent to the network that must be specified and their values can be 
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the difference between the model converging or not converging, the speed of convergence, can result 

in overfitting, reaching different local minima, and computational cost.  

The benchmark against which we compare the wavelet-LSTM model is an ARIMA model fitted 

to the data. We also compare the results to a wavelet-dense model in order to have a sense of the 

performance of the neural network itself.  

We measure the ability of the model to reduce its mean squared error during training and to 

correctly forecast the direction –if the predicted return will be positive or negative–. 

 

 
Figure 1. Wavelet-LSTM neural network. Source: Own elaboration. 

 

4.1 Data 
 

We use price data from 25 assets of the Mexican Stock market with time intervals for 1, 5, and 15 

minutes. The selection of assets is based on the largest market capitalization value of the Mexican 

Stock Exchange for the period of analysis. The selection of intervals is based on the availability of data 

from the data provider (Bloomberg), and on previous studies: Bakhach et al (2018) and Ortega and 

Khashanah (2014) make use of a 1 minute interval, Carrion (2013) uses a 5 minutes interval, Martens 

(2002) uses 5 and 15 minutes intervals. For internal validation purposes, the period of analysis goes 

from February 2017 to July 2017, considering the Open, Maximum, Minimum and Close prices, as 

well as Volume. Data were obtained from Bloomberg. The list of assets can be found in Table 1. 
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Table 1. List of assets from the Mexican Stock Exchange 

AMXL MM Equity ELEKTRA* MMM Equity 

WALMEX* MM Equity PE&ONES* MM Equity 

FEMSAUBD MM Equity GCARSOA1 MM Equity 

GFMEXICOB MM Equity IENOVA* MM Equity 

GFNORTEO MM Equity ALFAA MM Equity 

KOFL MM Equity CUERVO* MM Equity 

TLEVICPO MM Equity KIMBERA MM Equity 

SANMEXB MM Equity GAPB MM Equity 

CEMEXCPO MM Equity ASURB MM Equity 

AC*MM Equity GRUMAB MM Equity 

BIMBOA MM Equity MEXCHEM* MM Equity 

GFINBURO MM Equity PINFRA* MM Equity 

Source: Own elaboration with tickers from Bloomberg (2017). 

 

Both the Wavelet-LSTM and Wavelet-Dense models were initialized with a diverse 

combination of hyperparameters to determine convergence, stability, and performance. Then a 

training and calibration of 1926 experiments, each with a different combination of hyperparameters, 

was performed.  

This requires considerable computing power, and for this we have assembled a small 8-node 

cluster with 12 Graphic Processing Unit, GPU, accelerator cards. To program and train the neural 

networks we use the Keras Deep Learning Library (version 1.0.4, Jun 06 2016) –an open source 

project started by Google researcher: Francois Chollet–.  

The closing prices, C, are transformed to log returns and used as inputs for the benchmark 

ARIMA model. These log returns are also the output values and training target in the Wavelet-LSTM 

and Wavelet-Dense models. 

The time series for the 25 assets are separated in eight frequency levels using a MODWT 

transform with J=8. This decomposition generates 9 time series for each one of the 25 stocks 

analyzed, 8 detail series and 1 wavelet approximation. These time series are then divided into a 

moving window of size 12 and fed as input to a layer of 512 LSTM units, followed by a Dense layer 

fully connected with 512 neurons. It is finally followed by an additional Dense layer with 512 inputs 

and 1 output with a linear activation function, which corresponds to the forecast of the log returns. 

The Wavelet-LSTM and Wavelet-Dense models are illustrated in Figure 2 and Figure 3, respectively. 

 



 
14 

 

 

REMEF (The Mexican Journal of Economics and Finance) 
Neuro-wavelet Model for price prediction in high-frequency data in the Mexican Stock market 

 
Figure 2. Wavelet-FSTM model. Source: own elaboration. 

 

 
Figure 3. Wavelet-Dense model. Source: own elaboration. 

 

The time series are split 90% for training the network (training set) and 10% for out of 

sample validation (validation set). We trained the model with 500 epoch iterations (an epoch is one 

complete pass over the training data set), checking for congruence between the training error and 

validation error to avoid overfitting and detecting instability.  
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The optimization target used is the Mean Squared Error (MSE) and the scale is adjusted in 

the interval [-1,1] in order to match the original center to 0 so the sign of the return can be preserved 

while pairing the interval to the one of the activation functions.  

Finally, to compare the performance of the Wavelet-LSTM model with the selected 

benchmarks, we count the number of times the sign of the forecast corresponds with the actual sign 

of the return, that is, the times the direction of the forecast is correct. 

 

4.2 Results 
 

When building a forecasting model, parsimony is desirable. A reduced number of estimated 

parameters is easier to understand and explain, and every estimated parameter adds estimation 

variation. In the case of ARIMA each unnecessary parameter causes the variance of the one step ahead 

forecast error to increase approximately, where 𝑛 is the number of observations (Ledolter and 

Abraham, 1981). This is also a matter of noise versus signal. Models that are overly complex can 

mistake noise for a signal. Occam's razor is a metaphor for parsimony: removing needless complexity 

and leaving only theories, models, and hypotheses that are as simple as possible without being false. 

By finding a balance between goodness of fit and model complexity we can avoid overfitting. 

In the case of Machine Learning and more specifically the Wavelet-LSTM model proposed, we use a 

training set and an out-of-training-sample validation set, and we evaluate the loss function for each. 

If the training loss becomes measurably lower than the validation loss, we have a condition of 

overfitting or no convergence. One technique to prevent overfitting is Early Stopping, which halts the 

iterative training algorithm once the training loss compared to the validation loss shows no 

improvement. Table 2 contains the percentages of the correct direction predicted by ARIMA, 

Wavelet-LSTM y Wavelet-Dense models for each of the 25 stocks and the time scales selected. Table 

3 contains the percentage difference in the performance of Wavelet-LSTM model against the selected 

benchmarks. 

It can be seen that, on average, Wavelet-LSTM improves the forecasting of the one-step ahead 

direction when compared to the Wavelet-Dense and the ARIMA models.  

For the case of the first benchmark, the biggest difference between the Wavelet-LSTM 

precision and the Wavelet-Dense appears in the 5 minutes window.  

For the case of the second benchmark, as the time window becomes larger, the Wavelet-LSTM 

forecasting improvement increases in magnitude compared to the forecasting of the ARIMA model. 

Altogether, the results are in line with the ones exposed in the literature review.  

 

Table 2. Percentage of correct prediction of the one-step ahead direction 

  Wavelet-LSTM Wavelet-Dense ARIMA 

Stock 1m 5m 15m 1m 5m 15m 1m 5m 15m 

AMXL MM Equity 25.74% 37.34% 46.80% 25.90% 36.40% 49.97% 25.51% 36.20% 42.55% 

WALMEX* MM Equity 36.59% 45.44% 51.89% 36.30% 42.68% 50.88% 35.16% 42.84% 45.77% 

FEMSAUBD MM Equity 41.39% 48.69% 54.46% 41.21% 47.91% 50.93% 42.23% 47.46% 49.66% 

GFMEXICOB MM Equity 36.62% 46.16% 52.88% 36.18% 44.36% 48.17% 34.84% 43.39% 46.78% 

GFNORTEO MM Equity 34.99% 42.87% 53.25% 35.14% 47.08% 51.29% 34.90% 44.45% 47.97% 
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KOFL MM Equity 40.41% 49.45% 48.15% 40.43% 48.40% 55.49% 40.05% 46.64% 49.33% 

TLEVICPO MM Equity 42.46% 54.74% 57.34% 41.31% 48.35% 52.70% 40.97% 46.31% 47.90% 

SANMEXB MM Equity 34.15% 43.92% 50.11% 33.78% 44.60% 51.62% 33.81% 43.59% 46.75% 

CEMEXCPO MM Equity 28.70% 42.09% 51.24% 28.76% 39.84% 49.51% 28.37% 39.34% 44.49% 

AC*MM Equity 38.32% 49.47% 53.94% 38.04% 47.76% 51.75% 37.63% 46.23% 48.33% 

BIMBOA MM Equity 32.15% 48.17% 52.95% 31.37% 41.97% 51.34% 31.09% 40.91% 46.43% 

GFINBURO MM Equity 33.33% 58.21% 68.86% 30.23% 42.61% 49.31% 29.66% 39.96% 45.64% 

ELEKTRA* MMM Equity 42.04% 58.25% 59.85% 39.69% 49.35% 55.99% 39.96% 47.70% 49.38% 

PE&ONES* MM Equity 40.79% 52.54% 59.10% 40.04% 47.54% 56.90% 39.28% 46.89% 48.89% 

GCARSOA1 MM Equity 35.79% 46.27% 53.19% 34.10% 43.64% 54.87% 34.20% 41.92% 46.63% 

IENOVA* MM Equity 34.61% 50.91% 57.03% 34.20% 45.24% 52.93% 32.13% 40.12% 44.43% 

ALFAA MM Equity 32.01% 47.82% 53.56% 30.60% 42.35% 50.49% 30.41% 40.05% 44.88% 

CUERVO* MM Equity 25.65% 37.59% 44.16% 25.25% 34.63% 45.09% 25.00% 35.41% 41.98% 

KIMBERA MM Equity 34.85% 54.41% 62.92% 31.29% 42.17% 45.00% 30.93% 40.10% 45.02% 

GAPB MM Equity 39.23% 49.55% 55.15% 39.21% 47.20% 56.40% 38.24% 45.04% 48.28% 

FUNO11 MM Equity 28.50% 41.29% 50.26% 28.34% 39.01% 49.87% 27.88% 37.52% 43.67% 

ASURB MM Equity 38.78% 49.82% 57.47% 39.31% 48.39% 49.07% 38.79% 46.59% 47.79% 

GRUMAB MM Equity 35.29% 46.52% 51.59% 33.44% 45.48% 51.03% 34.98% 44.75% 48.33% 

MEXCHEM* MM Equity 33.60% 52.13% 57.27% 32.64% 43.57% 57.34% 32.88% 42.19% 47.41% 

PINFRA* MM Equity 35.75% 48.34% 53.14% 35.80% 45.76% 50.87% 34.95% 44.53% 48.15% 

Source: Own elaboration with the results of the study. 

 

Table 2 contains the percentages of the correct direction predicted by ARIMA, Wavelet-LSTM 

y Wavelet-Dense models for each of the 25 stocks and the time scales selected. It can be seen that, in 

general, the Wavelet-LSTM yields higher percentages of correct prediction than those from the 

Wavelet-Dense and the ARIMA models. Of the predictions considering a 1-minute window, the 

Wavelet-LSTM has the highest percentage in 18 out of the 25 forecasts. The average of correct 

prediction for this window is 35.27% for the Wavelet-LSTM, while for the Wavelet-Dense and the 

ARIMA models the average are 34.5% and 34.15% respectively. For the 15 minutes window, again, 

the Wavelet-LSTM has the highest percentage in 18 out of the 25 forecasts. Interestingly, the average 

of correct prediction increases for the three models: 54.26% for the Wavelet-LSTM, 51.55% for the 

Wavelet-Dense and 46.66% for the ARIMA model. Finally, for the 5 minutes window the Wavelet-

LSTM has the highest percentage in 23 out of the 25 forecasts and the average of correct prediction 

is 48.08% for the Wavelet-LSTM, 44.25% for the Wavelet-Dense and 42.81% for the ARIMA model. 

In sum, the Wavelet-LSTM outperforms both benchmark models in 59 of the 75 forecasts and appears 

to be more precise in the 5 minutes window than the Wavelet-Dense and the ARIMA models. 
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Table 3. Difference of correct prediction between Wavelet-LSTM model and benchmarks 

 Wavelet-LSTM | ARIMA Wavelet-LSTM | Wavelet-Dense 

Stock 1m 5m 15m 1m 5m 15m 

AMXL MM Equity 0.22% 1.14% 4.25% -0.16% 0.94% -3.17% 

WALMEX* MM Equity 1.43% 2.60% 6.12% 0.29% 2.76% 1.01% 

FEMSAUBD MM Equity -0.84% 1.23% 4.80% 0.17% 0.78% 3.53% 

GFMEXICOB MM Equity 1.78% 2.77% 6.10% 0.44% 1.79% 4.71% 

GFNORTEO MM Equity 0.09% -1.58% 5.28% -0.15% -4.22% 1.96% 

KOFL MM Equity 0.37% 2.80% -1.18% -0.01% 1.04% -7.34% 

TLEVICPO MM Equity 1.49% 8.44% 9.45% 1.14% 6.39% 4.65% 

SANMEXB MM Equity 0.34% 0.33% 3.36% 0.37% -0.67% -1.51% 

CEMEXCPO MM Equity 0.33% 2.75% 6.75% -0.06% 2.25% 1.73% 

AC*MM Equity 0.69% 3.23% 5.61% 0.28% 1.71% 2.19% 

BIMBOA MM Equity 1.06% 7.26% 6.51% 0.78% 6.20% 1.60% 

GFINBURO MM Equity 3.67% 18.25% 23.22% 3.10% 15.60% 19.55% 

ELEKTRA* MMM Equity 2.08% 10.55% 10.47% 2.35% 8.91% 3.86% 

PE&ONES* MM Equity 1.51% 5.65% 10.20% 0.75% 5.00% 2.19% 

GCARSOA1 MM Equity 1.58% 4.35% 6.56% 1.69% 2.64% -1.68% 

IENOVA* MM Equity 2.48% 10.79% 12.60% 0.41% 5.66% 4.10% 

ALFAA MM Equity 1.60% 7.77% 8.68% 1.40% 5.47% 3.07% 

CUERVO* MM Equity 0.65% 2.18% 2.18% 0.41% 2.97% -0.93% 

KIMBERA MM Equity 3.93% 14.32% 17.90% 3.56% 12.25% 17.92% 

GAPB MM Equity 1.00% 4.51% 6.87% 0.02% 2.35% -1.24% 

FUNO11 MM Equity 0.62% 3.77% 6.59% 0.16% 2.27% 0.39% 

ASURB MM Equity -0.02% 3.23% 9.69% -0.54% 1.44% 8.41% 

GRUMAB MM Equity 0.31% 1.77% 3.26% 1.84% 1.04% 0.56% 

MEXCHEM* MM Equity 0.73% 9.94% 9.86% 0.96% 8.56% -0.07% 

PINFRA* MM Equity 0.81% 3.81% 4.99% -0.05% 2.57% 2.27% 

Average 1.12% 5.27% 7.61% 0.77% 3.83% 2.71% 

Source: Own elaboration with the results of the study. 

 

Table 3 contains the percentage difference in the performance of Wavelet-LSTM against the 

selected benchmarks. For this analysis, if a positive sign is obtained, the Wavelet-LSTM yielded a 

higher percentage of correct prediction than the one from the Wavelet-Dense or the ARIMA models. 

For the case of the difference in percentage of correct prediction between the Wavelet-LSTM and the 

Wavelet-Dense, 60 out of the 75 forecasts showed a positive sign. This suggests that the Wavelet-

LSTM outperformed the Wavelet-Dense in 80% of the presented forecasts. When analyzing the case 

of the difference in percentage of correct prediction between the Wavelet-LSTM and the ARIMA 

model, the positive sign is obtained in 71 of the 75 cases, for an outperformance of approximately 

95% of the presented forecasts. Altogether, the results are in line with the ones exposed in the 

literature review: in general, the ARIMA model is outperformed by both Wavelet models, while the 

Wavelet-Dense is outperformed by the Wavelet-LSTM. 
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5. Concluding Remarks 
 

The description of price dynamics at various frequencies is of importance both for academics and 

practitioners in finance. Many are particularly concerned with the possibility of forecasting prices or 

returns in a specific time horizon.  

Previous studies have shown that at high frequencies, returns do not follow the efficient 

markets hypothesis, hence a “complete” stochastic behavior is not observed (Nath and Dalvi, 2004; 

Strawińsky and Slepaczuk, 2008; Tapia, 2020). By asset prices not following a random walk a 

forecasting of their next value is possible and, with the use of novel tools and computational power, 

one might take advantage of this fact. This directly translates to a potential benefit for the 

practitioners that have recognized the importance of dealing with high frequency information in their 

predictive models. Precisely, O’Hara (2014) discussed a new market paradigm: “Trading has become 

faster, and market structure has fundamentally changed. In today’s market, high-frequency traders 

(HFTs) act on information revealed by low-frequency traders (LFTs). To survive, LFTs must avoid being 

detected by predatory algorithms of HFTs. LFTs can thrive by adopting trading strategies appropriate 

to the high-frequency trading world”. 

 

5.1 Main Results 
 

In the present work, we apply a wavelet followed by LSTM neural network to 25 assets of the Mexican 

Stoc Market. We compare the performance of the proposed model with the performance of an ARIMA 

model and a wavelet followed by a Dense neural network model, following the literature.  

The measure for comparison is the accuracy in forecasting the direction of the price 

movement (the sign of the logarithmic return) for time series at three different time windows (1, 5 

and 15 minutes). 

We find that The LSTM neuro-wavelet outperforms both the ARIMA and the Dense neuro-

wavelet for the three studied frequencies. However, the higher accuracy was found for the 5 minutes 

interval. 

 

5.2 Limitations and Recommendations for Future Research 
 

Results and implementation do not come without limitations. We recognize that the selection of the 

benchmark models and high market capitalization assets may lead to skewed results. While we 

selected Wavelet-Dense and ARIMA models based on the consensus when dealing with financial time 

series, a comparison against other Neurowavelets architectures might be of interest.  

On the other hand, we also find value in exploring the proposed methodology in various cases 

within the Mexican market, such as, considering different market capitalization levels or considering 

industry indices instead of single assets. We leave that for future research.  

Finally, the technical capacity surely represents a constraint for the hyperparameters’ 

selection and estimation capability may be somewhat hindered by it. In that sense, future research 
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agenda may also include the assessment of whether these results are maintained over long time 

windows or in markets with a different inherent structure, such as the US stock market. 

 

5.3 Originality 
 

The question of whether prices can be forecasted is not new, the literature on the topic is vast, but 

most of it focuses on low frequency operations.  With the mass availability of computing power, large 

amounts of data and new filtering tools, we can revisit the question, and particularly, we can bound 

it to the realm of high frequency trading.  

Wavelet filtering has been widely applied in finance. Neural network models have been 

extensively explored, as well. But recently, the application of both models combined has been 

proposed (Zhang et al., 2001; Minu et al., 2010; Jamazo and Aloui, 2012; Bao et al. 2017). For high 

frequency trading, little has been done. Ortega and Khashanah (2014) apply a Haar wavelet followed 

by a Jordan-Elman neural network to 1 minute data for the Apple (AAPL) stock price. Arevalo et al. 

(2018) apply a wavelet followed by a Deep Neural Network (DDM) to 1 and 3 minute data on 19 

stocks in the Dow Jones Index. 

We follow this line, by applying a wavelet transform followed by a Long Short Term Memory 

neural network, which provides increased ability to remember data from previous time steps, and 

thus allows to model more complex non-linear behavior. 

 

5.4 Main Conclusions 
 

In this work we illustrate the use of a new tool for forecasting stock prices at high frequencies. The 

results show that the LSTM neuro - wavelet model proposed outperforms the chosen benchmarks. 

This leads us to conclude that the addition of this tool to the forecasting toolkit of a market participant 

would be of great value. Certainly, the application of said tool is computationally intensive, but the 

possible gains from it, and the ever-greater availability of computing power might make it possible 

to consider the use of complex algorithms, such as this one. 

We believe there is an opportunity to outperform traditional forecasting tools by making 

clever use of computer power, and such we have tried to show in the present research. This is an 

important step in showing how ever more sophisticated tools can be applied successfully to gain 

insight into the structure of the markets and the complexity that interactions of many actors induce.  
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