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ABSTRACT

We carried out a geochronological and geochemical study of
zircons from seven pegmatite intrusions collected from the central
part (Zimatlan- Ayoquezco-Ejutla villages) of the Oaxacan Complex,
southern Mexico. U-Pb ages and trace element chemistry were obtained
by laser ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS). The objective of this work is to determine the time of
pegmatite emplacement and its high grade metamorphism, if present,
by U-Pb dating and identify its possible source and crystallization
environment, using trace element concentrations in zircons. The
geochronological study allowed to distinguish three main groups
of pegmatites: post-tectonic, syntectonic, and pre-tectonic with
respect to the granulite facies metamorphism event, which have ages
in the ranges of 963 £+ 7 to 977 + 5 Ma, 980 + 5 to 981 + 7 Ma, and
1190 + 7 to 1201 + 5 Ma, respectively. The REE geochemistry in
pegmatite zircons shows that the mechanism of pegmatite formation
was in some cases magmatic, in others metamorphic or in between.
It has been suggested before that all pegmatites of this region are
“granitic” and are the result of a classical evolution of a felsic melt
formed in situ during the anatexis of the Oaxacan Complex rocks. The
interpretation of our chemical data indicates that the composition of
the initial melt, from which each class of pegmatite was formed, can
be ultramafic, alkaline or carbonatitic, and only one sample shows a
granitic-like initial composition. This means that the pegmatites of
the Oaxacan Complex are of diverse origin and only those of quartz-
feldspar mineralogy are actually granitic in origin.

Key words: Oaxacan Complex; pegmatite; zircon; rare earth elements:
U-Pb geochronology.
RESUMEN

Hemos realizado un estudio geocronoldgico y geoquimico de los

circones de siete pegmatitas colectadas en la zona central (Zimatldn-
Ayoquezco-Ejutla) del Complejo Oaxaqueiio, Sur de México. Las

edades U-Pb y los elementos traza se obtuvieron mediante LA-ICP-MS.
El objetivo de este trabajo es determinar la edad de emplazamiento
de cada pegmatita y su metamorfismo de alto grado, si estd presente,
mediante datacién U-Pb, asi como identificar su posible roca fuente y
ambiente de cristalizacién, usando los elementos traza en circén. Este
estudio geocronoldgico ha permitido identificar tres grupos de pegma-
titas: sintectonicas, post-tectonicas y pretectonicas, con respecto del
evento metamorfico granulitico, que presentan edades en los rangos de
963+7a977 +5Ma, 980+ 5a 981+ 7 Ma, y 1190 + 7 a 1201 + 5 Ma,
respectivamente. La geoquimica de REE en circones muestra que el me-
canismo de formacion de las pegmatitas en algunos casos fue magmadtico,
en otros — metamorfico, o una combinacion de los dos. Se ha sugerido
previamente que todas las pegmatitas de esta regién son ‘graniticas” y son
el resultado de la evolucion cldsica de un magma félsico formado in situ
durante los procesos de anatexis de las rocas del Complejo Oaxaquerio.
La interpretacion de los andlisis quimicos indica que la composicién
inicial del fundido del cual derivan los cuerpos pegmatiticos puede ser
ultramdtfico, alcalino o carbonatitico, y sélo una muestra presenta una
composicion granitica original. Esto significa que las pegmatitas del
Complejo Oaxaquefio son de origen diverso y sélo las de mineralogia
cuarzo-feldespdtica son de origen granitico.

Palabras clave: Complejo Oaxaquefio; pegmatita; circon; elementos de
las tierras raras; geocronologia U-Pb.

INTRODUCTION

The Oaxacan Complex constitutes the largest (10000 km?) outcrop
of ~1 Garocks in Mexico. From the regional point of view, the Oaxacan
Complex is the largest exposure of the NW-SE extending Oaxaquia
microcontinent (e.g., Ortega-Gutiérrez et al., 1995), underlying most
of the Mexican territory. Oaxaquia is a portion of the Grenville-aged
belt in the North American continent, extending from northeastern
Canada to Southern Mexico (Ruiz et al., 1999) (Figure la).

Till now, the pegmatites of the Oaxacan Complex have not received
much attention, in spite of their importance for the understanding of
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the Mexican Grenville basement. Pegmatite formation processes in
this region are closely related to the tectonic history of the Oaxacan
Complex (e.g., Solari et al., 2003; Prol-Ledesma et al., 2012). The first
published ages of the Oaxacan Complex rocks were obtained from
pegmatite zircons with the Pb-a method, yielding ages in the range
0f 960 — 1110 Ma (Fries et al., 1962; Fries and Rincon-Orta, 1965).

Most of the pegmatites in the world contain zircon in trace quanti-
ties only, but its abundance increases as pegmatite compositions become
more alkaline (London and Cerny, 2008). Some well-known pegmatites
of the Oaxacan Complex contain abundant zircon megacrysts (e.g.,
Fries et al., 1962; Fries and Rincén-Orta, 1965; Haghenbeck-Correa,
1993; Arenas-Herndndez, 1999; Prol-Ledesma et al., 2012).

Zircon is considered to be one of the first phases to crystallize in
most igneous rocks (Nagasawa, 1970) and is enriched in REE, Y, Th, U
and Hf. The concentrations of these elements in zircons may provide
information concerning the nature of the primary melt (e.g., Nagasawa,
1970; Pupin, 2000; Belousova et al., 2002; Hoskin and Schaltegger,
2003; Lesnov, 2012). Moreover, the morphology of zircon crystals can
give information about formation conditions (Pupin, 1980). Due to
its chemical resistance and ability to survive weathering and transport
processes, as well as high temperature metamorphism and anatexis,
zircon is able to record information about conditions and time of its
crystallization and recrystallization (Belousova et al., 2002).

In this paper we present new zircon U-Pb ages obtained by laser
ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS)

and provide trace element chemistry of seven zircon samples collected
from pegmatites located in the central part of the Oaxacan Complex,
between the villages of Zimatlan, Ayoquezco, and Ejutla (Figures 1b
and 1c¢). The objective of this work is to determine the time of pegmatite
emplacement and its high-grade metamorphism, as well as to identify
the possible source rock types and crystallization environment.

GEOLOGICAL FRAMEWORK

The Oaxacan Complex consists of a diversity of rock types that were
metamorphosed up to the granulite facies and were derived from either
a sedimentary protholith (marbles, calcsilicates, quartzo-feldspathic
and graphitic gneiss) or from igneous rocks (granite, tonalite, syenite,
gabbro, anorthosite, charnockite). Other igneous rocks are present in
the form of pegmatite intrusions (Fries et al., 1974; Bloomfield and
Ortega-Gutiérrez, 1975; Ortega-Gutiérrez et al., 1977; Keppie et al.,
2003). According to Solari et al. (2003), these rocks were involved in
two tectonothermal events during the Grenville orogeny: the Olmecan
event (1106 + 6 Ma), and the Zapotecan event (1004 £ 3 to 979 + 3 Ma).
The existence of the former event was recently questioned by Weber et
al. (2010), who did not find its evidence in the southernmost edge of
the Oaxacan Complex, near Pluma Hidalgo (Oaxaca). The temperature
and pressure conditions of the Zapotecan granulite facies event were
700 - 825°Cat 7.2 - 8.2 kb (Mora et al., 1986) in the northern part and
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Figure 1. a) and b) Location of the Oaxacan Complex, Oaxaquia and other outcrops of Mid-Proterozoic rocks of the Grenville orogeny in North America; dotted
lines — possible extension of the Grenville age rocks (redrawn from Gillis et al., 2005). ¢) Simplified geological map from the studied Zimatlan- Ayoquezco-Ejutla
area, modified from Elias-Herrera and Obregdn-Ramos (1983), with sample locations indicated.
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800 - 900 °C at 8 kb in the southern portion of the Oaxacan Complex
(Schulze-Schreiber, 2011).

There is a large age gap between the end of the Grenville orogeny
and the deposition of the oldest discordant unit above the Oaxacan
Complex, the Early Ordovician sedimentary marine rocks from Tind
Formation (Pantoja-Alor and Robinson, 1967). This formation is only
found in the northern Oaxacan Complex, whereas in the southern part
the stratigraphic constraints are <500 m thick Jurassic red beds (?) and
Cretaceous platform carbonate rocks and flysch (Schulze-Schreiber
et al., 2004).

The Oaxacan Complex contains multiple pegmatite dikes that
are either concordant or discordant, with respect to the host rock
foliation. Some of these pegmatites are undeformed and others show
features of syntectonic deformation (Schaaf and Schulze-Schreiber,
1998; Solari et al., 1998). In the northern Oaxacan Complex, Solari et
al. (2003) reported the presence of at least three types of pegmatites,
which, based on their relationships with the Grenvillian deformation,
were classified as pre-tectonic, syntectonic, and post-tectonic. The
central part of the Oaxacan Complex, south of Oaxaca City, between
Zimatlan, Ejutla, and Ayoquezco, is also characterized by multiple
pegmatitic intrusions, but to this day there is only little information
published on this topic (Elfas-Herrera and Obregén-Ramos, 1983).
In general, all the pegmatites belonging to this sector and mentioned
in literature, are dikes or lenses with very coarse-grained textures and
were identified as late-tectonic granitic pegmatites, formed by partial
melting of the host rock gneisses (Haghenbeck-Correa, 1993; Arenas-
Hernandez, 1999). Only few of these pegmatites were previously dated
by K-Ar, Rb-Sr or Pb-a., with ages in the range of 670 — 980 Ma (Fries
and Rincdn-Orta, 1965; Fries et al., 1962; Anderson and Silver, 1971;
Ortega-Gutiérrez et al., 1977).

For this study seven pegmatites in the central part of the Oaxacan
Complex were chosen. Three of them have already been mentioned
in literature (La Ofelia, La Panchita, and OC22-4AB) (e.g., Fries and
Rincon-Orta, 1965; Anderson and Silver, 1971; Arenas-Hernandez,
1999). The remaining four were discovered during the field work
(183-2,176-1, 213-1 and AYQ25-7). All pegmatites and pegmatites-
migmatites (leucosome) are characterized by the presence of zircon
and, in some cases, show a very unusual mineralogy for a “granitic”
pegmatite (London and Cerny, 2008). Among the most remarkable
minerals, they contain scapolite, clinopyroxene and primary calcite.

La Ofelia, 213-1, 183-2, La Panchita, and AYQ25-7 are located in
the western part, OC22-04 and 176-1 are located in the eastern part
of the study area. The pegmatite bodies OC22-04 and 213-1 have
lenticular forms following the foliation of the host rocks (Figure 1c).
The La Ofelia, 176-1, La Panchita, 183-2, and AYQ25-7 pegmatites
are dikes that cut the host rock foliation (Figure 1c). Pegmatite 213-
1 is composed of several lenses which are concordant with the host
rock foliation and show large grain size (crystals are several cm in
length). This pegmatite, in particular, has geological features typical of
a migmatite (Mehnert, 1968): the limits between the pegmatite body
and the host rock are gradual and no zonation is observed within the
pegmatite lenses.

ANALYTICAL METHODS

The seven studied samples (each of 5 - 10 kg) were collected from
potential zircon bearing portions of the aforementioned pegmatites.
They were crushed in the laboratory and heavy minerals were separated
using a Wilfley table and a Frantz® magnetic separator. Zircons were
extracted from the residual non-magnetic fraction. For each sample 100
zircon grains were randomly selected under a binocular microscope,
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mounted in epoxy resin and then polished. The intra-grain composi-
tional zoning was identified by cathodoluminescence (CL), using an
ELM 3R luminoscope; and images were collected prior to analysis. Most
grains preserve a number of subdomains of distinct composition that
imply multiple igneous or metamorphic growth events.

Samples were dated by the U-Pb method using a Resonetics M50
workstation coupled to a Thermo X series II quadrupole ICP-MS at
the Laboratorio de Estudios Isotépicos (LEI), Centro de Geociencias,
UNAM, following the methodology reported in Solari ef al. (2010).

The analytical data were filtered by discordance: results which
yielded more than 10% or less than -5% of discordance were considered
unreliable and were eliminated. Raw data were reduced using Iolite
(Paton et al., 2010) and the Vizual Age data reduction scheme (Petrus
and Kamber, 2012), whereas all the Concordia plots were obtained,
using Isoplot v. 3.70 software (Ludwig, 2008).

Trace elements (REE, Y and Hf) were collected from all zircons
during U-Pb isotopic analysis. REE patterns were normalized to the
chondrite values of McDonough and Sun (1995).

The size of Cerium and Europium anomalies was calculated
from measured REE concentrations, using the following formulas:
Ceéanomaty=Ce/Ce*, where Ce is the chondrite-normalized Ce concentra-
tion and Ce* is the average of the chondrite-normalized La and Pr;
Etnomay=Eu/Eu*, where Eu is the chondrite-normalized Eu concentra-
tion and Eu* is the average of the chondrite-normalized Sm and Gd
concentrations.

The ages of each sample and the concentrations of Y, REE, Hf, Th,
and U are shown in Table 1 and 2.

RESULTS

A detailed description of the seven pegmatite bodies sampled and
the obtained analytical data (age and chemistry) is given in this sec-
tion. The coordinates (latitude/longitude) of the pegmatite locations
are shown in Table 3.

La Ofelia pegmatite

This is a discordant pegmatite body approximately 150 m wide
and 300 m long, showing gradual grain size decrease towards the
host quartzo-feldspathic gneiss. It is composed of three main zones:
a pure phlogopite core, a phlogopite-clinopyroxene intermediate
zone, and an external quartz-feldspar zone. The intermediate zone is
represented by diopside highly altered to epidote and by phlogopite
altered to chlorite. The external zone is made up of perthitic crystals
of microcline with andesine-oligoclase highly altered to sericite and
quartz. This zone has the largest abundance of accessory phases, such
as apatite, zircon, titanite, and monazite. The zircon sample was taken
from the external zone and, in spite of the metamorphic overprint it
seems that the zircon crystals grew in the early stage of the pegmatite
formation. During this work 500 um fragments of the fractured pink
to purple colored subhedral zircon megacrysts were analyzed. Most
of them have inherited cores and metamorphic rims in CL images.
Overall 17 spots were analyzed from the core zones and 11 spots
were analyzed from rims. Two distinct isotopic populations emerge
from the data (Figure 2a). Cores yielded ages ranging from 1091 to
1367 Ma, whereas rims yield ages ranging from 969 to 1045 Ma.
Most U-Pb ages are concordant. A mean age of 1190 + 7 Ma
(MSWD = 0.79) was calculated for core spots and a mean age of
991 + 12 Ma (MSWD = 1.8) was obtained for rims (Figures 2a and 2c).
Trace element concentrations in zircon cores are similar to zircon rims.
La Ofelia zircons display moderate Hf (avg = 13123 ppm) and dispersed
Y (496 to 2194 ppm; avg = 825) concentrations. The Th/U ratios range
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Zircon study of pegmatite dikes and lenses from the Oaxacan Complex, southern Mexico
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from 0.32 t0 0.99, and this variation is independent of age. The analyzed
zircons have uniform REE characteristics (Figure 2b), with a significant
enrichment in HREE (Luy/Lay avg =4325), well-defined positive Ce/Ce*
(avg=21.3) and negative Eu/Eu* (avg = 0.20) anomalies. HREE enrich-
ment measured by the ratio Luy/Gdy gives an average of 23.9 and for
LREE the Smy/Lay ratio averages 54.

La Panchita pegmatite

La Panchita pegmatite consists of several pegmatite lenses located
inside of an extensional pyroxenitic dike. During the present work only
one pegmatite lens was studied. This pegmatite body measures 2 -
4 m across and up to 10 m long and intrudes into a large (more than
200 m across and some kilometers long) pyroxenite dike that in turn
is intruding the quartzo-feldspathic gneisses of the Oaxacan Complex.
The pyroxenite, as well as the pegmatite body, do not show any sign of
deformation. The pegmatite is composed of diopside megacrysts (up
to 40 cm long) in contact with scapolite, or symplectitic intergrowth
of these two minerals, phlogopite and a calcite core. It also presents
dispersed megacrysts (up to 10 cm) of zircon, titanite and apatite;
these minerals are mainly located in the contact between scapolite,
diopside crystals and the calcite core. The crystals of zircon and titan-
ite show petrographic evidence of crystallizing at equilibrium with
diopside, which means that they have crystallized during the early
stage of the pegmatite formation. During the field work no presence
was found of the classical quartz core or any other manifestation of
quartz in this pegmatite body. Dated zircon fragments were taken
from euhedral megacrysts of ~2 cm and smaller in length, elon-
gated, prismatic with bipyramidal terminations and with well-defined
facets, and colored pink to purple. The obtained U-Pb ages of 20
spots vary from 955 to 1005 Ma, with a mean age of 981.4 = 7.1 Ma
(MSWD = 2.2) (Figure 2d). The analyzed zircons display relatively
uniformlow Y (avg=263) and moderate Hf (avg =7045) concentrations.
Th/U ratios range between 0.38 and 0.68. These zircons show also similar
REE patterns (Figure 2e), steeply increasing from La to Lu (Luy/Lay
avg = 6556), a strong positive Ce/Ce* (avg = 43.3) and a very slight nega-
tive Eu/Eu* anomalies (avg = 0.45). The HREE enrichment expressed by
the Lun/Gdy value averages 37.6 and the average Smy/Lay value is 47.8.

Pegmatite sample AYQ25-7

This sample was taken from one dike belonging to a group of
30 - 60 cm wide pegmatite dikes cutting the host biotite-quartzo-
feldspathic gneiss. It consists of an intergrowth of quartz and highly
epidotized microcline in the central zone and a border zone composed
by epidotized feldspars, biotite, altered ilmenite with secondary titanite,
and abundant zircon crystals. The latter are fractured euhedral meg-
acrysts measuring up to 2 mm in length, with bipyramidal termina-
tions and well-defined facets, pink to purple colored. The obtained
U-Pb ages of 25 spots vary from 931 to 1000 Ma, with a mean age of
963 +7Ma (MSWD =2.5) (Figure 2f). The analyzed zircons display low Y
(avg = 268), as well as uniform and moderate Hf (avg = 9425) con-
centrations, and high Th/U ratios of 0.55 - 0.89. The REE patterns
are also homogeneous, smoothly increasing from La to Lu (Luy/Lay
avg = 1504), with strong positive Ce/Ce* (avg = 35.3) and negative Eu/Eu*
(avg = 0.25) anomalies (Figure 2g). The HREE enrichment is charac-
terized by Lun/Gdy avg = 14.1; the average value of Smy/Lay is 35.8.

Pegmatite sample 176-1

This sample is part of a moderately deformed 0.5 - 1 m wide
pegmatite dike that intrudes the amphibolite gneiss host rock. The
pegmatite dike does not show much zonation from borders to center.
It is mainly composed of altered amphibole megacrysts (>15 cm),
quartz, K-feldspar, mesoperthite, magnetite-titanomagnetite, and
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accessory zircons. The zircon crystals are always in association
with hornblende, and their morphological character gives evidence
that they crystallized during the early stage of the pegmatite for-
mation. All analyzed zircon crystals are smaller than 200 pm in
length, euhedral, prismatic elongated with bipyramidal termina-
tions, and slightly pink-colored. We analyzed 2 spots from small
cores and 23 spots from rims (Figure 2k). The obtained U-Pb ages
of the cores are concordant at 1156 + 24 and 1134 + 25 Ma and the
rim ages vary from 953 to 993 Ma with a mean age of 977 + 4.6 Ma
(MSWD=0.89) (Figure2i). The Y concentrationsvaryfrom 162t0 993 ppm
(avg = 416) whereas Hf ranges from 9200 to 13984 ppm (avg = 11451).
Th/Uratiosare uniformlyhigh (0.29 - 0.71), with the exception of one spot
(Th/U = 0.08) located in the core. Other geochemical signatures of
these zircons are homogeneous REE patterns, steeply increasing from
La to Lu (Luy/Lay avg = 4567), with well-defined positive Ce/Ce*
(avg = 10.4) and negative Eu/Eu* (avg = 0.14) anomalies (Figure 2j).
The cores have REE patterns slightly different from the rims, and show
the strongest (Eu/Eu* = 0.03), as well as the weakest (Eu/Eu* = 0.22)
Euanomaly. HREE enrichment is characterized by Luy/Gdy avg = 13.1
and the average value of Smy/Lay is 126.1.

Pegmatite sample 183-2

This sample was taken from a 0.5 - 1 m sized pegmatite dike
cutting the host rock (quartzo-feldspathic gneiss). It is composed of
large (1 - 2 cm) crystals of ilmenite with secondary titanite, calcite
megacrysts (up to 5 cm), quartz, altered calcic feldspars and abun-
dant crystals of zircon. Zircon crystals are euhedral and less than 200
pum in length, prismatic elongated with bipyramidal terminations,
pink-colored and always show spatial relation with Fe-oxids. The
obtained ages of 32 spots vary from 938 to 995 Ma, with a mean age of
969.8 + 4.6 Ma (MSWD = 1.3) (Figures 2l and 2n). Hf concentrations
in the zircons belonging to this sample range from 9989 to 13664 ppm
(avg = 11693), whereas Y ranges from 208 to 1043 ppm (avg = 508),
and Th/U ratios are uniformly high between 0.46 and 0.95. These zir-
cons have homogeneous REE patterns, gradually rising from La to Lu
(Luy/Lay avg = 2522), with well-defined positive Ce/Ce* (avg = 25.9)
and negative Eu/Eu* (avg = 0.21) anomalies (Figure 2m). The HREE
enrichment is characterized by Luy/Gdy avg = 12.2 and the average
value of Smy/Lay is 76.1.

Pegmatite-migmatite (leucosome) sample 213-1

A series of pegmatite-migmatite (leucosome) lenses (1 - 5 m wide
and some meters long) are located within a mafic host rock (amphi-
bolite gneiss). According to Mehnert (1968) and London and Cerny
(2008), this group of pegmatite bodies could be named pegmatite-
migmatite: the lenses are concordant with the foliation of the host rock,
the limits between pegmatite bodies and the host rock are not well
defined, and there is no internal zonation of the pegmatite body. The
series of pegmatite leucosome lenses consist of megacrysts (up to 5 cm
and more) of chloritized amphiboles, sericitized andesine-labradorite,
perthitic microcline, opaque Fe-minerals (magnetite-titanomagnetite-
ilmenite), apatite, abundant zircon, and small amounts of quartz (<5%).
The analyzed zircon crystals have irregular subhedral form, are up to
200 um in length, prismatic, elongated with bipyramidal terminations,
pink-colored and are in association with hornblende and Fe-oxides.
The obtained U-Pb ages of 27 spots vary from 927 to 1035 Ma, with
a mean age of 980.1 + 4.7 Ma (MSWD = 0.98) (Figures 20 and 2q).
The zircons separated from this sample have uniform and moderate
Hf concentrations (9521 - 12439 ppm; avg = 11020) and relatively
low concentrations of Y (204 - 632 ppm; avg = 362). Th/U ratios are
uniformly high between 0.47 and 0.86. They also have homogeneous
REE patterns, steeply increasing from La to Lu (Luy/Lay avg = 4272),
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Table 2. Concentrations of trace elements in ppm from studied zircons.

Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Hf
La Ofelia
rims
Zircon_01_LaOfelia_008 496 0.18 11.23 0.21 4.31 3.19 0.57 12.36 3.95 4499 1691 71.09 119.21 2147 12212
Zircon_06_014 618 0.13 8.23 0.17 3.97 3.81 0.48 12.68 428 53.04 20.78 97.73 209.87 41.46 13562
Zircon_07_015 552 0.12 9.42 0.20 3.99 3.20 0.69 11.63 4.02 4896 19.25 9226 196.23 3791 13050
Zircon_13_022 600 0.14 14.44 0.22 3.14 4.54 0.79 17.67 556 59.14 2094 8524 131.50 23.60 13370
Zircon_14_023 658 0.13 11.98 0.26 3.15 2.58 0.48 11.38 4.22 54.02 21.89 109.18 233.94 46.87 15091
Zircon_15_024 598 0.22 10.79 0.26 3.73 3.35 0.69 13.71 4.68 56.15 21.13 91.53 16393 30.19 12691
Zircon_16_026 631 0.09 11.18 0.16 2.56 2.17 0.34 10.60 4.00 52.60 22.39 110.81 247.45 47.68 12501
Zircon_17_027 712 0.12 9.68 0.23 3.58 3.28 0.90 14.12 5.04 6291 2534 120.79 26236 53.05 15957
Zircon_23_034 665 0.11 10.77 0.23 3.59 3.88 0.48 13.26 4.54 56.18 23.27 11240 239.15 48.73 15111
Zircon_27_039 603 0.13 10.90 0.15 3.31 3.44 0.72 12.79 4.56 57.55 2197 101.13 199.73 38.19 13273
Zircon_29_041 652 0.12 11.33 0.19 2.69 2.81 0.41 12.41 4.48 55.33 22.83 108.51 234.50 48.10 14685
cores
Zircon_02_009 647 0.16 11.22 0.27 3.58 3.07 0.45 12.79 4.44 56.33 22.01 105.15 217.64 41.70 11680
Zircon_03_010 2194 0.18 42.09 0.32 5.47 9.83 124 5293 17.79 207.34 77.41 33798 629.39 114.87 12137
Zircon_04_011 590 0.17 13.02 0.22 3.82 2.69 0.34 9.11 3.57 46.09 20.10 104.57 249.67 52.03 12627
Zircon_05_012 614 0.13 13.94 0.20 3.72 4.00 0.53 12.26 429 5489 20.79 99.17 203.08 39.93 13023
Zircon_08_016 765 0.15 16.65 0.21 4.22 3.43 0.58 14.92 5.51 69.03 2698 130.73 272.19 5243 12152
Zircon_09_017 663 0.16 13.63 0.22 3.83 2.94 0.53 13.55 493 59.05 2324 111.04 22441 43.18 12195
Zircon_10_018 751 0.11 17.12 0.19 3.64 3.47 0.56 16.67 5.50 67.93  26.50 123.52 254.56 49.11 12867
Zircon_11_020 737 0.15 19.11 0.21 3.13 3.53 0.77 15.71 543  66.12 2545 120.13 238.55 45.84 10925
Zircon_12_021 1617 0.15 47.94 0.27 4.14 6.27 0.76 33.20 11.43 143.06 56.67 269.41 545.48 103.36 12516
Zircon_18_028 674 0.12 13.42 0.14 3.23 2.89 0.51 13.27 4.47  57.69 23.72 11494 24228 49.40 13420
Zircon_19_029 975 0.18 22.07 0.21 3.20 2.88 0.53 14.62 5.48 76.53 33.42 170.80 401.59 81.86 14517
Zircon_20_030 857 0.10 26.51 0.17 4.21 3.08 0.33 16.18 5.51 74.63  30.48 150.31 326.71 63.40 13776
Zircon_24_035 1109 0.07 27.01 0.20 3.53 4.47 0.61 19.25 7.10 92.71 39.63 193.65 411.11 82.78 12003
Zircon_25_036 653 0.14 13.73 0.17 3.02 2.97 0.56 13.98 475 60.51 23.82 113.02 23535 45.70 11485
Zircon_26_038 1284 0.09 29.91 0.19 3.06 4.22 0.55 22.21 8.27 112.04 46.39 22595 476.76 92.16 10023
Zircon_28_040 1455 0.08 46.73 0.18 4.78 5.85 0.65 27.23 10.19 131.00 53.45 255.52 533.08 102.80 14207
Zircon_30_LaOfelia_042 737 0.19 17.74 0.22 3.99 3.58 0.42 15.03 5.62 67.92 27.00 131.28 261.41 51.53 16395
La Panchita
Zircon_21_PANchita2 224 0.03 6.66 0.08 0.97 1.11 0.42 3.98 1.34 15.72 6.54  32.60 7820 15.94 5120
Zircon_22 264 0.23 9.93 0.17 1.87 1.41 0.61 5.47 1.60  20.17 7.57  38.00 88.90 18.75 5800
Zircon_23 244 n/d 8.01 0.07 0.90 1.00 0.47 4.79 1.61 17.70 7.32  37.30 90.00 18.34 5770
Zircon_24 257 0.00 8.08 0.05 0.92 0.98 0.47 4.99 1.64 18.46 7.70  37.70 93.20 18.67 5770
Zircon_25 274 0.02 8.84 0.07 1.14 1.37 0.49 5.01 1.85 20.30 8.58 41.10 100.70 20.30 6320
Zircon_26 234 n/d 7.27 0.05 0.77 0.91 0.39 4.58 1.47 17.00 6.91 34.80 85.20 17.02 5270
Zircon_27 273 0.20 8.89 0.11 1.27 1.62 0.51 5.79 1.81 19.90 8.22  40.70 98.60 19.93 6140
Zircon_28 262 n/d 8.23 0.04 0.96 1.26 0.44 5.76 1.62 19.60 8.09  40.20 95.20 19.84 6160
Zircon_29 119 0.10 6.55 0.05 0.50 0.46 0.15 1.77 0.71 8.05 3.31 17.70 46.90 10.17 5880

Zircon_30_PANchita2 279 0.02 8.75  0.08 1.09 1.54 0.39 5.57 1.67  21.00 8.39 4250 10530 20.97 6510
Zircon_31_PANchita3 211 0.02 4.60  0.02 0.36 0.55 0.29 3.42 1.13  14.66 6.43 33,50  85.10 18.23 6490

Zircon_32 260 n/d 552  0.03 0.70 0.71 0.26 4.79 1.39  18.80 7.72  40.80 105.80 22.23 7970
Zircon_33 285 n/d 6.00 0.04 0.56 0.89 0.37 3.79 142 19.00 8.19 42.00 113.80 23.66 7920
Zircon_34 235 0.01 548  0.04 0.63 0.78 0.22 3.66 1.15  16.50 721 35.80  95.00 20.24 7410
Zircon_35 304 n/d 6.16 0.03 0.54 0.97 0.34 4.62 1.62  20.10 8.97 47.70 12290 26.38 8600
Zircon_36 233 n/d 4.71 0.03 0.35 0.55 0.22 3.67 1.14  16.20 7.09 36.60 97.20 20.53 6600
Zircon_37 296 n/d 6.12  0.03 0.45 0.75 0.25 4.82 1.53  20.80 8.59 46.40 12630 26.40 8990
Zircon_38 276 0.00 592  0.02 0.53 0.69 0.30 3.51 1.52  19.20 8.25 42,50 113.90 24.00 8220
Zircon_39 323 0.02 6.70  0.04 0.65 0.87 0.39 533 1.68  20.50 9.65 51.20 131.60 28.32 9280
Zircon_40_PANchita3 401 n/d 7.58  0.04 0.69 0.80 0.45 6.01 2.16 27.00 11.67 6090 160.60 34.60 10690
AYQ25-7

Zircon_02_009 273 0.04 12.64  0.08 1.32 2.05 0.37 8.51 248 2592 9.12 3832 7890 14.60 10345
Zircon_03_010 525 0.02 19.49  0.18 3.17 5.34 0.84 21.29 571 5537 1776 68.51 120.33 21.30 9541

continues

RMCG | v. 32 | nim. 1 | www.rmcg.unam.mx 133



Shchepetilnikova et al.

Table 2 (cont.). Concentrations of trace elements in ppm from studied zircons.

Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Hf
AYQ25-7 (cont.)
Zircon_04_011 230 0.02 14.91 0.06 1.02 1.30 0.22 5.39 1.66  19.59 7.37 3370  80.06 16.10 9720
Zircon_05_012 231 0.26 13.85 0.22 1.69 1.90 0.38 7.71 2.08 21.78 7.17  30.39 57.72 1047 8320
Zircon_08_016 177 0.10 1094  0.04 0.95 1.32 0.23 5.05 1.59  18.03 586 2483  52.05 10.02 9890
Zircon_12_021 335 0.18 15.58  0.16 2.10 1.99 0.37 8.05 241 27.08 1029 4747 107.79 20.82 9273
Zircon_13_022 164 0.02 9.05  0.06 0.91 0.98 0.21 4.74 1.35  14.60 535 2343 4837 9.06 9007
Zircon_14_023 221 0.01 10.16  0.08 1.15 1.54 0.29 6.74 199  21.23 7.41 3144 6523 12.26 9223
Zircon_15_024 258 0.33 10.65  0.24 2.45 2.58 0.49 8.23 234 24.20 835 3532 6949 13.29 9569
Zircon_16_026 235 0.30 11.16  0.16 1.59 1.54 0.26 6.90 2.02  23.06 7.73 3332 7297 13.24 10138
Zircon_17_027 663 0.44 1549  0.28 2.68 3.75 0.74  17.90 570 61.03 21.77 92.18 18226 33.78 10483
Zircon_18_028 302 0.10 19.69 0.13 1.50 2.37 0.42  10.03 291 3022 10.00 41.71 78.51 14.13 9625
Zircon_20_030 158 0.08 12.09  0.07 1.72 1.26 0.21 5.04 147 1587 511 21.77 4448 823 10221
Zircon_21_032 194 0.02 11.66 0.08 1.18 1.70 0.23 6.50 1.85 18.78 6.64 2691 53.25 9.82 8220
Zircon_22_033 492 0.01 13.82  0.05 1.82 2.66 052 1434 434 4674 1648 6695 122.76 22.59 9433
Zircon_23_034 169 0.06 13.07  0.06 0.72 0.77 0.15 3.69 124  13.53 537 2541 57.38 11.42 8900
Zircon_24_035 177 0.01 11.89  0.05 1.09 1.55 0.18 5.71 1.62  16.83 585 2471 48.73  9.17 9409
Zircon_25_036 293 0.02 16.62 0.07 1.03 1.42 0.24 6.30 2.08 23.53 9.22 4297 96.85 19.28 9352
Zircon_26_038 205 0.02 12.16  0.05 0.67 1.13 0.20 4.10 146  16.97 6.53 3038 6893 13.72 9795
Zircon_27_039 203 0.01 11.18 0.05 0.78 1.01 0.18 4.40 1.31 16.56 6.28  29.90 68.83 13.39 8806
Zircon_28_040 193 0.00 11.88  0.06 0.76 0.99 0.19 4.14 141  15.89 590 27.66 6399 1229 8009
Zircon_29_041 284 0.03 14.08  0.06 1.06 1.79 0.31 6.27 1.96  23.80 8.84  40.42 92.45 18.40 9216
Zircon_30_042 296 0.15 1479 0.14 1.43 1.79 0.31 7.02 2.09  24.66 9.37 4380 97.07 19.02 9127
Zircon_31_044 220 0.01 14.41 0.06 0.90 1.08 0.21 4.75 1.50 17.94 7.07  32.13 74.68 14.93 9900
Zircon_32_045 206 0.26 16.87  0.16 1.57 1.27 0.25 6.41 1.68  18.30 6.68 2925 6348 12.63 10100
176-1
rims
Zircon_96_D_122 346 0.03 8.04  0.12 1.59 2.78 032 11.39 326 3546 12.38  52.05 98.92 19.18 11851
Zircon_97_123 302 0.12 6.73  0.13 1.98 2.56 0.31 9.16 281 29.64 1061 4649 90.57 17.50 10130
Zircon_99_125 559 0.06 8.12 0.31 529 7.34 0.70  21.97 6.23 6237 19.88 81.01 14525 27.59 10941
Zircon_100_126 236 0.03 5.68  0.08 1.59 1.98 0.19 8.65 220 23.32 7.76  33.21 61.49 11.55 10426
Zircon_101_128 316 0.14 3.75 0.10 1.67 2.12 0.25 8.36 2.63 2990 10.82 5248 124.09 27.17 12047
Zircon_102_129 317 0.03 6.95  0.20 1.89 2.29 0.28 9.50 278 2998 11.11 4896 10321 2091 11828
Zircon_104_131 211 0.06 3.93 0.11 1.65 1.93 0.15 6.66 1.97  20.69 7.39 3274 68.07 14.12 11330
Zircon_105_132 351 0.04 337 0.09 1.61 1.68 0.22 8.90 275 32,64 1217 5644 12629 26.69 10188
Zircon_106_134 209 0.01 5.58 0.08 1.60 2.04 0.14 7.32 1.86 21.42 7.22 3213 62.84 12.82 11723
Zircon_107_135 406 0.07 415 0.16 1.68 2.45 0.22 9.99 325 37.84 1453 69.14 15370 32.24 12334
Zircon_108_136 812 0.04 8.46 0.58 9.09 11.80 1.15  37.80 9.52 9158 2943 113.66 201.02 37.00 10699
Zircon_109_137 234 0.07 592 0.11 1.69 2.21 0.18 7.03 221 2297 828 3570 7214 14.11 12376
Zircon_110_138 302 n/d 6.25 0.15 2.35 2.31 0.30 9.45 2.82 2930 1048 4521 87.89 17.11 11263
Zircon_111_140 716 0.04 8.77  0.50 9.08 11.43 1.06  32.64 8.38 81.86 2577 10234 176.72 33.14 11276
Zircon_112_141 205 0.05 5.29 0.11 1.76 1.73 0.13 6.62 1.88  19.54 7.16  30.83 62.10 12.28 12228
Zircon_114_143 342 0.08 7.73  0.11 1.97 2.64 0.39 1045 334 3541 1210 5236 9797 18.65 10863
Zircon_115_144 372 0.04 5.11 0.20 4.17 4.52 0.46 1537 4.04 41.09 13.76 5551 102,50 20.05 10153
Zircon_116_146 162 0.06 478 0.11 1.82 1.65 0.22 5.77 146  15.17 585 27.38 5943 1212 13984
Zircon_117_147 256 0.03 504 0.13 1.51 1.88 0.18 6.84 2.03  23.69 8.65 39.48 86.81 17.08 12489
Zircon_118_148 645 0.06 8.95  0.30 5.11 7.34 0.69  26.39 6.97 71.63 23.13 9495 166.69 32.14 12417
Zircon_119_149 710 0.06 7.34  0.29 5.11 7.85 0.94 31.53 8.28 8130 26.27 105.79 181.64 34.14 11223
Zircon_120_150 368 0.03 550 0.14 2.43 243 0.29  10.79 335 3776 13.07 57.68 107.52 20.70 10681
Zircon_123_D_154 568 0.03 497  0.19 2.15 3.20 0.37 1592 495 5529 20.27 89.80 191.22 38.73 11515
cores
Zircon_98_124 469 0.02 3.56 0.13 1.45 2.23 0.09 13.62 4.55 49.05 16.74 7457 141.82 27.28 13104
Zircon_103_130 993 0.09 6.70  0.29 5.75 8.74 1.55  36.17 10.59 110.15 37.34 153.43 27824 52.74 9200
183-2
Zircon_01_A_008 265 0.14 21.82  0.19 3.07 2.88 0.51 7.71 237 2548 8.78 3837 79.06 1545 12327
Zircon_02_009 766 0.10 23.65 0.45 7.35 8.63 1.32 31.00 851 8342 2643 105.67 189.36 35.69 10550
Zircon_03_010 337 0.01 2445  0.23 2.94 2.41 0.46 9.85 275  31.60 11.21 4932 9998 19.60 12190

continues
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Table 2 (cont.). Concentrations of trace elements in ppm from studied zircons.

Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Hf
183-2 (cont.)
Zircon_04_011 347 0.06 24.52 0.20 2.76 2.74 0.45 10.82 3.01 32,67 11.52 49.43 100.63 20.07 11011
Zircon_05_012 208 0.07 14.73  0.16 2.43 1.96 0.31 6.28 1.70  19.55 6.88 30.00 61.76 12.04 10640
Zircon_07_015 410 0.11 24.59 0.24 3.34 2.45 0.56 11.24 332 3717 13.61 6034 120.70 23.51 12097
Zircon_08_016 397 0.15  26.02  0.20 3.29 3.25 047 12.24 353 37.74 1327 5850 114.48 23.01 12040
Zircon_09_017 599 0.10 2391  0.27 4.50 5.37 0.89  20.15 586 6125 2084 86.97 160.64 30.87 11538
Zircon_10_018 259 0.17 13.19  0.15 2.58 2.13 0.36 7.88 234 2471 8.62 38.61 77.83 15.64 10960
Zircon_11_020 402 0.07 30.37 0.23 3.85 3.54 0.45 11.72 352 3912 1341 59.80 121.82 24.64 13643
Zircon_12_021 546 0.07 2037 0.18 3.01 3.88 0.66 17.21 504 54.14 1920 80.18 14820 28.21 10726
Zircon_13_022 510 0.13 27.53 0.20 3.84 4.12 0.61 16.30 448 5097 17.81 74.69 142.07 27.45 11339
Zircon_14_023 282 0.17 19.46  0.17 2.63 2.30 0.30 7.71 2.75  26.69 9.72 4165 8521 17.05 13298
Zircon_15_024 829 0.03 26.63 0.19 3.05 4.64 0.75  24.63 744 8279 29.02 120.13 220.82 41.44 11856
Zircon_16_026 859 0.16 2726  0.29 4.10 5.44 092  27.06 8.09 86.56 29.82 12428 22591 4240 12008
Zircon_17_027 389 0.14 2310 0.21 3.29 3.22 039 12.52 359 3988 1344 5992 11997 2355 13665
Zircon_18_028 890 0.13 2630 0.74 11.20 12.79 1.80  40.11 10.32 100.48 33.04 130.85 225.82 42.69 9989
Zircon_19_029 447 0.03 20.56 0.16 3.08 3.96 0.59 14.89 433 4670 16.13 67.24 131.25 24.72 10215
Zircon_20_030 261 0.10  20.67  0.18 2.64 2.37 0.33 7.88 249 26.51 9.12 4055 81.70 16.25 12536
Zircon_21_032 275 0.14  20.03 0.24 2.64 2.36 0.33 8.63 2.63 2831 9.80 4254 86.06 1692 13552
Zircon_22_033 558 0.10 2222 0.23 4.51 5.82 1.14 2278 6.13  60.98 20.74 8430 147.71 28.51 11176
Zircon_23_034 657 0.11 2226 0.53 7.80 9.03 123 27.06 752 7299 2376 99.34 173.85 3294 10051
Zircon_24_035 583 0.06 2810  0.24 4.27 5.04 086 1991 577 5922 2040 83.82 15391 29.03 11268
Zircon_25_036 414 0.10 18.27 0.18 3.26 3.63 0.60 14.11 398 4323 1460 6023 113.71 22.30 11620
Zircon_26_038 618 0.09 2225 031 4.56 6.48 0.86  23.55 6.46  65.89 2231 9096 166.01 31.75 11107
Zircon_27_039 480 0.07  30.60 0.29 3.38 3.43 0.64 15.82 4.66 48.88 16.77 7196 137.54 26.66 12840
Zircon_28_040 458 0.06 2329 0.19 2.68 3.03 0.48 1391 429 4448 1590 67.88 131.43 25.67 11302
Zircon_29_041 966 0.17 26.89 1.06 13.17 15.12 2.15 4522 11.53 109.95 34.82 133.69 230.58 42.29 11178
Zircon_30_042 330 0.06 2595 0.14 2.19 2.69 0.38 9.13 2.86 30.74 1093 4793 97.18 1892 11617
Zircon_31_044 1043 0.14 23.37 0.78 10.75 13.51 2.18 4389 12.05 116.00 37.57 149.15 258.54 48.60 11401
Zircon_32_045 492 0.15 21.33  0.25 3.03 4.19 0.59 1598 4.65 49.46 17.28 73.12 14211 27.80 12044
Zircon_33_A_046 389 0.10 19.33 0.16 3.17 3.24 0.41 12.32 356 3970 13.80 57.82 110.85 22.05 12384
213-1
Zircon_64_C_083 293 0.11 1626 0.15 1.74 2.13 0.44 9.49 2.62 2930 1028 4515 91.63 1817 11584
Zircon_65_084 488 0.05 17.01 0.18 3.11 3.50 0.58  15.58 448 4851 1692 7401 13943 27.86 12439
Zircon_66_086 406 0.04 14.37  0.15 2.38 2.61 051  12.17 363 3930 14.17 61.80 117.54 2352 11005
Zircon_67_087 528 0.09 15.65  0.17 3.34 4.94 0.81  20.05 534 56.05 19.04 77.01 140.68 26.85 10573
Zircon_68_088 229 0.07 11.16  0.13 1.96 2.08 0.28 6.57 2.01 2257 8.11 35.07 7091 1424 10917
Zircon_69_089 632 0.04 18.42  0.23 3.90 6.53 094 2275 631 6718 2276 9329 17028 32.89 11277
Zircon_71_092 228 0.04 1448  0.13 1.56 1.53 0.24 7.09 1.99  22.08 796 3598 7289 14.09 11375
Zircon_72_093 585 0.06 17.33  0.23 3.02 4.85 096  20.96 579 60.72 2030 84.86 156.36 29.08 10385
Zircon_73_094 474 0.03 1555  0.17 2.49 3.06 0.50 13.48 426 4628 1682 7194 136.85 26.41 11140
Zircon_74_095 450 0.05 1520  0.15 2.30 2.98 0.53  12.96 404 4343 1603 69.09 12930 2562 10823
Zircon_75_096 239 0.02 12.24 0.18 2.11 2.17 0.32 6.57 2.17  23.50 8.45  36.31 75.27 14.87 11916
Zircon_76_098 204 0.05 10.25  0.13 1.63 2.05 0.23 6.22 1.81  20.56 7.47 3265 6630 13.15 11122
Zircon_78_100 282 0.07 14.67 0.15 2.02 2.49 0.41 8.70 276 29.03 10.13 43.70 87.02 17.57 10506
Zircon_79_101 290 0.04 12.83  0.11 1.82 2.07 0.38 9.40 251 2843 1036 4593 9047 18.09 11242
Zircon_80_102 268 n/d 15.07  0.15 2.32 2.12 0.34 8.68 238  26.52 9.43 4145 8320 1659 11489
Zircon_82_105 507 0.06 15.14  0.18 2.81 4.36 0.63  15.85 468 5216 1831 77.62 14286 27.66 10320
Zircon_83_106 469 0.04 1595  0.20 2.28 3.13 0.60 13.08 4.03 4518 16.62 7195 137.05 2692 11473
Zircon_84_107 223 0.01 10.66  0.15 1.61 1.57 0.28 6.63 2,02 2223 793 3421 69.13 13.50 10828
Zircon_85_108 429 0.04 16.10  0.14 2.47 3.06 0.50  11.60 3.65 4184 1516 65.69 12435 24.18 10288
Zircon_87_111 362 0.00 16.20  0.09 1.47 1.54 0.44 7.63 263 3273 1283 61.37 13929 2935 12045
Zircon_88_112 284 0.09 11.45 0.14 1.77 1.95 0.51 8.60 2.57 2843 10.08 43.56 86.21 17.44 10286
Zircon_90_114 267 0.07 13.19  0.13 1.66 1.38 0.40 6.10 1.85  23.22 9.10 44.44 106.61 23.63 11084
Zircon_91_116 322 0.08 15.53 0.11 2.05 2.72 0.44 9.36 2.79 3193 1132 51.57 10590 21.08 11048
Zircon_92_117 215 0.05 1572 0.13 1.90 1.64 0.26 6.83 191  21.01 7.40 33.69 66.54 13.12 12111
Zircon_93_118 261 0.01 15.48 0.10 1.83 2.11 0.29 8.30 2.47  25.69 9.14  40.08 78.55 15.55 10783
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Table 2 (cont.). Concentrations of trace elements in ppm from studied zircons.

Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Hf
213-1 (cont.)
Zircon_94_119 529 0.04 1464 0.10 2.38 4.16 0.75  16.22 520 54.84 18.80 80.70 14582 28.32 9972
Zircon_95_C_120 312 0.04 14.89 0.13 1.74 2.04 0.42 9.63 297 31.88 10.87 47.90 94.39 18.61 9522
0C22-4AB
rims
Zircon_03_010 514 0.05 424  0.10 1.24 1.58 0.05 7.88 285 3858 1527 7792 19856 3838 11066
Zircon_05_012 1137 0.09 246  0.10 1.17 2.07 041  15.05 6.90 9270 37.19 17295 38393 70.69 12442
Zircon_10_018 1692 0.03 1.80  0.05 1.15 2.46 0.08 2147 1027 138.70 54.81 258.11 558.81 102.19 11790
Zircon_11_020 1000 0.04 241  0.12 1.85 3.05 0.05 17.50 6.85 86.63 33.62 156.70 356.14 66.74 20051
Zircon_23_034 1316 0.19 2.06  0.10 1.20 2.50 0.08 18.93 8.65 114.20 43.29 19828 427.62 77.14 7090
Zircon_30_042 648 0.10 2.15 0.10 1.23 1.98 1.37  11.00 420 5331 2074 9732 217.43 41.81 10742

cores
Zircon_01_0OC22-4a_008 2007 0.12 326  0.16 2.46 3.94 0.70  27.73 12.67 164.47 6492 299.32 657.81 121.88 15183

Zircon_02_009 1247 0.04 1.80  0.07 1.06 1.76 0.05 11.81 571 8445 39.11 22456 73191 147.55 13225
Zircon_04_011 2194 0.00 443  0.09 1.65 4.65 0.18  36.00 15.64 197.63 73.13 319.71 630.52 112.07 12473
Zircon_07_015 1974 0.03 2.04  0.09 1.52 4.23 0.13  28.68 1290 169.52 65.35 29749 638.21 11585 10574
Zircon_08_016 1366 0.05 294  0.13 1.82 2.94 0.76  20.49 896 113.52 44.16 205.89 457.00 84.43 14806
Zircon_09_017 1066 0.01 2.54  0.05 1.00 1.92 0.05 14.44 6.52 88.46 34.88 162.33 357.03 6586 12428
Zircon_12_021 1311 0.03 2.06  0.06 1.09 2.49 0.09 17.02 822 108.42 43.02 204.66 466.18 85.67 14146
Zircon_13_022 1267 0.00 2.67  0.10 1.34 2.28 052  18.77 8.22 108.06 41.92 19230 43589 80.63 13100
Zircon_14_023 893 0.06 2.58 0.10 1.25 1.76 1.25  11.56 546  73.88 28.62 137.83 316.45 57.77 11654
Zircon_15_024 1232 0.02 1.85  0.06 1.00 1.86 0.19  15.93 7.32 100.10  39.84 192.56 440.83 82.28 12275
Zircon_17_027 2017 0.03 273  0.08 1.08 2.75 0.06 2236 11.05 15459 64.52 323.89 802.20 15348 15088
Zircon_19_029 2155 0.04 270 0.14 2.29 6.58 0.16 39.74 16.07 19538 71.65 317.15 660.30 118.09 11770
Zircon_20_030 1518 0.02 2.15  0.06 1.18 3.21 0.10  21.85 9.81 12893 49.49 227.65 48795 89.78 11638
Zircon_21_032 2061 0.08 438 0.15 2.25 5.06 0.41 3238 14.20 180.28 68.17 31520 706.75 129.93 13341
Zircon_22_033 2980 0.28 4.11 0.27 3.07 6.31 0.71  46.24 19.86 257.11 99.18 446.38 968.44 176.65 12317
Zircon_24_035 2288 0.21 275 0.3 2.09 4.67 0.13  32.67 14.81 196.74 76.68 351.02 776.48 14435 12766
Zircon_25_036 1371 0.23 836  0.29 2.88 3.61 217 2117 896 117.39 4560 208.82 463.36 8595 12958
Zircon_26_038 3202 0.02 283 0.15 2.01 5.59 0.27 4571 20.59 274.16 105.86 488.70 1059.54 195.27 16074
Zircon_27_039 909 0.05 1.76 ~ 0.09 1.27 2.56 0.09 14.37 586 77.34 30.18 14191 331.00 6249 12629
Zircon_28_0C22-4B_040 1499 0.19 4.41 0.21 1.69 3.34 0.59  21.70 9.71 125.61 47.80 224.18 479.89 91.40 12018
Zircon_29_041 1867 0.04 1.89  0.05 1.08 2.68 0.09 2496 10.83 150.31 58.83 277.26 604.64 113.81 12889
Zircon_31_044 2392 0.44 552 047 3.38 5.83 095 3491 1525 20435 7698 357.42 771.84 147.77 12549
Zircon_32_045 1691 0.23 558  0.28 2.48 3.37 223 2298 10.15 139.09 54.25 256.51 557.02 105.22 11213
Zircon_33_046 3452 1.18 6.57  0.51 5.89 7.75 2.08 51.64 21.69 29226 111.50 510.26 1103.70 213.13 15321
Zircon_35_048 2847 0.04 389 0.23 4.46 9.74 020 59.25 23.19 27543 96.38 412.96 801.99 144.81 12863
Zircon_36_050 3166 0.03 388 0.16 3.29 6.97 0.15  54.02 22.76 282.54 104.12 460.29 954.76 177.05 16829
Zircon_37_051 536 0.01 1.61 0.04 0.55 0.61 0.05 6.67 311 4155 1725 81.64 190.08 37.06 13386
Zircon_38_052 2231 0.89 6.02  0.56 3.90 5.53 1.71 3514 14.61 19445 7292 33834 727.79 138.65 12231
Zircon_40_054 2279 0.34 588  0.39 4.02 8.24 127  47.69 1823 21849 7543 32336 620.84 113.94 10724
Zircon_41_056 3372 0.06 457 031 533 1212 030 7216 26.80 319.26 112.64 478.54 915.55 167.30 15887
Zircon_42_057 2492 0.08 292 0.18 2.05 4.39 082 35.63 15.62 210.58 81.46 372.76 794.69 148.25 11485
Zircon_43_058 2135 0.24 7.11 0.20 2.32 3.95 0.83 28.67 13.02 176.70 68.92 318.83 693.05 132.20 12884
Zircon_44 059 3553 0.03 339 0.11 2.11 5.85 0.25 51.82 21.73 297.75 113.57 525.00 1130.66 216.00 17264
Zircon_45_060 876 0.13 355  0.12 0.90 1.68 032 11.42 525 6847 2773 13231 311.04 60.75 11348
Zircon_46_062 3958 0.02 3.78  0.09 2.83 7.30 020 58.66 25.64 33820 131.83 596.89 1291.98 242.80 20265
Zircon_47_063 2512 0.03 222 0.07 1.59 4.66 0.16  36.03 15.58 212.04 81.32 378.79 792.54 148.74 13457
Zircon_49_065 2466 0.11 332 0.17 2.06 5.34 0.78 37.11 15.89 209.01 79.83 362.50 784.27 147.52 13604
Zircon_50_066 2288 0.22 263  0.11 1.52 4.68 0.25 3348 1437 19424 73.11 34021 729.22 13830 12166
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Table 3. Coordinates of pegmatite locations.

Pegmatite body name Location

Latitude Longitude
La Ofelia 16°46'14"N 96°51'58"W
La Panchita 16°38'56"N 96°51'35"W
AYQ25-7 16°38'35"N 96°51'18"W
176-1 16°36'46"N 96°42'49"W
183-2 16°42'03"N 96°52'50"W
213-1 16°43'37"N 96°53'05"W
OC22-4AB 16°31'17"N 96°44'13"W

988 to 1267 Ma, with a mean age of 1201.2 + 4.8 Ma (MSWD = 1.4),
whereas zircon rims yielded 6 U-Pb ages, ranging from 965 to 1069
Ma. These 6 ages are dispersed and two of them are slightly discordant.
The mean age for this younger age group was not calculated (Figure
2r). The Hf content of the analyzed zircons varies ranging from 7090 to
20265 ppm (avg = 13182), whereas Y ranges between 514 and 3958ppm
(avg = 1931). Th/U has variable ratios (0.07 - 0.23) and do not show
much dependence from age. The REE patterns steeply increase from
La to Lu (Luy/Lay avg = 7703) and are somewhat variable on the LREE
side, with some spots showing relative LREE enrichments (Figure
2s). The Nd concentrations vary from 0.55 to 5.9 ppm. Grains with
LREE enrichment have weaker Ce (e.g., Ce/Ce* = 2) and Eu anomalies
(e.g., Eu/Eu* = 0.28). The LREE-depleted zircons have stronger Ce (e.g.,
Ce/Ce* =7.9) and Eu anomalies (e.g., Eu/Eu* = 0.04).

DISCUSSION

Geochemistry

In general, the chondrite-normalized patterns of all zircon samples
can be characterized by a steeply-rising slope from LREE to HREE,
which can be defined by Luy/Lay, values ranging from 1504 to 7703, and
adifferent intensity of positive Ce and negative Eu-anomalies typical for
igneous zircons (Hoskin and Schaltegger, 2003). Compared to classic
granitic magmatic zircons, samples from our work are characterized
by a similar LREE behavior, but a relatively higher HREE depletion
(Figure 3). It should be noted that, in general, magmatic zircons have
a trend of increasing REE content from ultramafic through mafic
to granitic rocks (Belousova et al., 2002). The zircon patterns of the
Oaxacan Complex show similarity with zircon patterns of Phalaborwa
Complex carbonatites in South Africa (Hoskin and Ireland, 2000).
There are two types of REE patterns in the studied zircons: those with
normalized Lu values that do not exceed 10° (183-2, 213-1, AYQ25-7,
176-1, La Panchita) and those with Lu values up to 10* (OC22-4AB,
La Ofelia). Samples 176-1, 183-2 and 213-1 show patterns which are
similar to each other.

Using the Ce/Ce* vs. Eu/Eu* genetic diagram of Belousova ef al.
(2002), the intensity of Ce and Eu anomalies in chondrite-normalized
patterns can be evaluated. Pegmatites 213-1, 183-2, AYQ25-7 and La
Ofelia have the same Eu anomaly size (Figure 4b), and the weakest
Eu anomaly (Eu/Eu* avg = 0.45) of this series is from La Panchita. All
of the above zircon samples have very similar Ce anomalies. Sample
OC22-04AB shows variable magnitudes of Ce (Ce/Ce* vary from 2.0
to 15) and Eu (Eu/Eu* vary from 0.015 to 0.7) anomalies. However,
it should be noted that OC22-04AB has some spots with the weak-
est Ce (Ce/Ce* = 2) and the most significant Eu (Eu/Eu* = 0.04)
anomaly among other samples. There is no age dependence of rims
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and cores in regard to the REE and other trace element concentrations
in all analyzed zircon grains. Likewise, there is not any significant
relation between the Th/U ratios and the rim-core age difference.
Most of the analyzed zircon samples (182-2, 213-1, La Ofelia and
AYQ25-7) have high Th/U values, between 0.24and 0.88. Only one sample
(OC22-4AB) shows a relatively low Th/U ratio (from 0.06 to 0.2), that
can be caused by its possible metamorphic genesis (e.g., Hoskin and
Schaltegger, 2003; Rubatto, 2002). The interpretation of Th/U values
is still in dispute, because it is not exactly known which are the values
of the Th/U ratios in zircon for magmatic and metamorphic rocks and
the distribution coefficients between zircon and melt at diverse P and
T (e.g., Harley et al., 2007).

The most unusual REE zircon patterns from this group of sam-
ples are from La Panchita pegmatite: it has the most pronounced Ce
anomaly (average of Ce/Ce* = 43.3), a weak Eu anomaly (Eu/Eu*
avg = 0.4) (Figures 3 and 4), a very steep slope of REE patterns
(Luy/Lay avg = 6556) compared with other samples and strong HREE
enrichment trends (Luy/Gdy = 37.6). Its Eu anomaly is very small,
probably due to the absence of any type of feldspars (plagioclase) in
the genesis of this pegmatite.

Genetic diagrams

Shnukov et al. (1997), Pupin (2000) and Belousova et al. (2002)
elaborated some diagrams which display concentrations of Hf, Y, U,
Ce and Eu in zircons, with the aim to estimate the composition of the
melt where zircons were crystallized (Figure 4). These diagrams are
based on the theory that zircon grows in the early crystallization stages
of igneous rocks and may strongly affect the behavior of many trace
elements during magma crystallization (e.g., Nagasawa, 1970; Watson,
1979; Hoskin et al., 2000; Belousova et al., 2002).

According to Shnukov ef al. (1997) and using a Hf (wt%) vs. Y
(ppm) diagram, at least three groups of pegmatites can be discriminated
(Figure 4a). (1) The first group (183-2, 213-1, 176-1) lies within the
fields I, II and VT of “kimberlites”, “ultramafic, mafic and intermedi-
ate rocks” and “alkaline rocks and alkaline metasomatites of alkaline
complexes”. It shows a relatively large range of Y (160 - 990 ppm)
and Hf (9000 - 14000 ppm) concentrations. (2) The second group
(OC22-04AB; La Ofelia) plots in the fields II and III of “ultramafic,
mafic and intermediate rocks”, and “quartz-bearing intermediate and
felsic rocks” It has relatively moderate to high Y (450 - 3960 ppm)
and high Hf contents (10000 - 20000 ppm). (3) The third group (La
Panchita; AYQ25-7) straddle fields VI and VII of “alkaline rocks and
alkaline metasomatites of alkaline complexes” and “carbonatites”. It
can be characterized by moderate to low Y (120 - 770 ppm) and low
Hf concentrations (5120 — 10700 ppm).

On the Ce/Ce* versus Eu/Eu* graph of Belousova et al. (2002)
(Figure 4b) most analyses lie in the area of syenitic rocks; the excep-
tion is sample OC22-4AB, which displays scattered points. The Y
(ppm) versus U (ppm) diagram (Figure 4c) shows that most of the
analyses plot within the area of mafic and carbonatitic rocks (La Ofelia,
AYQ25-7, 183-2, 176-1 and 213-1). Sample OC22-4AB points lie
in the area of granitic rocks and La Panchita lies outside of all fields
because of its high U concentrations (avg = 231 ppm) and moderate
Y concentrations (avg = 262 ppm). The zircons which are most de-
pleted in these elements are from sample AYQ25-7 (Y <400 ppm and
U = 63 ppm). These diagrams of Belousova et al. (2002) should be
interpreted together with other genetic diagrams (e.g., diagrams of
Shnukov et al. (1997), Pupin (2000), and comparative REE pattern
diagrams), as suggested by Hoskin and Schaltegger (2003). On the other
hand, the fields for zircon-bearing rock types of Belousova et al. (2002)
overlap each other at different degrees in most plots. A comparison of
several plots or together with the Hf vs. Y diagram of Shnukov et al.
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Figure 2. U-Pb concordia diagrams showing measured isotopic ratios with 20 error ellipses and ages (a, d, f, I, 1, 0 and r) and their chondrite-normalized (McDonough
and Sun, 1995) REE plots for all analyzed spots (b, e, j, m, p and s). Black lines in REE plots represent the mean values. Representative cathodoluminescence (CL)
images of analyzed zircon grains with marked laser ablation spots are also shown (c, h, k, n and t).

138 RMCG | v. 32 | nim. 1 | www.rmcg.unam.mx



Zircon study of pegmatite dikes and lenses from the Oaxacan Complex, southern Mexico

data-point errorellipses are 2¢
0.176

D] 1832 )

0168 |

2 0164 |
=
g 0160 |

0156 |

920
oz Mean age:
969.8+4.6 Ma, MSWD = 1.3
0148
14 15 16 17 18 19

207Pbi235U

0.185

0175 |

0.165 |

206Ph/238U

0185 |

Mean age:
980.1+4.7 Ma, MSWD = 0.98

14 15 16 17 18 19 20
207PbI235U

data-point error ellipses are 2o

D] oc224aB

020 [

206Ph/238U

0.18
1001
016
Mean age for cores:
1,201.2+4.8 Ma, MSWD = 1.4
014
13 15 17 19 21 23 25 27

207Pb/2350

10000
183-2
1000} lm_)
100
=
S \
a 10
) y )
= ‘
@) 988+22 Ma
= -
S ¥
8 I..
= 0.1 e
N
986+22 Ma
0.01
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu
10000
1000
100
=
=
o
g 10 975+24 Ma
= 977+£25 Ma
O
= 1
=)
o
g 01 987+21 Ma
N 984421 Ma
q
0.01
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu
10000
0C22-4AB Y
1000}-| 8) =
| d
100
=
=
o
< 10F
Q
=
O
= 1
=)
Qo
e
= 0.1
N /'
965+17 Ma
0.01

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu

Figure 2 (cont.). U-Pb concordia diagrams showing measured isotopic ratios with 20 error ellipses and ages (a, d, f, I, 1, 0 and r) and their chondrite-normalized
(McDonough and Sun, 1995) REE plots for all analyzed spots (b, e, j, m, p and s). Black lines in REE plots represent the mean values. Representative cathodolumi-
nescence (CL) images of analyzed zircon grains with marked laser ablation spots are also shown (¢, h, k, n and t).

with well-defined positive Ce/Ce* (avg = 7.8) and negative Eu/Eu*
(avg=0.23) anomalies (Figure 2p). The HREE enrichment is character-
ized by Luy/Gdy avg = 15.5 and the average value of Smy/Lay is 91.7.

Pegmatite sample OC22-4AB

This pegmatite group is located 5 km to the south of Ejutla,
along the road Ejutla-Miahuatlan. This is a group of 2 - 8 m wide
and 12 - 35 m long pegmatite lenses, which follow the foliation of
the biotite-garnet gneissic host rock. These pegmatite lenses are
represented by a thin (some cm long) biotite-andesine border zone
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and a central zone composed of deformed quartz, sericitized andes-
ine, pyroxene (spodumene?), muscovite, primary calcite, abundant
zircon and titanite central zone. Zircon crystals extracted from the
central zone are euhedral, up to 500 pm in length, and range in shape
from moderately elongated to prismatic, with bipyramidal endings to
ovoid or sub-spherical (“soccerball”) forms with well-defined faces,
colored dark-red to purple. The zircon grains from this sample are
almost non-luminescente, and their internal structure is hard to see,
but we found some zircon crystals with dark cores and slightly light
rims (Figure 2t). U-Pb ages obtained from 39 zircon cores range from
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Figure 3. Mean chondrite-normalized REE compositions of zircon samples
(black thin lines and symbols). Some bibliographical data is plotted for com-
parison: blue dotted line - granodiorite, Boggy Plain massif, Australia (Hoskin
etal., 2000); green dotted line - carbonatites, Phalaborwa complex, South Africa
(Hoskin and Ireland, 2000); light blue dotted line — high-pressure metasedi-
ments, Sesia Zone, Southern Alps (Rubatto, 2002); pink dotted line - ultra-
high-pressure gneisses, Kokchetav Massif, Kazakhstan (Hermann et al., 2001).

(1997) and Y,0; vs. HfO, graph of Pupin (2000) can help to identify
zircons from different rock types.

Pupin (2000) elaborated the Y,0; (ppm) versus HfO, (ppm)
diagram basically for granitic rocks, but some special areas for basic
to intermediate rocks are also included (Figure 4d). The group of
samples 183-2,213-1 and 176-1 lies in the field of “basic to intermedi-
ate calc-alkaline rocks” and the La Panchita sample is positioned in
the “peralkaline syenites” field. It is difficult to make a petrogenetic
conclusion, based only on these diagrams, but at least it is shown that
the geochemical nature of some of the studied pegmatites must have
been related to the presence of ultramafic-alkaline precursors, probably
unrelated to granitic sensu lato magmas.

Geochronology

There are three types of pegmatites according to their crystal-
lization ages (Figure 5). The first group is represented by samples
AYQ25-7,183-2and 176-1. Their mean ages are in the range of 963 + 7 to
977 + 4.6 Ma. This age range can be described as post-tectonic
(Anderson and Silver, 1971), with respect to the last episode of the
Grenville orogeny (Zapotecan orogeny: 1004 to 978 + 3 Ma) in the
Oaxacan Complex (Solari et al., 2003) (Figure 5). Sample 176-1 has also
two older ages of 1156 + 24 and 1134 + 25 Ma, which are interpreted
as xenocrystic cores.

The second group is represented by samples taken from pegmatite
bodies of La Panchita and 213-1. The mean ages of these samples are
almostidentical, 981.4 7.1 and 980.1 + 4.7 Ma (Figure 5), respectively.
La Panchita pegmatite did not suffer any type of metamorphism but, as
it was mentioned before, the 213-1 pegmatite lenses show migmatitic
features (Mehnert, 1968), so they must have been formed during a
high grade metamorphic event. La Panchita and 213-1 pegmatite bod-
ies were formed during the same time period, corresponding to the
last stage of the Zapotecan orogeny (Solari et al., 2003). The distance
between La Panchita and 213-1 is ~10 km and it is noteworthy that
they have different metamorphic grades. One of the several possibilities
is that the uncertainty of the LA-ICP-MS U-Pb method is underesti-
mated. If we look at the age dispersion for La Panchita and ignore the
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statistical calculations, we can conclude that its age is post-tectonic.
This is coherent with the rest of the available data and suggests an age
0f 978 — 980 Ma for the last episode of granulite facies metamorphism.
More data are necessary to resolve this issue.

The third group is represented by pre-tectonic pegmatite bodies
such, as La Ofelia and OC22-4AB. Zircon cores of OC22-4AB have a
mean crystallization age of 1201.2 + 4.8 Ma (Figure 5) and dispersed
ages of recrystallized rims in the range of 965 + 17 to 1069 + 20 Ma.
The dispersion and discordance of these ages could be the result of
Pb-loss during the granulite facies metamorphism. Metamorphic
overprints are also indicated by some distinctive features, like the defor-
mation of the pegmatite body, the “soccerball” zircon morphology and
relative low Th/U ratios. Zircons from La Ofelia pegmatite also show
these two age groups. The oldest ages are represented by cores with a
mean age of 1190.1 + 7.3 Ma and the younger ages are represented by
rims with a mean age of 991 + 12 Ma. There are also some spots with
intermediate concordant ages (1045 + 23; 1091 + 25; 1114 + 28 and
1119 + 25 Ma) which we interpret as mixed ages, probably a result
of analyzing the limit between cores and rims. There is a clear rela-
tion between metamorphic rims, older cores and the irregular zircon
morphology.

General discussion

The U-Pb LA-ICP-MS ages obtained from zircons confirmed the
pre-tectonic (“old”), syn-tectonic and post-tectonic division of all
pegmatites (Solari et al., 1998) (Figure 5). The ages of post-tectonic
pegmatites obtained in this work vary from 963 + 7 to 977 + 5 Ma.
The syn-tectonic pegmatites, formed during the last phase of the
Oaxacan Complex Orogeny (Zapotecan) have an age of 981 + 7 Ma.
The “old” pegmatites formed during the period between 1190 + 7and
1201 + 5 Ma. These “old” pegmatite bodies do not show any ages
that can be interpreted as being part of the Olmecan orogeny
(1106 + 6 Ma). The youngest ages of OC22-4AB define a range of ages
between 965 + 17 and 1069 + 20 Ma, which is the result of different
degrees of Pb loss in zircons during the Zapotecan orogeny (from
1004 to 978 + 3 Ma, Solari et al., 2003).

The zircon geochemistry shows that all studied pegmatite intru-
sions, with the exception of OC22-4AB, are not “granitic” pegmatites
at all, which is in contrast with previous works (Haghenbeck-Correa,
1993; Arenas-Hernandez, 1999). This means that pegmatites from the
central portion of the Oaxacan Complex reflect the composition of non-
granitic rocks or melts. The zircon trace element geochemistry shows
that La Panchita pegmatite has been formed during the evolution of an
alkaline and SiO,-depleted melt, like carbonatite or syenitic rocks. The
group of pegmatites 183-2, 176-1, 213-1 and La Ofelia shows similar
chemical behavior and a possible mafic composition of the source
rock type. AYQ25-7 has transitional trace element patterns between
La Panchita pegmatite and the group of 183-2, 176-1 and 213-1. Only
one zircon sample, that from OC22-4AB, shows a granitic type initial
composition of this pegmatite body.

With respect to pegmatite generation, it should be noted that
the pegmatites studied in this work could have three different ways
of formation: pure magmatic, pure metamorphic, and a mixture
of magmatic and metamorphic processes. The first is the classical
process of formation during the last stage of magmatic intrusions
(London and Cerny, 2008). The second way implies a pegmatite
formation by partial melting or anatexis of the Oaxacan Complex
rocks during high-grade metamorphism, without involving magma
melt from another source (Mehnert, 1968). All previous authors
(Haghenbeck-Correa, 1993; Schaaf and Schulze-Schreiber, 1998;
Arenas-Hernandez, 1999) claim the anatectic way for the Oaxacan
Complex pegmatite formation. The third and last possible mode of

RMCG | v. 32 | nim. 1 | www.rmcg.unam.mx



Zircon study of pegmatite dikes and lenses from the Oaxacan Complex, southern Mexico

3.0 1000
< e LaOfelia :+ 183-2 *
9\3 o La Panchita: 0 213-1 8
25| Z 4 AYQ25-7 ® 176-1 3
i *0C22-4 3
T 4/ 100
2.0
IV/ v
L5 10
I %
1.0
1
0.5
VII
Y (ppm)
0.0y 10 100 1000 10000 100000  0.1f—e X o - =
100000 15000
‘s = 1
a
2 6 8
10000 &
e -
x 10000},
1000 «
< >" b 2x x
100 A
5000 S o
10 le 1d .
U .. 6b
m
1 ppm) oo |o 1 HfO{ (ppm)
001 0.1 1 10 100 1000 10000 100000 5500 5000 =550 55000 53300

Figure 4. a) Plot of Hf vs. Y concentration in zircons (Shnukov et al., 1997). Legend: I - kimberlites; II - ultramafic, mafic and intermediate rocks; III - quartz-
bearing intermediate and felsic rocks; IV - felsic rocks with high SiO, content; V - greisens; VI — alkaline rocks and alkaline metasomatites of alkaline complexes;
VII - carbonatites. b) Ce/Ce* vs. Eu/Eu* diagram and ¢) Y vs. U distribution behavior in zircons according to the origin of their protolith (Belousova et al., 2002).
Legend: 1- carbonatites; 2 - kimberlites; 3 - syenites; 4 — mafic rocks; 5 - syenite pegmatites; 6 — granitoids; 7 — nepheline syenites and syenite pegmatites. d) Plot
of Y,0, vs. HfO, showing petrological environments for zircon crystallization, after Pupin (2000). Legend: 1a — tholeiitic plagiogranites; 1b-c-d-e — hypersolvus
alkaline granites; 1c-d-e — peralkaline syenites; 1c — alkali basalts; 1e, 2, 3a-b-c, 4a-b-c — subsolvus alkaline granites; 4a-b-c, 5a-b-c, 6a-b - basic to intermediate
calc-alkaline rocks; 5a-b-c — calc-alkaline granites; 4a-b, 5a-b-c — high-K calc-alkaline, or Mg-K granites; 4c, 5a-b-c - subalkaline or Fe-K granites; 3b-c; 4b-c, 5b-c,

6a-b — peraluminous porphyric granites; 3¢, 4c, 5¢, 6a — peraluminous leucogranites.

pegmatite formation is a mixture of the two aforementioned processes:
partial melting of the Oaxacan Complex rocks during high grade
metamorphism involving foreign magma melt from another source
(Mehnert, 1968).

It seems that the studied zircons have magmatic REE compositions
rather than metamorphic (Figure 3), which means that they under-
went a magmatic mechanism of formation; but according to Hoskin
and Schaltegger (2003), the composition of metamorphic zircon in
equilibrium with an anatectic melt does not differ greatly from igne-
ous zircon. So it is difficult to give a final opinion about the magmatic,
metamorphic or hybrid process of pegmatite formation using only trace
element chemistry of zircons.

The relation between a magmatic source, as derived from zircon
geochemistry and the U-Pb data, suggests that post-tectonic pegmatites
originated from an anorogenic magmatic source are related to a post-
Grenvillian rifting event; syntectonic pegmatites are probably derived
from a hybrid magma, and the origin of “old” pegmatites still cannot
be discerned with the current available data.
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CONCLUSIONS

From the geochemical and geochronological study of zircons from
seven pegmatites located in the Oaxacan Complex, Oaxaca, México,
we can conclude the following:

a) The numerous pegmatites in this complex can be roughly divided
into granitic, displaying a simple quartzo-feldspathic mineralogy and
non-granitic, showing a less-common mineralogy with pyroxenes,
scapolite, large zircon or calcite.

b) The obtained ages confirm the division in pre-tectonic (~1200
Ma), syntectonic (~980 Ma) and post-tectonic (<980 Ma) time of the
pegmatite formation.

¢) The Olmecan orogeny cannot be identified in the central part
of the Oaxacan Complex with the available data.

d) The selected pegmatites for this study, mainly non-granitic in
nature, indicate the presence of mafic and alkaline parental magmas
for these intrusives.

e) The application of geochemical discrimination diagrams for
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zircons is useful, but lacks a systematic approach. More work is needed
on these diagrams to obtain a reliable solution for magmas source
identification.

f) Age and chemistry correlation of the studied zircons corroborate
that the tectonic setting has shifted from compressive (collision) to
extensive (rifting?) during the last stages of the Zapotecan orogeny.
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