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ABSTRACT

In this fi nal paper of a series of four, using our well-tested simulation procedure we report new, 
precise, and accurate critical values or percentage points (with four to eight decimal places) of 15 
discordancy tests with 33 test variants, and each with seven signifi cance levels α = 0.30, 0.20, 0.10, 
0.05, 0.02, 0.01, and 0.005, for normal samples of very large sizes n from 1,000 to 30,000, viz., 1,000(50)
1,500(100)2,000(500)5,000(1,000)10,000(10,000)30,000, i.e., 1,000 (steps of 50) 1,500 (steps of 100) 
2,000 (steps of 500) 5,000 (steps of 1,000) 10,000 (steps of 10,000) 30,000. The standard error of the 
mean is also reported explicitly and individually for each critical value. As a result, the applicability 
of these discordancy tests is now extended to practically all sample sizes (up to 30,000 observations 
or even greater). This fi nal set of critical values for very large sample sizes would cover any present 
or future needs for the application of these discordancy tests in all fi elds of science and engineering. 
Because the critical values were simulated for only a few sample sizes between 1,000 and 30,000, six 
different regression models were evaluated for the interpolation and extrapolation purposes, and a 
combined natural logarithm-cubic model was shown to be the most appropriate. This is the fi rst time in 
the literature that a log-transformation of the sample size n before a polynomial fi t is shown to perform 
better than the conventional linear to polynomial regressions hitherto used. We also use 1,402 unpublished 
datasets from quantitative proteomics to show that our multiple-test method works more effi ciently than 
the MAD_Z robust outlier method used for processing these data and to illustrate thus the usefulness of 
our fi nal work on these lines.

Key words: outlier methods, normal sample, Monte Carlo simulations, critical value tables, Dixon tests, 
Grubbs tests, skewness, kurtosis, statistics, regression equations, log-transformation, proteomics.

RESUMEN

En este trabajo fi nal de una serie de cuatro, usando nuestro procedimiento de simulación bien 
establecido reportamos nuevos valores críticos o puntos porcentuales, precisos y exactos (con cuatro 
a ocho puntos decimales) de 15 pruebas de discordancia con 33 variantes y cada uno con siete niveles 
de signifi cancia α = 0.30, 0.20, 0.10, 0.05, 0.02, 0.01 y 0.005, para muestras normales de tamaños muy 
grandes n de 1,000 a 30,000, viz., 1,000(50)1,500(100)2,000(500)5,000(1,000)10,000(10,000)30,000, 
esto es, 1,000 (pasos de 50) 1,500 (pasos de 100) 2,000 (pasos de 500) 5,000 (pasos de 1,000) 10,000 
(pasos de 10,000) 30,000. Se reporta también el error estándar de la media en forma explícita e individual 
para cada valor crítico. Como consecuencia, la aplicabilidad de estas pruebas de discordancia ha sido 
extendida a prácticamente cualquier tamaño de muestra estadística (hasta 30,000 observaciones o aún 
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INTRODUCTION

Three recent papers (Verma and Quiroz-Ruiz, 2006a, 
2006b; Verma et al., 2008a) have reported a highly precise 
and accurate Monte Carlo type simulation procedure for 
N(0,1) random normal variates and presented new, precise, 
and accurate critical values for 7 signifi cance levels α = 0.30, 
0.20, 0.10, 0.05, 0.02, 0.01, and 0.005, and for sample sizes n 
up to 1,000 for 15 discordancy tests with 33 variants. These 
tests were summarized by Verma et al. (2008a) and therefore 
will not be repeated here. For greater n (>1,000), practically 
no critical values are available in the literature for any of 
these tests (Barnett and Lewis, 1994; Verma, 2005). 

It may be pointed out that the critical values simulated 
by Verma and Quiroz-Ruiz (2006a, 2006b) and by Verma 
et al. (2008a) are for testing the discordancy of outliers in 
normal statistical samples under the assumption of some 
kind of a contamination model (see Barnett and Lewis, 
1994 and Verma et al., 2008b for details on the possible 
contamination models). The outliers are simply extreme 
observations, irrespective of their discordancy, for exam-
ple, an upper outlier x(n) or a lower outlier x(1) in an ordered 
sample array of n observations or data x(1), x(2), x(3), x(n-2), 
x(n-1), x(n). In an “uncontaminated” normal sample these 
outlying observations will ideally not be discordant whereas 
in a “contaminated” normal sample they are likely to be 
identifi ed as discordant. A “statistical” sample (without any 
assumption for the population from which it was drawn) 
can actually come from any distribution such as a beta or 
a gamma distribution and not necessarily from a normal 
distribution. Only under the assumption that a statistical 
sample was drawn from a normal population and was prob-
ably contaminated in some way, it is true that the outliers in 
this sample should be tested using the discordancy tests that 
have been especially designed for normal samples (Barnett 
and Lewis, 1994). As an example, a statistical sample of 
experimental data (such as geochemical data) is most likely 
drawn from a normal population (Verma, 2005), in which 
the outliers can be tested as discordant (or not discordant) 

using the discordancy tests along with the critical values 
for normal samples (e.g., Verma and Quiroz-Ruiz, 2006a, 
2006b; Verma et al., 2008a). For a statistical sample drawn 
from a different distribution the discordancy tests especially 
designed for that particular distribution along with the 
corresponding critical values, if available, will have to be 
used. Thus, the critical values for 33 discordancy test vari-
ants have been simulated for outliers in normal samples, 
with the possibility of their application for discordancy of 
outliers in statistical samples assumed to be drawn from a 
normal population.

In inter-laboratory analytical studies for quality con-
trol purposes, the number of individual data (n) for a given 
chemical element in a reference material (RM) seldom 
exceeds 1,000, but this might become more common in 
future. In those cases, at present the multiple-test method 
(see Verma et al., 2008a and references therein) is not likely 
to be appropriately applicable due to the unavailability of 
precise critical values for n >1,000 for these discordancy 
tests. New critical values could therefore be proposed for 
n>1,000 through an adequate statistical methodology. 
Requirements of critical values for very large n (>1,000) 
also exist in an altogether different fi eld of molecular and 
cellular proteomics (Murray Hackett, written communica-
tion, June 2007 and February 2008).

For the present work, we have included most dis-
cordancy tests for normal univariate samples (15 tests 
with 33 test variants; see Table 1 in Verma et al., 2008a) 
for simulating new, precise, and accurate critical values 
for the same 7 signifi cance levels (α = 0.30 to 0.005) and 
for very large sample sizes n, viz., 1,000(50)1,500(100)
2,000(500)5,000(1,000)10,000(10,000)30,000, using a 
highly precise and accurate simulation procedure described 
earlier (Verma and Quiroz-Ruiz, 2006a, 2006b; Verma et 
al., 2008a). The above is a rather standard nomenclature to 
express the availability of critical values (see, for example, 
Barnett and Lewis, 1994) and has been used by us in the 
past (e.g., Verma and Quiroz-Ruiz, 2006a, 2006b). As an 
example, the expression “1,000(50)1,500” actually means 

mayores). Este conjunto fi nal de valores críticos para tamaños muy grandes cubrirá cualquier necesidad 
presente o futura de aplicación de estas pruebas de discordancia en todos los campos de las ciencias e 
ingenierías. Dado que los valores críticos fueron simulados para pocos tamaños de muestra entre 1,000 
y 30,000, seis modelos de regresión diferentes fueron evaluados para la interpolación y extrapolación 
de los datos y se demostró que un modelo combinado de logaritmo natural-cúbico es el más apropiado. 
Es la primera vez en la literatura mundial que se demuestra que una transformación logarítmica del 
tamaño de muestra n antes de un ajuste polinomial resulta mejor que los ajustes convencionales desde 
lineal hasta polinomial de tercer grado usados a la fecha. Finalmente, usamos 1,402 conjuntos de datos 
de la proteómica cuantitativa con el fi n de demostrar que nuestro método de pruebas múltiples funciona 
más efi cientemente que el método robusto MAD_Z usado para procesar estos datos y, de esta manera, 
ilustrar la utilidad de nuestro trabajo fi nal en estas líneas.

Palabras clave: métodos de valores desviados, muestra normal, simulaciones Monte Carlo, tablas 
de valores críticos, pruebas de Dixon, pruebas de Grubbs, sesgo, curtosis, estadística, ecuaciones de 
regresión, transformación-log, proteómica.
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RESULTS OF NEW CRITICAL VALUES (CV) 

Both the standard error of the mean (sex) and the 
mean (x) critical values for 33 discordancy test variants, 
for n 1,000(50)1,500(100)2,000(500)5,000(1,000)10,000(
10,000)30,000 and α = 0.30, 0.20, 0.10, 0.05, 0.02, 0.01, 
and 0.005 (corresponding to confi dence level of 70% to 
99.5%, or equivalently signifi cance level of 30% to 0.5%), 
are summarized in Tables A1-A40 (40 tables in the elec-
tronic supplement; 20 odd-numbered tables for sex and 20 
even-numbered tables for x). The present values cannot 
be compared with literature data because the latter are not 
available for such large sample sizes.

As for our earlier tables for sample sizes up to 1,000 
(Verma and Quiroz-Ruiz, 2006a, 2006b; Verma et al., 
2008a), these new critical value data, along with their indi-
vidual uncertainty estimates, are available in other formats 
such as txt, Excel, or Statistica, on request from the authors 
(S.P. Verma, spv@cie.unam.mx, or A. Quiroz-Ruiz, aqr@
cie.unam.mx). Similarly, the regression equations (see 
below) can also be obtained in a doc fi le with plain text 
format.

EVALUATION OF REGRESSION MODELS 
(n-CV and ln(n)-CV axes)

Six different regression models were fi tted to obtain 
regression equations for the interpolation and extrapolation 
purposes. These include: three models of the (n-CV) type 
(linear; quadratic; and cubic) and three of the combined 
natural logarithm-transformed-n (ln(n)-CV ) type (combined 
ln-linear; combined ln-quadratic; and combined ln-cubic). 
Other models, such as those based on logarithm-base 10, 
are likely to provide similar results as the natural logarithm-
transformed models, and therefore are not evaluated here. 
Similarly, more complex models based on the ANN meth-
odology were already successfully applied by Verma et al. 
(2008a) and are also not evaluated in the present paper. A 
comparison of these ANN and more complex higher order 
models should be the subject of a separate paper.

For illustration purposes, we selected two powerful 
single-outlier tests (skewness N14 and kurtosis N15; see 
e.g., Velasco and Verma, 1998; Velasco et al., 2000; Verma, 
2005). The results for the skewness test N14 are presented 
in Table 1, whereas those for the kurtosis test N15 are 
included in Table A41 (see electronic supplement). The 27 
simulated critical values (n from 1,000 to 10,000; see Table 
A38 for N14 and Table A40 for N15 in the electronic sup-
plement) for a given test variant and signifi cance level (α) 
were used to obtain six different fi tted equations for each 
signifi cance level. 

The quality of these fi ts is shown by the parameter 
(R2) called the multiple-correlation coeffi cient (Bevington 
and Robinson, 2003). This is simply an extrapolation of 
the well-known concept of the linear-correlation coef-

that the critical values were simulated for the sample sizes 
of 1,000 to 1,500, with the sample size steps of 50, i.e., for 
n = 1,000; 1,050; 1,100; 1,150; 1,200; 1,250; 1,300; 1,350; 
1,400; 1,450; and 1,500. Therefore, our present simulation 
was for the sample sizes of: 1,000 (steps of 50) 1,500 (steps 
of 100) 2,000 (steps of 500) 5,000 (steps of 1,000) 10,000 
(steps of 10,000) 30,000.

The importance of our present work resides in the fact 
that to date, precise critical values are available for sample 
sizes only up to 1,000 (Verma and Quiroz-Ruiz, 2006a, 
2006b; Verma et al., 2008a). Even the sophisticated regres-
sion equations obtained by the artifi cial neural network 
(ANN) methodology presented by Verma et al. (2008a) 
are only valid for interpolation purposes, i.e., for sample 
sizes n ≤ 1,000, and are not recommended to be used for 
extrapolation purposes, i.e., not for sample sizes n > 1,000, 
because the extrapolation is always a less accurate operation 
than the interpolation. Furthermore, no critical values for n 
> 1,000 were available to test the quality of these regression 
equations for extrapolation purposes. Therefore, the present 
work fulfi lls the gap of the still much needed critical values 
for very large sample sizes (1,000 to 30,000).

These results would be useful in all fields of sci-
ence and engineering, especially in molecular and cellular 
proteomics and also for quality control purposes. For the 
fi rst time, we evaluate six different regression models for 
the interpolation and extrapolation of critical values and 
show that the natural log-transformation (the ln function) 
of sample size (n) combined with a polynomial fi t provides 
the best regression model for interpolating (and also for ex-
trapolating) the critical value (CV) data. We close our fi nal 
paper in this series by demonstrating that the multiple-test 
method works more effi ciently than the MAD_Z robust 
outlier method hitherto practiced for processing quantita-
tive data on proteins.

DISCORDANCY TESTS AND THE SIMULATION 
PROCEDURE

Details on discordancy tests can be found in Barnett 
and Lewis (1994), Verma (2005), or the papers by Verma 
and Quiroz-Ruiz (2006a, 2006b) and Verma et al. (2008a). 
The 15 tests with their 33 variants for which critical values 
were simulated include the Dixon tests, the Grubbs tests, 
and the skewness and kurtosis tests (see tab. 1 in Verma et 
al., 2008a). 

Our highly precise and accurate Monte Carlo type 
simulation procedure has already been described in detail 
(Verma and Quiroz-Ruiz, 2006a, 2006b). The modifi cations 
reported by Verma et al. (2008a) to improve the precision of 
critical values were also incorporated in the present simula-
tion. We may remind, however, that for very large sample 
sizes as many as 20 chains of 6×1010 random variates of 
high-quality (as judged from the tests summarized by Verma 
and Quiroz-Ruiz, 2006a) were generated. 
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fi cient r, which characterizes the correlation between two 
variables at a time, to include multiple correlations, such 
as polynomial correlations, between groups of variables 
taken simultaneously. The parameter r is useful for testing 
whether one particular variable should be included in the 
theoretical function that is fi tted to the data whereas the 
parameter R2 characterizes the fi t of the data to the entire 
function (Bevington and Robinson, 2003). Thus, a compari-
son of the R2 for different functions is useful in optimizing 
the theoretical functional forms such as those evaluated in 
the present work.  

To evaluate the equations for the interpolation and 
extrapolation purposes, the parameters {∑(SIM-FitEq)2}int 
and{∑(SIM-FitEq)2}ext, respectively were computed and 
reported in Table 1 for test N14 and Table A41 for test 
N15. These equations can be used to compute the inter-
polated critical values for all n between 1,000 and 10,000 
and if required, the extrapolated critical values for greater 
n, although the latter values will be, as expected, more ap-
proximate than the interpolated values.

However, to evaluate the six regression models and to 
decide which of the fi tted equation would be better to use 
for the interpolation or extrapolation purposes, we have 
plotted the R2 parameter (Figure 1a,b), the interpolation 
residuals (Figure 1c,d), and the extrapolation residuals 
(Figure 1e,f) for these six models. Similarly, the simulated 
critical values for these two tests (N14 and N15) along 
with the interpolated and extrapolated critical values for 
the simpler models (linear to cubic equations) are plotted 
in Figures 2a,b and 2c,d, respectively. The results for the 
natural log-transformed linear to cubic models are presented 
in Figures 2e,f and 2g,h, respectively.

From the examination of Figures 1 and 2 as well as 
of Tables 1 and A41, the following conclusions can be 
drawn: 

(1) The simple linear model is probably the worst 
because this model provides the lowest R2 values and the 
highest interpolation residuals (see the results for the Fitting 
Model L in Figure 1a-d), although the linear extrapolation 
residuals are smaller than for the quadratic and cubic models 
(compare L, Q and C models in Figure 1e,f). Linear models 
are sometimes employed to interpolate critical values, es-
pecially using only two simulated data for n adjacent to the 
missing critical value (e.g., Verma et al., 1998). The values 
of linear correlation coeffi cients (r, which is equivalent to 
R for linear regressions), although statistically signifi cant 
at the 99% confi dence level (see Bevington and Robinson, 
2003; Verma, 2005), are certainly relatively low (R2 < < 1). 
Further, strictly speaking the behavior of critical values as 
a function of n is certainly not linear (Figure 2a,b). This 
can be easily demonstrated by the application of proper 
statistical tests such as those practiced by Andaverde et al. 
(2005) for bottom hole temperature data.

(2) The more complex quadratic and cubic models 
used by some researchers (e.g., Rorabacher, 1991) are also 
not recommended because of relatively low R2 (< 1) and 

fairly large interpolation and extrapolation errors (see Figure 
1c-f; also Figure 2a-d). In fact, these models provide totally 
unrealistic extrapolated critical values (Figure 2c,d). 

(3) All linear to cubic models (without the log-trans-
formation) are, therefore, inadequate for interpolation 
(Figure 2a,b) and absurd for extrapolation (Figure 2c-d) 
purposes.

(4) Undoubtedly, as judged by these criteria signifi -
cantly better results are obtained with the combined natural 
logarithm-linear or polynomial models than the respective 
simple linear or polynomial models, and the best ones are 
for the combined logarithm-cubic model (compare the lnL, 
lnQ and lnC models respectively with the L, Q and C models 
in Figure 1a-f and Figure 2a-h). The R2 approaches 1 (this 
being theoretically the maximum possible value for R2; see 
Figure 1a,b), the interpolation errors are lower than those 
for the simpler models (Figure 1c,d), the extrapolation er-
rors are the lowest (Figure 1e,f), and the interpolation and 
extrapolation curves better fi t the simulated data (compare 
Figure 2c,d with Figure 2a,b for interpolation and Figure 
2g,h with Figure 2c,d for extrapolation). In fact, the natural 
log-transformed cubic fi tted equations (Tables 1 and A41) 
are the best for both interpolation (Figure 2e,f) and extrapo-
lation (Figure 2g,h) purposes.

We emphasize that this is the fi rst time that a natural 
logarithm-transformation of the sample size variable (n) has 
been proposed and its effects evaluated. This transformation 
is shown to perform much better in combination with the 
respective simpler linear or polynomial model. The latter 
simpler models without any log-transformation are hitherto 
practiced in the literature (Bugner and Rutledge, 1990; 
Rorabacher, 1991; Verma et al., 1998). We suggest that, 
in future, the natural logarithm-cubic models (or of higher 
order terms) should be used routinely to obtain the interpo-
lated or extrapolated critical values whenever required. The 
criterion should be to practically reach the theoretical value 
of 1 for R2 by including all statistically meaningful terms in 
the natural log-transformed polynomial regression model. 

APPLICATIONS IN SCIENCE AND 
ENGINEERING 

The discordancy tests after extending their applicability 
to samples of sizes now up to 30,000 (or even greater), can 
be applied to practically any univarite, bivariate and even 
multivariate examples (for the latter two, after computing 
the studentized residuals) in all scientifi c or engineering 
fi elds. Similarly, for applications in studies related to quality 
control in Earth Sciences, such as those presented by Verma 
(2004), Guevara et al. (2001), and Velasco-Tapia et al. 
(2001), the new critical values and regression equations 
will certainly be useful and will cover all future needs. 
The examples such as Torres-Alvarado (2002), Colombo 
et al. (2007), Méndez-Ortiz et al. (2007), Nagarajan et al. 
(2007, 2008), Ramos-Leal et al. (2007), Salleh et al. (2007), 
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Table 1. Regression equations (six different models) fi tted to 27 simulated critical values of test N14 of one extreme outlier (for n between 1,000 and 
10,000; Table A38 from electronic supplement), and their evaluation for interpolation (for 1,000 > n > 10,000) and extrapolation (n > 10,000) purposes 
(see Table A38 for those n for which critical values were simulated and for which interpolated or extrapolated critical values were required). 

CL / SL /
α

Type 
of fi t

R2

{∑(SIM-FitEq)2}int

{∑(SIM-FitEq)2}ext  

Interpolation or extrapolation equation

70% / 30% / 
0.30 L

…….

Q
…….

C

=====

lnL
…..

lnQ
…..

lnC

0.844868;
3.22×104; 5.02 ×10-3 **

…………………………..
0.968824;

6.52×10-5; 7.37×10-2

………..………………..
0.992071;

1.7×10-5; 1.57**

 

0.981870;
3.76×10-5; 1.51×10-4

……………………..…..
0.999815;

4.29×10-6; 1.16×10-5

…………………..……..
0.999996;

9.89×10-6; 1.89×10-7

 nCV LTN ⋅×±×±= − )107.210(3.09-)0011.00.0376(][ 7-630.0
14

……………………………………………………………………………………………
 

21110

7-630.0
14

)105102.5(

)10510(8.2-)0009.00449.0(][

n

nCV QTN

⋅×±×+

⋅×±×±=
−−

−

……………………………………………………………………………………
 

314132109

7-530.0
14

)102.11000.1()109.11007.2(

)10810(1.47-)0009.00.0514(][

nn

nCV CTN

⋅×±×−⋅×±×+

⋅×±×±=
−−−−

−

  ================================================= 
 [ ])ln (0.00033)(0.01205-)0026.01215.0(][ ln

30.0
14 nCV LTN ⋅±±=

……………………………………………………………………………………………
 [ ]

[ ] 2

ln
30.0
14

)ln(0.00006)0.00291(

)ln(0.0010)(0.0587-)0038.00.3064(][

n

nCV QTN

⋅±+

⋅±±=

……………………………………………………………………………………………
 [ ]

[ ] [ ] 32

ln
30.0
14

)ln(0.000015)0.000462(-)ln(0.00035)0.01405(

)ln(0.0028)(0.1477-)007.0543.0(][

nn

nCV CTN

⋅±⋅±+

⋅±±=

………………………………………………………………………………………………………………………………………………………………

80% / 20% / 
0.20 L

…….

Q
…….

C
____

lnL
…..

lnQ
…..

lnC

0.844604;
8.33×10-4; 1.30×10-2** 

……………………..…..
0.968743;

1.68×10-4; 0.188
……………………..…..

0.992058;
4.39×10-5; 4.0**

 
0.981772;

1.00×10-4; 4.11×10-4

………………………..
0.999816;

4.04×10-6; 5.30×10-5

………………..………..
0.999998;

3.89×10-7; 3.01×10-6

 nCV LTN ⋅×±×±= )104.310(4.97-)0017.00.0604(][ -7-620.0
14

……………………………………………………………………………………………
 

21110

7-520.0
14

)109103.8(

)10910(1.31-)0014.00721.0(][

n

nCV QTN

⋅×±×+

⋅×±×±=
−−

−

……………………………………………………………………………………………
 

314132109

6-520.0
14

)100.21061.1()101.31034.3(

)104.110(2.36-)0015.00.0826(][

nn

nCV CTN

⋅×±×−⋅×±×+

⋅×±×±=
−−−−

−

 
==================================================  [ ])ln(0.0005)(0.0194-)0041.01952.0(][ ln

20.0
14 nCV LTN ⋅±±=

……………………………………………………………………………………………
 [ ]

[ ] 2

ln
20.0
14

)ln(0.00010)0.00469(

)ln(0.0015)(0.0944-)006.00.493(][

n

nCV QTN

⋅±+

⋅±±=

……………………………………………………………………………………………
 [ ]

[ ] [ ] 32

ln
20.0
14

)ln(0.000018)0.000744(-)ln(0.00043)0.02261(

)ln(0.0034)(0.2377-)009.0873.0(][

nn

nCV CTN

⋅±⋅±+

⋅±±=  

………………………………………………………………………………………………………………………………………….……………………

and Rodríguez-Ríos et al. (2007) were already pointed 
out in our earlier paper (Verma et al., 2008a). Another 
recent example concerns the rainfall data from South India 
(Yadava et al., 2007), for which the authors presented 
statistical inferences. This statistical treatment could have 
been certainly improved if the concepts and methodology 
presented in our earlier work (Verma, 1997, 2005; Verma 
and Quiroz-Ruiz, 2006a, 2006b; Verma et al., 2008a) were 
followed. Similarly, these statistical principles can be (or 
have been) applied to the petrographic and geochemical data 
for sandstone samples from an Iranian oil fi eld by Jafarzadeh 
and Hosseini-Barzi (2008), chemical data for minerals from 
Argentina by Montenegro and Vattuone (2008) and Vattuone 

et al. (2008) and from Mexico by Vargas-Rodríguez et al. 
(2008), geothermal fl uid chemistry data from Turkey by 
Palabiyik and Serpen (2008) and those compiled from all 
around the world by Díaz-González et al. (2008), nitrate 
pollution data in water samples from Jordan by Obeidat 
et al. (2008), and geochemical data for igneous rocks and 
minerals from the Mexican Volcanic Belt by Meriggi et 
al. (2008). 

In summary, therefore, we emphasize, as in our earlier 
papers, that the multiple-test method originally proposed by 
Verma (1997) and exemplifi ed in our four papers (Verma 
and Quiroz-Ruiz, 2006a, 2006b; Verma et al., 2008a; this 
work) is a recommended procedure to process experimental 
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Table 1. (Cont.) Regression equations (six different models) fi tted to 27 simulated critical values of test N14 of one extreme outlier (for n between 
1,000 and 10,000; Table A38 from electronic supplement), and their evaluation for interpolation (for 1,000 > n > 10,000) and extrapolation (n > 
10,000) purposes (see Table A38 for those n for which critical values were simulated and for which interpolated or extrapolated critical values were 
required). 

CL / SL /
α

Type 
of fi t

R2

{∑(SIM-FitEq)2}int

{∑(SIM-FitEq)2}ext  

Interpolation or extrapolation equation

90% / 10% / 
0.10

L

…….

Q

…….

C

____

lnL
…….

lnQ
…….

lnC

0.844266;
1.94x10-3; 3.05x10-2 **
………………………..

0.968498;
3.93x10-4; 0.441

………………………..
0.991957;

1.00x10-4; 9.5 **

 
0.981617;

2.38x10-4; 8.54x10-4

…..…………………..
0.999802;

3.70x10-6; 1.11x10-4

………………………..
0.999998;

4.24x10-5; 2.77x10-5

nCV LTN ⋅×±×±= )10710(7.6-)0027.00.0920(][ -7-610.0
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……………………………………………………............................................................…
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)103.110(2.00-)0022.01099.0(][

n
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⋅×±×+
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−
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nn
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−
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[ ]

[ ] [ ] 32
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)ln(0.009)(0.622-)023.0250.2(][

nn
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95% / 5% / 
0.05 L

…….

Q
…….

C
____

lnL

…….

lnQ

…….

lnC

0.843707;
3.23x10-3; 4.93x10-2 **
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0.965563;
6.57x10-4; 0.742

………………………..
0.991834;

1.75x10-4: 16**
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nCV LTN ⋅×±×±= )10810(9.7-)0034.00.1183(][ -7-605.0
14
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data under the assumption that the data are drawn from a 
normal distribution and departure from this assumption 
due to any contamination or presence of discordant out-
liers can be properly handled by tests N1 to N15 (all 15 
tests with their 33 variants, or only those selected for this 
purpose). The multiple-test method was already shown to 
perform better than both the box-and-whisker plot and the 
“two standard deviation” (2s) methods used for processing 
interlaboratory data on RMs for quality control purposes 
(Verma et al., 2008a). Here in the following, we show 

that our method performs better than the MAD_Z outlier 
detection method. 

A new set of examples from proteomics

One area where the new critical values and the com-
bined natural logarithm-cubic equations will be useful is 
molecular and cellular proteomics (Xia et al., 2006; unpub-
lished data from Xia et al. were kindly provided by these 
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Table 1. (Cont.) Regression equations (six different models) fi tted to 27 simulated critical values of test N14 of one extreme outlier (for n between 
1,000 and 10,000; Table A38 from electronic supplement), and their evaluation for interpolation (for 1,000 > n > 10,000) and extrapolation (n > 
10,000) purposes (see Table A38 for those n for which critical values were simulated and for which interpolated or extrapolated critical values were 
required). 

CL / SL /
α

Type 
of fi t

R2

{∑(SIM-FitEq)2}int

{∑(SIM-FitEq)2}ext  

Interpolation or extrapolation equation

98% / 2% / 
0.02

L

…….

Q
…….

C
____

lnL
…….

lnQ
…….

lnC

0.843313;
5.07x10-3; 7.83x10-2 **
………………………..

0.968050;
1.03x10-3; 1.15

………………………..
0.991769;

2.82x10-4; 25**
 

0.981219;
6.14x10-4; 2.44x10-3

……………………..
0.999778;

8.07x10-6; 2.76x10-4

………………………..
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5.54x10-4; 2.52x10-5
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99% / 1% / 
0.01

L

…….

Q
…….

C

____

lnL
……..

lnQ

…….

lnC

0.842963;
6.56x10-3; 0.102**

………………………..
0.967836;

1.34x10-3; 1.49
………………………..

0.991673;
3.71x10-4; 31**
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ln
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researchers, which are used to illustrate this application). 
We processed 1,402 protein datasets for the appli-

cation of our multiple-test method for the sample sizes 
n between 3 and 23,773. The datasets were divided into 
three groups according to n as follows: (a) very large sizes 
1,001-30,000 (49 cases of protein data with sizes between 
1,002 and 23,773); (b) medium sizes 101-1,000 (451 cases 
of protein data with sizes between 101 and 999); and (c) 
small sizes 3-100 (902 cases of protein data with sizes be-

tween 3 and 100). The criterion for this selection depended 
directly on the sample sizes for which new, precise critical 
values were simulated in different papers (see, respectively, 
this paper for very large sample sizes >1000; Verma et al., 
2008a for medium sample sizes 101-1,000; and Verma and 
Quiroz-Ruiz, 2006a, 2006b for small sample sizes up to 
100). All 33 discordancy tests were applied to cases in (a) 
and (b) using the most precise critical values and equations 
(presented in Verma et al., 2008a and this study) whereas 
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Table 1. (Cont.) Regression equations (six different models) fi tted to 27 simulated critical values of test N14 of one extreme outlier (for n between 
1,000 and 10,000; Table A38 from electronic supplement), and their evaluation for interpolation (for 1,000 > n > 10,000) and extrapolation (n > 
10,000) purposes (see Table A38 for those n for which critical values were simulated and for which interpolated or extrapolated critical values were 
required). 

CL / SL /
α

Type 
of fi t

R2

{∑(SIM-FitEq)2}int

{∑(SIM-FitEq)2}ext  

Interpolation or extrapolation equation

99.5% / 0.5% 
/ 0.005 L

…….

Q
…….

C
____

lnL
…….

lnQ
…….

lnC

0.842902;
8.08x10-3; 0.125**

………………………..
0.967785;

1.66x10-3; 1.84
………………………..

0.991634;
4.39x10-4; 39**

 
0.981028;

9.76x10-4; 3.81x10-3

……………..………..
0.999757;

1.46x10-5; 4.40x10-4

………………………..
0.999996;

3.64x10-4; 9.44x10-6
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only 13 single-outlier test variants were applied to cases 
in (c) using the critical values published earlier (Verma 
and Quiroz-Ruiz, 2006a, 2006b). It is important to note 
that our multiple-test method was applied at the strict 99% 
confi dence level as originally proposed by Verma (1997). 
The numbers of discordant outliers detected were registered 
individually for all 1,402 cases. Similarly, the correspond-
ing numbers for MAD_Z robust outlier method were also 
counted in the unpublished database by Xia et al. No attempt 
was made to present and compare the central tendency and 
dispersion parameters from these two statistical methods 
simply because the protein data made available to us are still 
unpublished. This can be done in Xia et al. paper itself (if 
those authors would decide to do so), or after they publish 
their results of the MAD_Z outlier method. 

In Figure 3(a-c) we schematically present an objec-
tive comparison of our multiple-test method (MTM) with 
the MAD_Z method practiced by Xia et al. (unpublished 
database). In most cases (Figure 3a-c), especially for 
medium (Figure 3b) and very large sizes (Figure 3a), our 
method detects a greater number of discordant outliers than 
the MAD_Z method. For very small datasets (n ≤ 5), both 
methods detect practically no discordant outliers in protein 
databases. 

Thus, the multiple-test method initially proposed by 
Verma (1997) along with the new, precise critical values and 
relevant interpolation and extrapolation equations (Verma 
and Quiroz-Ruiz, 2006a, 2006b; Verma et al. 2008a; this 
work) can be advantageously used to process such large 
databases as the 1,402 protein cases presented here.

CL : Confi dence level (%); SL : Signifi cance level (%); α : Signifi cance level; CV: critical value; Type of fi t refers to the six different models as follows: 
L: linear in n-CV axes; Q: quadratic in n-CV axes; C: cubic in n-CV axes; lnL: logarithm-linear in ln(n)-CV axes; lnQ: logarithm-quadratic in ln(n)-CV 
axes; lnC: logarithm-cubic in ln(n)-CV axes. Thus, six different regression models were evaluated (see text for more details).
{∑(SIM-FitEq)2}int = sum of squares of residuals for n = 1,000 to n = 10,000 (for interpolation purposes); {∑(SIM-FitEq)2}ext = sum of squares of residuals 
for n = 20,000 and n = 30,000 (for extrapolation purposes). Thus, two sets of fi tting quality parameter were used for the evaluation of fi tted equations. The 
fi rst parameter {∑(SIM-FitEq)2}int is the total sum of squares of the difference between the simulated critical value (SIM) and that (FitEq) predicted by 
the equation for the 27 simulated values corresponding to n = [1,000(50)1,500(100)2,000(500)5,000(1,000)10,000] for a given CL and for a given regres-
sion model (see Table A38 for the SIM values for n =1,000 to 10,000 used for this fi tting). The second parameter {∑(SIM-FitEq)2}ext is for extrapolation 
of these equations to predict two critical values for n of 20,000 and 30,000. {∑(SIM-FitEq)2}ext value identifi ed by two asterisks (**) was obtained from 
negative critical values (both extrapolated critical values for sizes 20,000 and 30,000 were found to be negative), which is not realistic, and therefore in 
this case, this parameter is meaningless as a quality parameter. Note that independent equations were fi tted for each confi dence level (70% to 99.5%) or 
signifi cance level α (0.30 to 0.005). 
As an example, CV 0.30 in the interpolation equation is the critical value (CV) for test TN14 and signifi cance level α = 0.30 obtained by a simple lin-
ear regression model. The parameter n is the sample size of the critical value to be computed from the equation for a given signifi cance level (α). 
[CV 0.05]lnC  and [CV 0.01 ]lnC  are the most commonly used critical values and the corresponding CL/SL/α are shown in bold face. Note also that Verma (1997) 
recommended the strict level of α = 0.1 be used in application of the multiple-test method. The other CV values in these equations are similarly explained. 
Finally, note that the coeffi cients in all equations are reported as rounded values depending on the respective errors as suggested by Verma (2005).

TN14TN14

TN14TN14TN14TN14
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Figure 1. Graphic evaluation of fi tting parameters for the six regression models: L: linear in n-CV axes; Q: quadratic in n-CV axes; C: cubic in n-CV axes; 
lnL: natural logarithm-transformed n with linear fi t, i.e., linear in ln(n)-CV axes; lnQ: natural logarithm-transformed n with quadratic fi t, i.e., quadratic 
in ln(n)-CV axes; lnL: natural logarithm-transformed n with cubic fi t, i.e., cubic in ln(n)-CV axes. n: sample size; CV: critical value. Results for all seven 
signifi cant levels α = 0.30, 0.20, 0.10, 0.05, 0.02, 0.01, and 0.005, corresponding to sample sizes 1,000(50)1,500(100)2,000(500)5,000(1,000)10,000, 
were used (see Tables 1 and A41 for more details). (a) Parameter R2 for the six models applied to 27 critical value data (Table A38) for test N14, note the 
horizontal dotted line at R2 =1 represents the maximum possible value for this parameter, the inset explains the abbreviations used in the x-axis (Fitted 
model); (b) Same as (a), but for test N15, CL: confi dence level; (c) Parameter {∑(SIM-FitEq)2}int (Interpolated Residuals) for 27 critical values for test 
N14, note six orders of magnitude scale; (d) Same as (c), but for test N15; (e) Parameter {∑(SIM-FitEq)2}ext (Extrapolated Residuals) for 2 critical values 
for test N14 (n=20,000 and 30,000), note more than nine orders of magnitude scale; and (f) Same as (e), but for test N15.
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Figure 2. Interpolation and extrapolation curves (drawn for the six regression models, see Figure 1 for more details) and the critical value data for the 
recommended signifi cance level α =0.01, and sample sizes 1,000(50)1,500(100)2,000(500)5,000(1,000)10,000. Note that α =0.01 is the recommended 
signifi cance level to be used to test experimental data for possible discordant outliers as recommended by Verma (1997). Also included are two greater 
sample sizes of 20,000 and 30,000. (a) Test N14 (see Table 1 for more information); (b) Test N15 (see Table A41 for more information).
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from 1,000 (or a smaller size) up to 30,000.
For such large n (several thousands!) these tests with 

k=1 to k=4, at fi rst glance, may not appear to be of much 
use, because a much greater number of discordant outliers 
(> > 4) may actually be present in such datasets, and new 
test statistics (with signifi cantly greater k) may have to be 
proposed and investigated. Surprising, however, these tests 
seem to perform satisfactorily well for the proteomics data 
(see Figure 3a for very large sample sizes). 

A suitable computer program that could facilitate the 
application of these discordancy tests on a routine basis 
would be much useful in all areas of science and engineer-
ing, including the geosciences. A preliminary version of 
this program is already available although its improvements 

FUTURE WORK

The present paper closes the series of four papers pub-
lished on the subject of new critical values for the existing 15 
discordancy tests with 33 test variants, because new, precise 
and accurate critical values (with appropriate interpolation 
and extrapolation equations) have now been generated for 
all sample sizes up to 30,000. These tests include 13 single 
outlier versions (k=1) and 20 multiple outlier variants (up 
to k=4). The proposed interpolation and extrapolation equa-
tions can also be improved, if necessary, by exploring higher 
order regression fi ts than the cubic fi ts presented here. In 
fact, the extrapolation needs could be totally eliminated by 
obtaining new sets of equations based on all critical values 

Figure 3. Comparison of the multiple-test method (MTM) with the MAD_Z robust outlier method practiced for quantitative protein data (unpublished 
data by Xia et al.). The x-axis is for sample size n whereas the y-axis gives the actual number of discordant (disc.) outliers (open circles are for discor-
dant outliers by the multiple-test method – Ot_MTM, whereas open diamonds are for the MAD_Z robust method – Ot_MADZ). Such large numbers of 
discordant outliers (Figures 3a-c) might also suggest that the protein data distribution might be of some other type, such as log-normal, but this can be 
explored more freely after (or during) the publication of these (unpublished) protein data by the original authors (Xia et al.). (a) Very large sample sizes 
(49 cases), note that for two protein samples of largest sizes of 14,073 and 23,773, the outliers detected as discordant by the multiple-test method (MTM) 
were outside the plot as shown (i.e., much greater number of outliers were detected by the MTM); (b) Medium sample sizes (451 cases); and (c) Small 
sample sizes (902 cases). 
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are underway for enabling its publication (Verma and Díaz-
González, in preparation).

Nevertheless, a proper evaluation of effi ciencies (e.g., 
Velasco and Verma, 1998; Velasco et al., 2000) or prob-
abilities as well as of type I or type II errors may have to be 
fi rst undertaken (see, e.g., Barnett and Lewis, 1994; Hays 
and Kinsella, 2003; Efstathiou, 2006). This type of work, 
already in progress, will constitute a great step forward in 
the application of discordancy tests and a proper handling of 
experimental data, especially those involving large sample 
sizes. In fact, the fi rst paper on these lines is already in press 
(Verma et al., 2008b). Finally, a proper evaluation of the 
two broad groups of methods – robust methods and outlier-
based methods – for the statistical handling of experimental 
data (Verma, 2005) would be of interest to the scientifi c and 
engineering community. 

And some of the ideas expressed in this fi nal section 
should constitute a new series of papers of great interest 
to all those involved in the handling and interpretation of 
experimental data. 

CONCLUSIONS

In this fi nal paper, we have used our established and 
well-tested Monte Carlo type simulation procedure for 
generating new, precise, and accurate critical values for 15 
discordancy tests with 33 test variants for sample sizes up to 
30,000. These new critical values will cover any future needs 
of many diverse fi elds of science and engineering, includ-
ing molecular and cellular proteomics and quality control 
in Earth Sciences. In fact, the example set for proteomics 
presented here demonstrates the usefulness of the multiple-
test method. Much work remains to be done to evaluate the 
performance of discordancy tests and to propose new test 
statistics, especially for very large sample sizes. 
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