Taxonomía y sistemática

Two new species of Echinostoma (Digenea: Echinostomatidae) from Argentinean birds

Dos nuevas especies de Echinostoma (Digenea: Echinostomatidae) en aves argentinas

Lía I. Lunaschi *, Fabiana B. Drago, Verónica Núñez

División Zoología Invertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata, Buenos Aires, Argentina

*Corresponding author: lunaschi@fcnym.unlp.edu.ar (L. Lunaschi)

Received: 29 November 2016; accepted: 7 December 2017

Abstract

Two new species of *Echinostoma* from Argentinean birds are described, illustrated and compared with morphologically close species. *Echinostoma guirae* n. sp. found parasitizing the intestine of *Guira guira* (Cuculidae) from Formosa Province is characterized by having 35 collar spines with the following arrangement: 4 angle spines on each lappet, 8 lateral spines in a single row on each side, and 11 dorsal spines in a double row. *Echinostoma jacanae* n. sp. from the intestine of *Jacana jacana* (Jacanidae) from Buenos Aires Province is mainly characterized by having 45 collar spines arranged as follow: 4 angle spines on each lappet, 3 lateral spines in a single row on each side, and 31 dorsal spines in a double row. Moreover, we provide taxonomic comments on the validity of some species of this genus and regarded *Echinostoma parvum* Lutz, 1925 as species inquirenda.

Keywords: *Guira guira; Echinostoma guirae* n. sp.; *Jacana jacana; Echinostoma jacanae* n. sp.; Argentina

Resumen

Se describen 2 nuevas especies de *Echinostoma* parásitas de aves de Argentina, las cuales son ilustradas y comparadas con especies morfológicamente cercanas. *Echinostoma guirae* n. sp. se encontró parasitando el intestino de *Guira guira* (Cuculidae) en la provincia de Formosa y se caracteriza por poseer un collar con 35 espinas con la siguiente organización: 4 angulares a cada lado, 8 laterales en una simple hilera a cada lado y 11 dorsales en una doble hilera. *Echinostoma jacanae* n. sp. parasita el intestino de *Jacana jacana* (Jacanidae) de la provincia de Buenos Aires; se caracteriza principalmente por poseer un collar con 45 espinas con la siguiente disposición: 4 angulares a cada lado, 3 laterales en una hilera simple a cada lado y 31 dorsales en una hilera doble. Además, proporcionamos comentarios taxonómicos sobre la validez de algunas especies del género y consideramos a *Echinostoma parvum* Lutz, 1925 como especie inquirenda.

Palabras clave: *Guira guira; Echinostoma guirae* n. sp.; *Jacana jacana; Echinostoma jacanae* n. sp.; Argentina
Introduction

Species of *Echinostoma* Rudolphi, 1809 (Echinostomatidae: Echinostomatinae) are frequently found in gastrointestinal tract of a wide range of aquatic birds and mammals. To date, in South American birds 24 species of *Echinostoma* are known, from which only 4 have been described in Argentina: *Echinostoma revolutum* “group” in *Sturnus vulgaris* L. (Passeriformes), *Echinostoma parcespinosum* Lutz, 1924 in *Pardirallus maculatus* (Boddaert) and *Pardirallus sanguinolentus* (Swaison) (Gruiformes) *Echinostoma mendax* Dietz, 1909 in *Cygnus melancoryphus* (Molina) (Anseriformes) and *Echinostoma chloephagae* Sutton and Lunaschi, 1980 in *Chloephaga picta leucoptera* (Gmelin) (Anseriformes) (Boero et al., 1972; Fernandes et al., 2015; Martorelli, 1987; Sutton & Lunaschi, 1980; Valente et al., 2014).

Furthermore, in South American mammals 7 species occur, from which 3 have been reported in rodents from Argentina: *Echinostoma revolutum* (Froelich, 1802) in *Myocastor coypus* Molina, *Echinostoma platensis* Sutton and Lunaschi, 1994 in *Scapteromys aquaticus* Thomas and *Echinostoma rodriguesi* Hsu, Lie and Basch, 1968 in *Rattus norvegicus* Berkenhout (Martínez, 2003; Martínez & Binda, 1993; Navone et al., 2009; Sutton & Lunaschi, 1994).

The objective of this paper is to describe 2 new species of *Echinostoma* recovered from the intestine of birds from Buenos Aires and Formosa Provinces, Argentina.

Material and methods

Six specimens of Guira Cuckoo, *Guira guira* (Gmelin) collected in La Marcela farm (26°17’35” S, 59°08’38” W), Pirané, Formosa Province, Argentina, were examined. Birds were dissected in the field and their viscera immediately analyzed after capture. The digeneans were recovered alive, fixed in 5% hot formalin, stained with hydrochloric carmine, and mounted in Canada balsam. Additionally, 7 digenean specimens identified as Echinostomatidae in the Helminthological Collection of Museo de La Plata (MLP-He) from the intestine of the Wattled Jacana, *Jacana jacana* (L.), from Punta Blanca, Buenos Aires Province, Argentina (34°57’ S, 57°40’ W), were studied. Measurements are given in micrometers (µm) unless otherwise stated, as the range followed by mean in parentheses. Drawings were made with the aid of a drawing tube. The digeneans obtained from *G. guira* were deposited in the MLP-He, and the hosts in the Ornithological Collection of the Museo de La Plata (MLP), La Plata, Argentina.

The following abbreviations were used: AT- anterior testis; CS- cirrus-sac; DVS-O- length of uterine field as distance between posterior margin of ventral sucker and ovary; PTF- post-testicular field as distance between posterior margin of posterior testis and posterior extremity of body. E- egg; Fb- forebody length; OeL- oesophagus length; OS- oral sucker; Ov- ovary; Ph- pharynx; PL- prepharynx length; PT- posterior testis; VS- ventral sucker; VS/OS- sucker width ratio. The term forebody is used according Manter (1970) as the distance between anterior end of body and the anterior edge of the ventral sucker. In addition, the following relative proportions were calculated after Kostadinova (2005): BW%, maximum body width as a proportion of body length; FO%, length of forebody as a proportion of body length; T%, length of post-testicular field as a proportion of body length; U%, length of uterine field as a proportion of body length.

Description

Echinostoma guirae n. sp. (Figs. 1-3; Table 1)

Description based on 7 specimens: Body elongate (BW% = 15-19), with almost parallel margins, 4.1-5.6 (5.2) mm long by 743-1000 (886) wide. Forebody short 745-919 (767) in length (FO% = 13-17). Tegument armed with triangular scale like spines, arranged in transverse rows, less dense in hindbody, extending to level of posterior testis.

Figures 1-3. *Echinostoma guirae* n. sp. from *Guira guira*. 1, Entire worm, holotype, ventral view. Scale bar = 500 µm; 2, head-collar, paratype. Scale bar = 200 µm; 3, cirrus-sac, holotype. Scale bar = 200 µm.
Head collar reniform, well developed, muscular, 251-387 long by 386-531 wide (316 × 441). Collar spines large, 35 in number; with following arrangement: 4 angle spines on each lappet (2 ventral and 2 dorsal), 59-90 × 17-21; 8 lateral spines in single row on each side, 71-83 × 17-19, and 11 dorsal spines in double row, 60-79 × 17-19. This collar spines can be included in the third model proposed by Kanev et al. (2009), i.e., 4 angle spines on each side, 10 lateral spines on each side, 2 additional spines on each side and 3 mid-dorsal spines (1 oral-sinistra, 1 aboral-central, 1 oral-dextra), i.e. [4+10+2+3+2+10+4] (Fig. 2).

Oral sucker ventro-subterminal, spherical, muscular, 358
have been recorded: Echinostoma discinctum Dietz, 1909, Echinostoma uncatum Dietz, 1909, Echinostoma crotophagae Gomes de Faria, 1909 and Echinostoma parvum Lutz, 1925.

Echinostoma discinctum, parasite of Cacicus solitarius Vieillot (Passeriformes, Icteridae) from Brazil (Dietz, 1910), was considered as member of Echinopyphium Dietz 1909 by Yamaguti (1971); we agree with the last author because the collar of this species has 35 spines arranged in a double row. Based on this trait we separate it of E. guirae n. sp.

Echinostoma uncatum has been reported in cuculid birds: Crotophaga major Gmelin and Crotophaga ani L. from Brazil and Piaya cayana (L.) and C. ani from Venezuela (Dietz, 1910; Lutz, 1925; Travassos, 1922). This species has been described and illustrated by Dietz (1910) with 35 spines, 27 arranged all in double row and 4 angle spines on each side. This species differs of E. guirae n. sp. by the arrangement of collar spines and in most metrical characters and relative proportions showed in Table 1.

Echinostoma crotophagae has been described by Gomes de Faria (1909) parasitizing C. major from Brazil. Viana (1924) listed this species as synonym of E. uncatum, without any discussion, probably because it was described parasitizing C. major from the same country. Travassos et al. (1969) and Fernandes et al. (2015) considered both species as synonyms. Yamaguti (1971) maintained as a valid species to E. crotophagae. We agree with the last author because the collar was described with 32-36 collar spines all in single row, while E. uncatum was described with collar spines arranged all in double row. Furthermore, Rodrigues and Rodrigues (1981) studied specimens of E. uncatum from G. guira deposited of the Helminthological Collection of the Oswaldo Cruz Institute (CHIOC) and described 32-34 collar spines in a single row. We regarded these specimens belonging to E. crotophagae because both species have a similar arrangement of collar spines. This species mainly differs from E. guirae n. sp. by the arrangement of collar spines. Also differs in most metrical characters and relative proportions (Table 1).

Lutz (1925) briefly described Echinostoma parvum based on young worms experimentally obtained in Columba livia Gmelin (Columbidae) from Venezuela. The description of this species is incomplete, because only mentioned the presence of 35 collar spines but their arrangement is not described or illustrated. Therefore, the comparison between E. parvum and E. guirae n. sp. was not possible.

The species of Echinostoma reported previously in Argentina can be easily distinguished from E. guirae n. sp. based on the different number of collar spines: E. platensis
(39-42), *E. mendax* (37), *E. revolutum* (37), *E. rodriguesi* (37), *E. chloephagae* (36-37), and *E. parcespinosum* (31-33).

Considering the differences in the distribution and number of collar spines, a new species, *Echinostoma guirae* n. sp. is proposed.

Echinostoma jacanae n. sp. (Figs. 4-6; Table 2)

Description based on 7 specimens: Body small, elongate, (BW% = 9-11), with maximum width at level of ventral sucker, 3.8-5.2 (4.5) mm long by 355-486 (432) wide. Forebody long, 909-1286 (1057) (FO% = 22-25). Tegument armed with spines.

Head collar reniform, well developed, 179-198 long by 238-271 wide (187 × 258), bearing 45 spines of similar size, with following arrangement: 4 angle spines on each lappet (2 ventral and 2 dorsal), 33-38 × 10; 3 lateral spines in single row on each side, 45 × 10-12, and 31 dorsal spines in double row, 38-41 × 11-12. This collar spines can be included in the eighth model proposed by Kanev et al. (2009), i.e. 4 angle spines on each side, 10 lateral spines on each side, 7 additional spines on each side, 3 mid-dorsal spines (1 oral-sinistra, 1 aboral-central, 1 oral-dextra), i.e. [4+10+7+3+7+10+4] (Fig. 5)

Oral sucker ventro-subterminal, 55-71 × 88-112 (65 × 96). Ventral sucker well developed, muscular, spherical, with shallow cavity, located between first and second quarter of body, 242-329 × 242-333 (291 × 286). Sucker width ratio 1: 2.8-3.8 (1: 3.3). Prepharynx short 45-60 (55); pharynx, muscular elongate-oval, 69-93 × 69-90 (79 × 75); oesophagus long, 604-807 (691); intestinal bifurcation anterior to ventral sucker; caeca blind, overlapped by vitelline follicles, reach fairly close to posterior extremity of body. Ratio of oral sucker width to pharynx width 1: 1.2-1.3.

Testes 2, tandem, smooth, elongate-oval, slightly separated; anterior testis, 290-413 × 174-244 (341 × 216); posterior testis, 309-483 × 174-290 (382 × 222). Post-testicular field long, 754-1160 (944) (T% = 19-24). Genital pore median, post-bifurcal. Cirrus-sac elongate-oval, located dorsally between level of intestinal bifurcation and anterior margin of ventral sucker, 193-386 × 101-169 (265-138), contains simple elongate seminal vesicle, pars prostatica, and cirrus with smooth surface (Fig. 6).

Ovary small, entire, oval, just pre-equatorial 152-246 × 121-217 (205 × 176). Mehlis’ gland median, contiguous with ovary. Laurer’s canal short, opening on dorsal surface immediately posterior to ovary. Uterus intercaecal, long, 0.754-1.13 (0.969) mm (U% = 20-25). Metraterm weakly-muscular. Eggs numerous, 82-97 × 48-59 (88 × 51). Ratio of egg length to body length 1: 44-97 (66). Vitellarium follicular, forming 2 lateral non-confluent fields of large and small follicles overlapping caeca; fields extend from to about half distance between ventral sucker and ovary to near posterior extremity of body.

Excretory vesicle not seen; excretory pore terminal.

Taxonomic summary

Type-host: *Jacana jacana* (L.) (Charadriiformes, Jacanidae)

Site of infection: intestine

Type-locality: Punta Blanca (34°57’0” S; 57°40’0” W), Buenos Aires Province, Argentina.

Date of collection: September 1994.

Specimens studied: holotype MLP-He, 3729/1; paratypes MLP-He 3728/1 (1 specimen), 3729/2 (3 specimens); voucher specimens MLP-He 3729/3 (2 specimens).

Figures 4-6 *Echinostoma jacanae* n. sp. from *Jacana jacana*. 4, Entire worm, holotype, ventral view. Scale bar = 500 µm; 5, head-collar, holotype. Scale bar = 50 µm; 6, cirrus-sac, paratype. Scale bar = 100 µm. References: ads-additional spines; as-angle spines; ls-lateral spines; mds-mid-dorsal spines.
Etymology: the specific name, “jacanae” refers to the specific name of the host.

Remarks
So far, 3 species belonging to *Echinostoma* with 45 collar spines have been described in American birds: *Echinostoma siticulosum* Dietz, 1909 found parasitizing tinamiform birds from Brazil, *Crypturellus undulatus* (Temminck) (as *Tinamus u.*), *Crypturellus variegatus* (Gmelin) (as *Tinamus v.*), and *Crypturellus noctivagus* (Wied-Neuwied) [as *Tinamus n.* (Max.)] (Dietz, 1910); *Echinostoma exile* Lutz, 1924 described in Brazil based

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Comparative measurements of Echinostoma jacanae n. sp. with related species.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>Echinostoma jacanae n. sp.</td>
</tr>
<tr>
<td>Hosts</td>
<td>Jacana jacana</td>
</tr>
<tr>
<td>Country</td>
<td>Argentina</td>
</tr>
<tr>
<td>Bl (mm)</td>
<td>3.83–5.20</td>
</tr>
<tr>
<td>Bw</td>
<td>355–486</td>
</tr>
<tr>
<td>Hcl</td>
<td>179–198</td>
</tr>
<tr>
<td>Hcw</td>
<td>238–271</td>
</tr>
<tr>
<td>Cs</td>
<td>45</td>
</tr>
<tr>
<td>Ls</td>
<td>45 × 10–12</td>
</tr>
<tr>
<td>Ds</td>
<td>38–41 × 11–12</td>
</tr>
<tr>
<td>VS/OS</td>
<td>1: 2.8–3.8</td>
</tr>
<tr>
<td>PL</td>
<td>45–60</td>
</tr>
<tr>
<td>PT</td>
<td>309–483 × 174–290</td>
</tr>
<tr>
<td>Fb (mm)</td>
<td>0.91–1.29</td>
</tr>
<tr>
<td>DVS-O (mm)</td>
<td>0.754–1.13</td>
</tr>
<tr>
<td>PTF (mm)</td>
<td>0.75–1.16</td>
</tr>
<tr>
<td>BW%</td>
<td>9–11</td>
</tr>
<tr>
<td>FO%</td>
<td>22–25</td>
</tr>
<tr>
<td>U%</td>
<td>20–25</td>
</tr>
<tr>
<td>T%</td>
<td>19–24</td>
</tr>
</tbody>
</table>

* Calculated from original descriptions or estimated from the published drawing.

Echinostoma exile has morphological characteristics compatible with *E. jacanae* n. sp.; however, differs in the arrangement of spines collar (5 angle spines on each side + 33 or 35 spines in a double row). Moreover, the specimens of *E. exile* described by Kohn and Fernandes (1975) and Alves-Pinto and Melo (2012) can be differentiated of the new species by having larger suckers, shorter oesophagus, larger eggs and shorter forebody (notably short vs. long) (Table 2).

Echinostoma attenuatum includes specimens with a collar spines similar to those of the specimens here studied, but differs by having a forebody notably short (FO%: 9.4 vs. 22-25), uterus short (U%: 15 vs. 20-25), post-testicular field very long (T%: 36 vs. 19-24), as well as the dimensions of body size, spines, suckers, oesophagus, cirrus sac, testes, and ovary (Table 2).

Echinostoma siticulosum was described by Dietz (1910) with 41, 43 or 45 spines; 4 angle spines on each side and the remaining (33, 35 or 37) arranged in a double row. Mendheim (1940) re-described these specimens finding 43 spines in most of them, 41 in two specimens, and not mentioned the existence of 45 collar spines; however, this author agrees with the distribution pattern provided by Dietz (1910). *Echinostoma siticulosum* mainly differs of *E. jacanae* n. sp. by the disposition of collar spines. Also differs in most metrical characters and relative proportions (Table 2).

Three other species of *Echinostoma* with 45 spines have been described in the Palaearctic, Oriental and Australasian Regions: *Echinostoma australasianum* Nicoll, 1914, in *Antigone rubicunda* (Perry) (as *Antigone australasiana*) from North Queensland Australia, with collar spines arranged in two uninterrupted rows (see Nicoll, 1914); *Echinostoma coromandum* Odening, 1962 in *Bubulcus ibis coromandus* (Boddaert) from Berlin Zoological Garden, originally from India, with collar spines apparently in single row and 4 spines in each ventral lappet (see Odening 1962, Fig. 16b), and *Echinostoma gotoi* Ando and Ozaki, 1923 in anatid birds and mammals from Asia with collar spines in a double row, not interrupted, with 6 spines in each ventral lappet (see MacDonald, 1981, Fig. 31.24). These species can be easily differentiated from *E. jacanae* n. sp. by the arrangement of collar spines (a single row in *E. coromandum* and a double row in *E. australasianum* and *E. gotoi*).

Based on all these morphological and morphometric differences, a new species: *Echinostoma jacanae* n. sp., is proposed.

Discussion

Kostadinova (2005) characterized the genus *Echinostoma* by possessing a collar composed by 31-55 spines, with lateral spines arranged in single row, dorsal spines in double row and 5 angle spines on each side. Kanev et al. (2009) considered that the number of spines in this genus is uneven, varying among 31-51, with 4 angle spines; these authors consider that even number of spines in this genus reflect specimens with spines lost, retracted, or supernumerary. These last authors provided 11 arrangement models of collar spines, highlighting that these are identical in larval and adult forms.

The arrangement of collar spines in *E. uncatum*, *E. crotophagae*, *E. exile*, *E. siticulosum*, *E. australasianum*, *E. gotoi* and *E. coromandum* is different to that established by Kostadinova (2005) for *Echinostoma*. In *E. uncatum*, *E. siticulosum*, *E. exile*, *E. gotoi* and *E. australasianum* dorsal and lateral spines are disposed in a double row. This arrangement is similar to that provided by Kostadinova (2005) for *Echinoparyphium*. However, this genus is also characterized by having a forebody long to extremely long (FO% >20), a post-testicular field short (T% = 15-30), and a uterus short to very short (U% = 3-20), with few eggs. Therefore, further researches are necessary on these 4 species to evaluate its accurate taxonomic position, since some its relative proportions, does not correspond to the diagnosis of genus.

Echinostoma crotophagae and *E. coromandum* have an uninterrupted collar spines, with dorsal and lateral spines in a single row. Both characters of *E. crotophagae* are similar to those provided by Kostadinova (2005) for *Longicollia Bykhovskaya-Pavlovskaya*, 1954, but the remaining diagnostic traits differ considerably. Finally, the number and arrangement of collar spines of *E. coromandum* is not coincident with any genus of the family. Considering all the differences referred above respecting to the number and pattern of collar spines established for *Echinostoma* by Kostadinova (2005), we believe necessary further studies on them, in order to clarify their real taxonomic position.

Echinostoma parvum is here regarded as *species inquirenda*, given that only is mentioned the presence of 35 collar spines and the arrangement of collar spines is not described or illustrated.
Acknowledgments

The authors express their gratitude to Luis Pagano for assistance in collecting the hosts, to Sonia Fontana, Thomas Giesecke and Lyudmila Shumilovskikh for their invaluable help for obtaining and translations of some papers in German and Russian, to Luis Garcia Prieto for his constructive comments on the manuscript. Fabiana B. Drago and Verônica Núñez are members of the “Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC). The present study was funded by CIC (Res. N° 048/16) and UNLP (11/N 751).

References

Underwood, H. T., & Dronen, N. O. (1986). Neocyclustera ralli gen. et sp. n. (Cestoidea: Dilepididae) and other

