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ABSTRACT

Relativistic isothermal gas spheres are a powerful tool to model many astro-
nomical objects, like compact stars and clusters of galaxies. In the present paper, we
introduce an artificial neural network (ANN) algorithm and Taylor series to model
the relativistic gas spheres using Tolman-Oppenheimer-Volkoff differential equa-
tions (TOV). Comparing the analytical solutions with the numerical ones revealed
good agreement with maximum relative errors of 10−3. The ANN algorithm im-
plements a three-layer feed-forward neural network built using a back-propagation
learning technique that is based on the gradient descent rule. We analyzed the mass-
radius relations and the density profiles of the relativistic isothermal gas spheres
against different relativistic parameters and compared the ANN solutions with the
analytical ones. The comparison between the two solutions reflects the efficiency of
using the ANN to solve TOV equations.

RESUMEN

Las esferas isotérmicas relativistas son una herramienta poderosa para mode-
lar objetos astronómicos, tales como estrellas compactas y cúmulos de galaxias. En
este trabajo presentamos un algoritmo basado en una red neuronal artificial (ANN)
y series de Taylor para modelar esferas de gas relativistas usando las ecuaciones
diferenciales de Tolman-Oppenheimer-Volkoff (TOV). La comparación de las solu-
ciones anaĺıticas con las numéricas muestra una buena concordancia, con errores
relativos máximos de 10−3. El algoritmo ANN implementa una red neuronal de
tres niveles con pro-alimentación, constrúıda usando una técnica de aprendizaje
con retro-propagación basada en la regla del gradiente descendente. Analizamos las
relaciones masa-radio y los perfiles de densidad de las esferas relativistas isotérmicas
y comparamos las soluciones ANN con las anaĺıticas. Esta comparación muestra la
eficiencia de ANN para resolver las ecuacines TOV.

Key Words: methods: analytical — methods: miscellaneous — relativistic pro-
cesses — stars: interiors

1. INTRODUCTION

Many astrophysical issues, particularly those involving star structure and galactic dynamics, benefit from
the use of isothermal models (Binney & Tremaine 1987; Chandrasekhar 1939). In terms of stellar structure
and evolution theory, isothermal self-gravitating spheres may be used to calculate the behaviour of physical
variables.

There are a lot of studies concerning the isothermal spheres in the framework of Newtonian mechanics (non-
relativistic) (Milgrom 1984; Liu 1996; Natarajan & Lynden-Bell 1997; Roxburgh & Stockman 1999; Hunter 2001;
Raga et al. 2013). Several works have conducted numerical investigations on relativistic isothermal spheres
within the framework of general relativity theory. Chavanis (2002) explored the structure and stability of
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isothermal gas spheres using a linear equation of state in the context of general relativity. Sharma (1990) used
the Pade approximation technique to provide straightforward and accessible approximate analytical solutions
to the TOV equation of hydrostatic equilibrium, and his results indicate that general relativity isothermal
arrangements have a limited extent. Saad (2017) proposed a novel approximate analytical solution to the
TOV equation using a combination of the Euler-Abel transformation and the Pade approximation. Besides
the numerical and analytical solutions of similar nonlinear differential equations similar to TOV equations,
artificial intelligence approaches presented reliable results in many problems arising in astrophysics. In this
context, Morawski & Bejger (2020) proposed a unique method based on ANN algorithms for reconstructing
the neutron star equation of state from the observed mass-radius relationship. Nouh et al. (2020) presented a
neural network-based computational approach for solving fractional Lane-Emden differential equation problems.
Azzam et al. (2021) used an artificial neural network (ANN) approach and simulate the conformable fractional
isothermal gas spheres and compared them with the results of the analytical solution deduced using the Taylor
series. Abdel-Salam et al. (2021) presented the neural network (NN) mathematical model and developed a
neural network approach for simulating the helium burning network using a feed-forward mechanism.

In the present article, we solve TOV equations by the ANN and analytically by an accelerated Taylor series.
We employ an ordinary feed-forward neural network to estimate the solution of TOV equations for the ANN
simulation, which has been shown to outperform competing computational approaches. A three-layer feed-
forward neural network is used, which was trained using a back-propagation learning approach based on the
gradient descent rule. The following is the paper’s structure: The relativistic isothermal polytrope is discussed
in § 2. The analytical solution to the TOV equation is found in § 3. The mathematical modelling of the ANN
is covered in § 4. § 5 summarizes the results obtained, and § 6 presents the conclusion.

2. THE RELATIVISTIC ISOTHERMAL GAS SPHERE (RIGS)

In the polytropic equation of state (P = Kρ1+1/n, where P is the pressure, ρ is the density, and K is
the polytropic constant), the polytropic index n ranges from 0 to ∞. When n approaches or equals ∞, the
isothermal equation of state P = Kρ emerges. By combining the isothermal equation of state with the equation
of the hydrostatic equilibrium in the frame of the general relativity, the TOV equation of the isothermal gas
sphere could be given as (Sharma 1990),

dP

dr
= −

(
GMr

r2

)
ρ+ (P/c2)(1 + (4πPr3/Mrc

2))

(1− (2GMr/rc2))
, (1)

where Mr is the total mass energy or ‘effective mass’ of the star of radius r including its gravitational field is
given by

Mr =
4π

c2

r∫
0

ρc2r2dr. (2)

Define the variables, χ, ν, u, and the relativistic parameter s, by

χ = rA;

A2 = 4πGρc/sc
2;

s = Pc

ρcc2
,

(3)

where ρc and Pc are the central density and central pressure of the star respectively, u(x) and ν(x) are the
Emden and is the mass functions of radius, and c is the speed of light. Equations (1) and (2) can be transformed
into the dimensionless forms in the (x, u) plane as

(1− 2sν(x)/x)

1 + σ
+ x2

du

dx
− ν(x)− se−ux3 = 0 (4)

dν

dx
= x2e−u, (5)
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which satisfy the initial conditions

u(0) = 0;
du(0)

dx
= 0; ν(0) = 0. (6)

If the pressure is substantially lower than the energy density at the center of a star (i.e., goes to zero), as in
the non-relativistic case, the system of equations (4) and (5) simplifies to the Newtonian isothermal structure
equations

1

x2
d

dx
(x2

du

dx
) = e−u. (7)

One can calculate physical parameters of the stellar models like radius (R), density (ρ) , and mass Mr using
the following equations

R = xc
√

s
4πGρc

ρ = ρce
−u;

Mr = 4πρc
A2 ν(x).

(8)

3. ANALYTICAL SOLUTION TO EQUATION (4)

Rearrange equations (4) and (5) as

x2 dudx − 2svxdudx − ν − νs− sx
3e−u − s2x3e−u = 0,

dν
dx = x2e−u,

(9)

where the initial conditions are

u(0) = 0;
du(0)

dx
= 0; υ(0) = 0.

Write the Taylor series for the function u(x) as

u(x) = u(0) +Dxu(0)x+
D2
xu(0)

2!
x2 +

D3
xu(0)

3!
x3 +

D4
xu(0)

4!
x4 +

D5
xu(0)

5!
x5 + ...., (10)

at x = 0 the first derivative is given by

ν′0 = (0)2e−u(0) = 0,

and the second derivative is

ν′′0 = 2(0)e−u(0) − (0)2e−u(0)u′0 = 0,

differentiating another time, we have

ν′′′ = 2e−u − 4xe−uu′ + x2e−uu′2 − x2e−uu′′; (11)

when x = 0 we have

ν′′′0 = 2e−u(0) − 4(0)e−u(0)u′(0) + (0)2e−u(0)u′(0)2 − (0)2e−u(0)u′′(0) = 2(1) = 2;

the fourth derivative is given by

ν(4) = −6e−uu′ + 6xe−uu′2 − 6xe−uu′′ − x2e−uu′3 + 3x2e−uu′u′′ − x2e−uu′′′, (12)

when x = 0 we have ν
(4)
0 = 0;

the fifth derivative is given by

ν(5) = 6e−uu′2 − 6e−uu′′ + 6e−uu′2 − 6xe−uu′3 + 12xe−uu′u′′ − 6e−uu′′ + 6xe−uu′u′′

−6xe−uu′′′ − 2xe−uu′3 + x2e−uu′4 − 3x2e−uu′2u′′ + 6xe−uu′u′′ − 3x2e−uu′2u′′

+3x2e−uu′′2 + 3x2e−uu′u′′′ − 2xe−uu′′′ + x2e−uu′u′′′ − x2e−uu(4).
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Substituting x = 0 we have

ν
(5)
0 = 12e−u0(u′0)2 − 12e−u0u′′0 = −12u′′0 ,

and so on. Now write the first TOV equation of equation (9) as

x2u′ − 2svxu′ − υ − νs− sx3e−u − s2x3e−u = 0. (13)

Differentiating equation (13) for x we have

2xu′ + x2u′′ − 2sνu′ − 2sν′xu′ − 2sνxu′′ − ν′ − sν′ − 3sx2e−u + sx3e−uu′ = 0; (14)

when x = 0 all terms are equal to zero.
Differentiating equation (14) for x we have

2u′ + 2xu′′ + 2xu′′ + x2u′′′ − 2sν′u′ − 2sνu′′ − 2sν′u′ − 2sν′′xu′ − 2sν′xu′′

−2sνu′′ − 2sν′xu′′ − 2sζxu′′′ − ν′′ − sν′′ − 6sxe−u + 3sx2e−uu′ + 3sx2e−uu′

−sx3e−uu′2 + sx3e−uu′′ = 0;

which can be simplified into

2u′ + 4xu′′ + x2u′′′ − 4sν′u′ − 4svu′′ − 2sν′′xu′ − 4sν′xu′′ − 2sνxu′′′

−ν′′ − sν′′ − 6sxe−u + 6sx2e−uu′ − sx3e−uu′2 + sx3e−uu′′ = 0.
(15)

Putting x = 0 we have

2u′0 + 4(0)u′′0 + (0)2u′′′0 − 4sν′0u
′
0 − 4sv0u

′′
0 − 2s(0)ν′′0 u

′
0 − 4s(0)ν′0u

′′
0

−2s(0)ν0u
′′′
0 − ν′′0 − sν′′0 − 6s(0)e−u0 + 6s(0)2e−u0u′0 − s(0)3e−u0(u′0)2 + s(0)3e−u0u′′0 = 0.

Since

u0 = 0, ν0 = 0, ν′0 = 0, ν′′0 = 0,

this gives

u′0 = 0.

By differentiating equation (15) and putting x = 0 this gives

u′′0 =
1

3
+

1

3
s+ s+ s2 =

1

3
(1 + s)(1 + 3s).

Following the same procedure mentioned above, we obtained the values of u′′′0 , u
(4)
0 , u

(5)
0 , ν

(6)
0 , u

(6)
0 and so on.

Substituting these values into the Taylor series, equation (10), the Emden function is given by

u(x) =
1

6
(1 + s)(1 + 3s)x2 + ... (16)

4. THE ANN ALGORITHM

4.1. Simulation of the RIGS

The proposed ANN simulation scheme of the RIGS is plotted in Figure 1. First, we assume ut = (x, p) to
be the neural network’s approximate solution to equation (4), which may be expressed as follows (Yadav et al.
2015):

ut(x, p) = f(x,N(x, p)) +A(x), (17)
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Fig. 1. Proposed ANN architecture for simulating the isothermal gas sphere.

where the first term represents a feed-forward neural network with input vector x and p is the corresponding
vector of adjustable weight parameters, and the second term represents the boundary or initial value.
The ANN output, N(x, p), is provided by

N(x, p) =
∑H

i=1
νiσ(zi), (18)

where zj =
∑n
i=1 wijxj + βi, and wij represents the weight from the input unit j to the hidden unit i, νi

represents the weight from the hidden unit i to the output, βi is the bias of the ith hidden unit, and σ(zi) is
the sigmoid activation function that has the form σ(x) = 1

1+e−x .

Write the derivative of networks output N for the input vector xj as

DxjN(x, p) = Dxj(
∑H
i=1 νiσ(zj =

∑n
i=1 wijxj + βi, ))

=
∑h
i=1 νiwijσ

1, σ1 = Dxσ(x)
(19)

and the nth derivative of N , equation (18), is

D
(n)
xj N(x, p) =

∑n

i=1
νiPiσ

(n)
i , (20)

where

Pi =
∏n

k=1
wik, σi = σ(zi).

As a result, the proposed solution for the TOV equations is given by

ut(x, p) = x2N(x, p), (21)

νt(x, p) = x3M(x, p), (22)

this fulfills the initial conditions as

ut(0, p) = 0 ·N(0, p) = 0, νt(0, p) = (0)3M(0, p) = 0.
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And

Dxut(x, p) = 2xN(x, p) + x2DxN(x, p),

Dxνt(x, p) = 3x2M(x, p) + x3DxM(x, p),
(23)

Dxut(0, p) = 2(0)N(0, p) + 0.DxN(0, p),

Dxνt(0, p) = 3(0)2M(0, p) + (0)3DxM(0, p).
(24)

4.2. ANN Gradient Computations and Updating the Parameters

When we examine the solution presented by equations (21), we transform the problem to an unconstrained
optimization one, and the error to be minimised is given by (Yadav et al. 2015).

E(x) =
∑
i

{x2Dxut(xi, p)− 2σxνt(xi, p)Dxut(xi, p)− νt(xi, p)
−σνt(xi, p)ut(xi, p)− σx3e−ut(xi,p) − σ2x3e−ut(xi,p)}2

+
∑
i

{Dxνt(xi, p)− x2e−ut(xi,p)}2,
(25)

where

Dxut(x, p) = 2xN(x, p) + x2Dα
xN(x, p),

Dxνt(x, p) = 3x2M(x, p) + x3DxM(x, p).
(26)

To upgrade network parameters, we calculate the NN derivative for both input and the parameters of the
network and train the NN for the optimum parameter value. Once the network has been trained, one can
optimize the network parameters and compute ut(x, p)ut(x, p) = x2N(x, p).

The derivative of any of its inputs is analogous to the feed-forward neural network N with one hidden
layer, the same weights wij , and thresholds βi, and each weight νi replaced with νiPi where Pi =

∏n
k=1 w

αk
ik .

Moreover, the sigmoid function’s nth order derivative is substituted for the transfer function of each hidden
unit. As a result, the gradient with respect to the original network parameters may be determined as follows:

DνiN = Piσ
(n)
i ,

DβiN = νiPiσ
(n+1)
i ,

DwijN = xiνiPiσ
(n+1)
i + νi(

∏
k=1,k 6=j wik)σ

(n)
i .

(27)

The updating rule of the network parameters will be given as follows

νi(x+ 1) = νi(x) + aDνiN, (28)

βi(x+ 1) = βi(x) + bDβiN, (29)

wij(x+ 1) = wij(x) + cDwijN, (30)

where a, b, c are learning rates, i = 1, 2, ..., n, and j = 1, 2, .., h.
An ANN’s main processing unit is the neuron, which is capable of carrying out local information and

processing local memory. The net input (z) of each neuron is calculated by adding the weights it receives to
form a weighted sum of such inputs and then adding them with a bias (β). The net input (z) is then processed
by an activation function, which is likely to result in neuron output (shown in Figure 1).
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Fig. 2. Proposed ANN architecture for simulating the isothermal gas sphere.

4.3. Back-Propagation Learning Algorithm

Back-propagation (BP) is a gradient technique that seeks to minimize the mean square error between
the actual and predicted outputs of a feed-forward net. It demands continuously differentiable non-linearity.
Figure 2 depicts a flow chart of a back-propagation offline learning method (Leshno et al. 1993). We used a
recursive technique that started with the output units and moved back to the first concealed layer. To compare
the output uj at the output layer to the desired output tj , an error function of the following kind is used:

δj = uj(tj − uj)(1− uj). (31)

For the hidden layer, the error function takes the form:

δj = uj(1− uj)
∑

k
δkwk. (32)

where δj is the error term in the output layer and wk is the weight between the hidden and output layers. The
error is replicated backward from the output layer to the input layer as follows to modify the weight of each
connection:

wji(t+ 1) = wji(t) + ηδjuj + γ(wji(t)− wji(t− 1)). (33)
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The rate of learning η must be chosen so that it is neither too small, resulting in a slow convergence, nor
too large, resulting in misleading results. The momentum term in equation (33) is added with the momentum
constant γ to accelerate the convergence of the back-propagation learning algorithm error and to aid in stomping
the changes over local increases in the energy function and trying to push the weights to follow the overall
downhill direction (Leshno et al. 1993). This term adds a percentage of the most recent weight adjustment
to the current weight adjustments. At the start of the training phase, both η and γ terms are allocated and
determine the network stability and speed (Elminir et al. 2007; Basheer & Hajmeer 2000; El-Mallawany et al.
2014).

The procedure is repeated for each input pattern until the network output error falls below a preset threshold.
The final weights are frozen during the test session and utilized to calculate the precise values of both the density
profile and mass-radius relation. To evaluate the training’s success and quality, the error is computed for the
entire batch of training patterns using the root-mean-square normalised error, which is defined as:

Erms =
1

PJ

√∑P

p=1

∑J

j=1
(tpj − upj)2, (34)

where P is the number of training patterns, J is the number of output units, tpj is the target output at unit j,
and upj is the actual output at the same unit j. Zero error would indicate that all of the ANN’s output patterns
completely match the predicted values and that the ANN is completely trained. Internal unit thresholds are
also modified by assuming they are connection weights on links derived from an auxiliary constant-valued input.

5. RESULTS AND DISCUSSIONS

5.1. Training Data Preparation

To prepare the data for the ANN simulation of the problem, we elaborated a Mathematica code to derive
the Emden and mass functions of the relativistic isothermal gas spheres using the Taylor series. We performed
the calculations for the range of the dimensionless parameter x = 0− 35; this upper limit of x corresponds to
an isothermal sphere on the verge of gravothermal collapse (Antonov 1985). To obtain an accurate result for
these analytical physical parameters, we accelerated both the series expansions of the Emden function (u) and
the mass function (ν) by the accelerated scheme suggested by Nouh (2004); Saad et al. (2021). The radius,
density, and mass of the gas sphere are calculated using equations (8).

We calculated 50 gas models for the range of the relativistic parameter σ = 0 − 0.5 with step 0.01. The
radius, density, and mass of the star are calculated for the typical neutron star physical parameters: mass
M∗ = 1.5M�, central density ρc = 5.75 × 1014 g cm−3, central pressure Pc = 2 × 1033 par, and radius
R∗ = 1.4× 106 cm. We plotted in Figure 3 the density profiles and the mass-radius relations of the relativistic
isothermal gas spheres. Because the effect of the relativistic parameter on the Emden function is smaller than
that on the mass function (the relation between the density and the Emden function is given by ρ = ρce

−u),
we plotted the density profiles for the relativistic parameter values σ = 0.1, 0.2, 0.3, and 0.4 only.

5.2. Network Training

The data calculated in the previous section have been used to train the NN we used to simulate the Emden
and mass functions of the relativistic isothermal gas spheres. We trained the ANN that has the architecture
previously shown in Figure 1 for such a purpose. The network is composed of three layers which are the input
layer, the hidden layer, and the output layer. The input layer has two inputs which symbolize the relativistic
parameter (σ) and the ratio (R/R∗), where R∗ is the radius of the typical neutron star which is equal to
R∗ = 1.4× 106 cm. This ratio takes values from 0 to 1 in steps of 0.02. The output layer has also two outputs
which represent the Emden function (density profile) and the mass-radius relation of the relativistic isothermal
gas spheres. We checked three configurations for the number of hidden layer neurons by testing 20, 50, and
100 neurons in that layer to find which of them was the best. The data values for the relativistic function (σ)
that have been used for the training and testing of the adopted neural network are shown in Table 1.

After checking the three configurations of the hidden layer neurons, we concluded that the best number of
those neurons was 50. This number of the hidden layer neurons gave the least RMS error of 0.000156 in almost
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Fig. 3. The density profiles (upper panel) and the mass-radius relations (lower panel) of the relativistic isothermal gas
spheres. The color figure can be viewed online.

TABLE 1

TRAINING AND TESTING DATA FOR THE NN ADOPTED TO SIMULATE THE EMDEN AND MASS
FUNCTIONS OF THE RELATIVISTIC ISOTHERMAL GAS SPHERES

Training Data Testing Data

σ σ

0.01 0.02 0.03 0.05 0.06 0.04 0.08 0.12 0.16 0.20

0.07 0.09 0.010 0.11 0.13 0.24 0.28 0.32 0.36 0.40

0.14 0.15 0.17 0.18 0.19

0.21 0.22 0.23 0.25 0.26

0.27 0.29 0.30 0.31 0.34

0.35 0.37 0.38 0.39 0.41

0.42 0.43 0.45 0.46 0.49

0.50

the same number of training iterations. So, the configuration of the NN adopted to simulate the Emden and
mass functions of the relativistic isothermal gas spheres was 2-50-2.

While in the training phase of the NN, we used a value of the momentum (γ = 0.5) and a value for the
learning rate (η = 0.03).Those values of γ and η were found to speed up the convergence of the back-propagation
training algorithm without exceeding the solution. The convergence and stability behaviors of the input layer
weights, bias, and output layer weights (wi, βi, and νi) were studied during the training phase which is shown
in Figure 4. The weight values were initialised to random values, which can be seen in such figures, and after
a number of iterations, they converged to stable values.
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Fig. 4. The density profiles (upper panel) and the mass-radius relations (lower panel) of the relativistic isothermal gas
spheres. The color figure can be viewed online.

5.3. Comparison with the Analytical Model

After the training phase is completed, we can use the code with its frozen weight values to compute the
Emden and mass functions of the RIGS. To compare the analytical models and the ANN ones, we calculated
the isothermal gas models for the relativistic parameters shown in Column 2 of Table 1. The results of these
comparisons are displayed in Figure 5, which shows the identical overlap between the density profiles and their
relevant ANN models. The figures also show the limited discrepancies between the ANN model and their
relevant mass-radius relations. In general, we obtained good agreement with a maximum absolute error for the
density profiles and mass-radius relations of 1% and 5%, respectively.

According to Nouh et al. (2020), the large discrepancy in the curve of the mass-radius relations can be
attributed to numerical instability caused by the mass function’s (ν) acceleration process.

6. CONCLUSIONS

In the present paper, the Taylor series and an artificial neural network (ANN) approach were used to solve
the relativistic isothermal gas sphere. We wrote a Mathematica code to derive the symbolic expressions for the
Emden and the relativistic functions. Then, the radii, densities, and masses of the gas spheres were calculated
and the convergence of the analytical models was accelerated using Euler-Abel and Pade transformations. A
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Fig. 5. The mass-radius relation and density profile were calculated for the relativistic parameter range σ=0.04, 0,08,
0,12, 0.16, 0.2, 0.24, 0.28, 0.36, and 0.4. The red lines represent the accelerated Taylor series solutions, while the blue
lines represent the ANN solutions. The color figure can be viewed online.

total sum of 50 analytical gas models was calculated for the range of the relativistic parameter σ =0 - 0.5 with
step 0.01 and compared to the numerical ones which indicated that the maximum relative errors are 1% and
3% for the density profiles and mass-radius relations, respectively.

For the ANN calculations, we developed a C++ code that implemented the feed-forward back-propagation
learning scheme. Training and testing of the ANN algorithm were performed for the density profiles and mass-
radius relation of the neutron stars. The efficiency and accuracy of the presented algorithm were evaluated by
running it through 10 relativistic isothermal gas models and comparing them to analytical models. The ANN
calculations yielded results that were in very good agreement with the analytical results, demonstrating that
using the ANN method is effective, accurate, and may outmatch other methods.

Acknowledgment: We are so grateful to the reviewer for his/her many valuable suggestions and comments
that significantly improved the paper. This paper is based upon work supported by Science, Technology &
Innovation Funding Authority (STDF) Egypt, under Grant Number 37122.
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Raga, A. C., Rodŕıguez-Ramı́rez, J. C., Villasante, M.,
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