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ABSTRACT

We simulate the collapse of a turbulent gas cloud, in which we choose two
sub-clouds. A translational velocity ~vL or ~vR is added, so that the sub-clouds
move towards each other to collide. The radius and pre-collision velocity of the
sub-clouds are chosen to be unequal, and both head-on and oblique collisions are
considered. The simulations are all calibrated to have the same total mass and
initial energy ratio α = 0.16, which is defined as the ratio of thermal energy to
gravitational energy. We compare low-β models to a high-β models, where β is
defined as the ratio of kinetic energy to gravitational energy. Finally, we consider
the turbulent cloud to be under the gravitational influence of an object located far
enough, in order to approximate the tidal effects by means of an azimuthal velocity
Vcir added to the cloud particles apart from the translational and turbulent velocities
mentioned above. We compare a low-Vcir model with a high-Vcir one.

RESUMEN

Se simula el colapso de una nube turbulenta de gas con dos subnubes. Se
agrega una velocidad traslacional ~vL o ~vR tal que las subnubes se muevan una
hacia la otra para chocar. El radio y la velocidad pre-colisión de las subnubes se
escogen desiguales y se consideran colisiones frontales y oblicuas. Las simulaciones
se calibran para tener la misma masa total y razón de enerǵıa inicial α = 0.16,
definida como la razón de la enerǵıa térmica a la enerǵıa gravitacional. Comparamos
modelos de baja-β y alta-β, con β igual a la razón de la enerǵıa cinética a la
enerǵıa gravitacional. Consideramos también que la nube esté bajo la influencia
gravitacional de un objeto lejano, para aproximar los efectos de marea por medio
de una velocidad azimutal Vcir agregada a las part́ıculas de la nube, además de las
velocidades traslacional y turbulenta. Comparamos un modelo de baja-Vcir con uno
de alta-Vcir.

Key Words: hydrodynamics — stars: formation — turbulence — methods: numer-
ical

1. INTRODUCTION

There is ample observational evidence of the oc-
currence of cloud-cloud collisions, see Testi et al.
(2000), Churchwell et al. (2006), Furukawa et al.
(2009), Torii et al. (2011), Takahira et al. (2014) and
Yamada et al. (2021). Regions such as RCW49,
Westerlund2, and NGC 3603 are examples of cloud-
cloud collisions. Collision between clouds are widely
expected, because clouds moving at random direc-
tions have been observed in the plane of the Milky
Way, see Roslowsky et al. (2003) and Bolatto et al.

(2008). As a star formation mechanism, some obser-
vations indicate that cloud-cloud collisions are the
external agent to trigger the initial gas condensation
at the interface of the colliding clouds. This star
formation mechanism seems to be a very important
step to explain the formation of high-mass stars and
clusters of stars. For low-mass stars, the most rele-
vant mechanism of formation seems to be the gravi-
tational collapse of cloud cores, that is induced by an
internal agent, such as the expansion of HII regions,
see Scoville et al. (1986).
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The G0.253 + 0.016 molecular cloud, which is
also called the Brick, has attracted much attention
and is believed to be formed by a cloud-cloud colli-
sion. This cloud is massive (≈ 105M�) and compact
(3 pc), located in the Central Molecular Zone of the
Milky Way (CMZ). The Brick can be considered to
be a possible progenitor cloud of a young massive
cluster (YMC) of stars; that is, the Brick represents
the initial conditions out of which high-mass proto-
stars can be formed through gravitational collapse,
see Petkova et al. (2006).

Longmore et al. (2012) presented deep, multiple-
filter, near-IR observations of the Brick, to ascertain
its dynamical state. Longmore et al. (2012) noted
that large-scale emission from shocked-gas was de-
tected toward the Brick, which indicates that this
cloud could have been formed by the convergence of
large-scale flows of gas or by a cloud-cloud collision.

Using ALMA line emission observations of sul-
fur monoxide, Higuchi et al. (2014) compared
the filamentary structures observed in the cloud
G0.253+0.016 with a cloud collision model. Con-
sequently, the shell structure was obtained theoreti-
cally, which is similar to that shell-like structure ob-
served in the G0.253+0.016 cloud. The model pro-
posed by Higuchi et al. (2014) considered that the gi-
ant G0.253+0.016 molecular cloud may have formed
due to a cloud collision between two unequal clouds.
The small cloud had a radius of 1.5 pc and a mass
of 0.5 × 105M�; the larger cloud had a radius of
3 pc and a mass of 2 × 105M�. Their approaching
pre-collision velocity was from 30 to 60 km/s.

Using the Combined Array for Research in
Millimeter-wave Astronomy (CARMA), Kauffmann
et al. (2013) presented high-resolution interferomet-
ric molecular line and dust emission maps for the
G0.253+0.016 cloud. They estimated the virial pa-
rameter of the the G0.253+0.016 cloud, which yields
a value of αvir < 0.8. In addition, Rathborne et
al. (2015) used ALMA observations of the Brick to
investigate its physical conditions.

Many surveys have reported the physical condi-
tions of gas structures of the ISM on the verge of
collapse; see for instance, Caselli et al. (2002) and
Jijina et al. (1999). The dimensionless ratios α and
β, which are defined as the ratio of thermal energy
to gravitational energy and the ratio of kinetic en-
ergy to gravitational energy, respectively- are very
useful to characterize the physical state of these gas
structures. Observations seem to favor the statistical
occurrence of low-β clumps. However, recent obser-
vations have found a gas cloud with a high value of β,
see for example Jackson et al. (2018). In addition, for

clouds in the CMZ, the gas is observed to be highly
turbulent, with large non-thermal line-widths in the
range from 20 to 50 km/s. Consequently, considering
an isothermal sound speed from 0.3 to 0.6 km/s and
gas temperatures from 30 to 100 K, the typical Mach
numbers are in the range from 10 to 60, which is a
highly-supersonic turbulence, see Bally et al. (1998)
and Mills (2017).

From the theoretical side, many simulations that
aim to study a cloud-cloud collision process have
appeared in the last three decades, for instance,
Hausman (1981), Lattanzio et al. (1985), Kimura
and Tosa (1996), Klein and Woods (1998) and Mar-
inho and Lépine (2000). However, these early sim-
ulations were done with low resolution. Simula-
tions with much better resolution were done more
recently by Burkert and Alves (2009) and Anath-
pindika (2009a). Colliding gas structures starting
from hydrodynamical equilibrium were considered
by Kitsionas and Whitworth (2007) and Anath-
pindika (2009b). Anathpindika (2010) considered
collisions between unequal gas structures. Gómez et
al. (2007), Vazquez-Semanedi et al. (2007) and other
authors studied the generation of turbulence at the
shock front of head-on collisions.

Lis and Menten (1998) proposed a model that
was based on a cloud-cloud collision that aimed to
explain far-infrared continuum emission observations
of the G0.253+0.016 molecular cloud. The simula-
tion presented by Habe and Ohta (1992) assumed
that the mass ratio of the non-identical colliding
clouds was 1:4 and the radius ratio was 1:2.

Dale et al. (2019) and Kruijssen et al. (2019) pro-
posed hydrodynamical simulations of a gas cloud or-
biting in the gravitational potential of the CMZ, in
the radial range from 1 to 300 pc. In these simu-
lations, each SPH particle was given an additional
external force to take the external potential of the
CMZ into account.

Anathpindika (2010) studied a head-on collision
between two clouds of different sizes: one cloud was
modeled as a Bonnor-Ebert sphere and the second
cloud was modeled as a uniform density sphere. The
cloud’s pre-collision translation velocities were also
unequal: one moves at 10 km/s while the second
cloud moves at -15 km/s. The formation of a bow-
shock is the main outcome of these simulations. The
bow-shock continues collapsing, so that the models
showed a lot of fragmentation while other models
with slow collision velocities showed no sign of frag-
mentation. In addition, the author noted that this
behavior (whether or not fragmentation is present)
also depends on the simulation resolution.
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In this paper we aim to study the collision process
of several un-equal sub-clouds, which are initially
embedded within a parent turbulent cloud. The set
up of this paper is similar to the physical conditions
mentioned by Anathpindika (2010), Higuchi et al.
(2014) and Kauffmann et al. (2013), so that the sys-
tem of interest resembles the Brick. In addition, we
want to see what role the initial turbulence of the
cloud can have on the overall collision process. While
Anathpindika (2010) and other authors have consid-
ered two separate clouds that collide, we emphasize
that in this paper that the initial cloud entirely con-
tains the two sub-clouds that collide. We consider
both kinds of clouds to simulate: low and high β
turbulent models, so that β = 0.5 or β = 50. In
both cases, the cloud will collapse once the initial
turbulence has been dissipated. It has been shown
by Arreaga (2018) that the β ratio can reach very
high values, and yet the simulations of these clouds
show that they still collapse globally.

The models considered in this paper are clearly
incomplete given that they do not take into account
the environment of the cloud, so that the models are
taken as isolated systems, which is a common prac-
tice in numerical simulations of cloud collapse and
evolution. In the case of the Brick, or in general of
a cloud located in the CMZ, a tidal force will be ex-
erted upon the clouds from a massive central object,
see Molinari et al. (2011).

For this reason, we introduce an approximate
model to mimic the gravitational influence of a cen-
tral massive object on the cloud, in addition to the
collision process described earlier. In this approxi-
mate model, an additional velocity is added to each
SPH particle of the cloud, so that this velocity is di-
rectly related to the escape velocity induced by the
massive central object on the cloud. The result ob-
tained with this simple model has allowed us to con-
clude that the collapse of the cloud is accelerated by
the presence of the external object, as was already
pointed out by Dale et al. (2019) and Kruijssen et
al. (2019), using a more complete model.

It must be emphasized that this simple approxi-
mate model produces a central condensation during
the very early evolution of the cloud, which is de-
cisive in the subsequent evolution. The results ob-
tained from these simulations are in agreement with
observations (Hillenbrand and Hartmann, 1998) and
simulations (Kirk et al., 2014), which indicate that
the most massive member of a star cluster is always
located at the center of the cluster.

It must be noted that the gas particles of all the
models include three types of velocities, which are

the turbulent velocity spectrum, the translational
velocity and the azimuthal velocity; all of them are
given as initial conditions of the SPH particles. The
particles are then allowed to evolve as gas described
by the Navier-Stokes hydrodynamic equations under
the influence of their own gravitational interaction.

The outline of this paper is as follows. In § 2
we describe the initial cloud, within which all the
collision models will take place. The initial condi-
tions given to the simulation particles are explained
in § 2.1 and § 2.2. We define the azimuthal velocity
in § 2.3. Then, in § 2.4 we give the details of the col-
lision geometry and define the models to be studied.
We describe the GADGET2 code, the resolution of
the simulations and the equation of state in S 2.6,
§ 2.7 and S 2.8, respectively. In § 3, we describe the
most important features of the time evolution of our
simulations by means of two-dimensional (2D) and
three-dimensional (3D) plots. A dynamical charac-
terization of the simulation outcomes is undertaken
in § 4. Finally, in § 5 and § 6 we discuss the relevance
of our results in view of those reported by previous
papers, and we make some concluding remarks.

2. THE PHYSICAL SYSTEM AND
COMPUTATIONAL CONSIDERATIONS

The gas cloud that is considered in this paper is
a uniform sphere with a radius of R0 = 3.0 pc and
a mass of M0 = 1.0 × 105M�. The average density
and the free-fall time of this cloud are ρ0 = 5.9 ×
10−20 g cm−3 and tff = 8.64 × 1012 s or 0.27 Myr
(2.7 ×105 yr), respectively. The values of R0 and
M0 have been taken from Kauffmann et al. (2013)
and Higuchi et al. (2014), to draw comparisons with
their models of the Brick. The number density of
the cloud considered here is n0 = 15352 particles per
cm3; a mean molecular weight of 2.4 for the hydrogen
molecule is assumed. Therefore, its mean mass is
3.9 × 10−24 g.

It should be emphasized that these physical prop-
erties of density, mass and radius are typical of the
gas structures, so-called “clumps”, in the cloud clas-
sification framework of Jijina et al. (1999) and Bergin
et al. (2007) of the ISM, with a number density
within the range 103− 104 cm3. With respect to the
mass, the gas structure of this paper would better
correspond to a “cloud”, because the typical mass of
clouds is within the range 103 − 104M� while that
of the clumps is in the range 50− 500M�.

We therefore use the term cloud to refer to the
gas structure considered here, although it is clearly
much denser that a typical cloud. For a cloud struc-
ture near the CMZ, the physical properties are ob-
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served to be more extreme, so that the number den-
sity and the temperature are in general higher than
in the clouds of ISM in the galactic disc, see Long-
more et al. (2013).

2.1. The Initial Conditions of the Simulation
Particles

2.1.1. The Initial Positions

The gas particles are initially located in a simu-
lation volume, which is divided into small cubic ele-
ments, with a volume given by ∆x∆y∆z. A gas
particle is placed at the center of each cubic ele-
ment. Next, each particle is displaced a distance of
the order ∆/4.0 in a random spatial direction within
each cubic element. The total number of particles
is 13,366,240. Therefore, the mass of a simulation
particle is given by mp = 7.48 × 10−3M�.

2.1.2. The Initial Turbulent Velocity Spectrum

To generate the turbulent velocity spectrum, we
set up a mesh with a side length equal to 2 times
the cloud radius, L0 = 2R0, so that the size of
each grid element of this mesh is δ = L0/Ng and
the mesh partition is determined by Ng = 64. In
Fourier space, the partition is given by δK = 1/L0,

so that each wave-number vector ~K has the com-
ponents Kx = ixδK, Ky = iyδK and Kz = izδK,
where the indices ix, iy, iz in equation 1 take integer
values in the range [−Ng/2, Ng/2] to cover all of the
mesh.

A velocity vector ~v(~r) = (vx, vy, vz) must be as-
signed for a SPH particle located at position ~r =
(x, y, z), which is given by

~v(~r) ≈ Σix,iy,iz

∣∣∣ ~K∣∣∣−n−2
2 ~K sin

(
~K · ~r + ΦK

)
, (1)

where n is the spectral index. It must be noted that
this kind of turbulent velocity spectrum is known
as a curl-free (CF) type. A method to obtain a
divergence-free (DF) type of turbulence spectrum
has been shown in Dobbs et al. (2005). Arreaga
(2017) examined the effects on the collapse of cores
due to variation of the number and size of the
Fourier modes, for each turbulence type, whether
divergence-free or curl-free. Arreaga (2017) demon-
strated that the results of the core collape are not
substantially different. Arreaga (2018) presented
simulations in which the velocity vector given to each
SPH particle was formed by a combination of the two
types of turbulent spectra ~v = 1

2~vDF + 1
2~vCF .

The initial power of the velocity field for both
types of turbulence is given by:

P ( ~K) =<
∣∣∣v( ~K)

∣∣∣2 >=
∣∣∣ ~K∣∣∣−n . (2)

The spectral index has been fixed in our simulations
to the value n = −1 and thus we will have P ≈ K
and v2 ≈ K−1. Other authors have used other val-
ues for the spectral index, for instance n = 2, so
that their power and velocity go as P ≈ K−2 and
v2 ≈ K−2, respectively, see Dobbs et al. (2005).

Finally, the level of turbulence can be adjusted by
introducing a multiplicative constant in front of the
right-hand side of equation 1, whose value is fixed, as
we explain it in the next § 2.2. Later, we will show
that the velocity spectrum proposed in § 2.1.2 has
some of the well-known characteristics of turbulence,
see § 5.1.

2.2. Initial Energies

In a particle-based simulation, the thermal, ki-
netic and gravitational energies are given by

Ether = 3
2

∑
i mi

Pi

ρi
,

Ekin = 1
2

∑
i miv

2
i ,

Egrav = 1
2

∑
i miΦi,

(3)

where Pi is the pressure and Φi is the gravitational
potential at the location of particle i, with velocity
vi and mass mi. It should be emphasized that all
of the SPH particles of a simulation must be used in
the summation of equation 3.

Let α be defined as the ratio of the thermal en-
ergy to the gravitational energy and let β be the ratio
of the kinetic energy to the gravitational energy, so
that

α ≡ Ether
|Egrav|

, (4)

and

β ≡ Ekin
|Egrav|

. (5)

The value of the speed of sound c0 has been
fixed at 225,000 cm/s, so that the initial turbulent
cloud has the α0 ratio given by 0.16, for all the
collision models. The multiplicative constant men-
tioned in § 2.1.2 has been adjusted so that the ini-
tial turbulent cloud has a β0 ratio given by 0.5.1

1We also consider models with a very high value of the ratio
of the kinetic energy to the gravitational energy; in addition,
there is observational interest in these kinds of model, see
§ 2.2.1 below.



SIMULATIONS OF UNEQUAL BINARY COLLISIONS 277

Higuchi et al. (2014) presented line emission obser-
vations of the Brick using the Atacama Large Mil-
limeter/Submillimeter Array and considered values
of β0 = 0.1 and α0 = 0.02 taking into account a cloud
mass of 2 × 105M�, radius of 2.8 pc, a temperature
of 20 K and a one-dimensional velocity dispersion of
4 km/s.

The virial parameter is very useful when charac-
terizing the physical state of a gas structure, which
is defined observationally by

βvir ≡
5σ2

1D R

GM
, (6)

where G is Newton’s gravitational constant, M and
R are the mass and radius of the gas structure, and
σ1D is the intrinsic one-dimensional velocity disper-
sion of the hydrogen molecule. Assuming isotropic
motions, a 3D velocity dispersion can be simply re-
lated by σ3D =

√
3σ1D. It should be noted that

a gas structure in virial equilibrium would have
βvir = 1.

The empirical relation between the virial param-
eter is βvir = 2 a β, where β is the dimensionless
ratio defined in equation 5 and a is a numerical fac-
tor that is empirically included to take modifications
of non-homogeneous and non-spherical density dis-
tributions into account. According to this empirical
relation, the virial parameter of the simulation of
this paper is approximately 1.

Later, the virial theorem will be useful to show
the level of virialization of the simulation outcome.
In general terms, for a gas structure in virial equilib-
rium, the energy ratios defined above in equations 4
and 5 satisfy the relation

α+ β =
1

2
. (7)

It is expected that if a gaseous system has
α+ β > 1/2, then it will expand; in the other case, if
α+ β < 1/2, then the system will collapse. It must
be mentioned that Miyama et al. (1984), Hachisu
and Heriguchi (1984) and Hachisu and Heriguchi
(1985) obtained a criterion of the type α × β < 0.2
to predict the output of a given simulation.

2.2.1. Observational Evidence for Models with
Extreme Initial Kinetic Energy.

Large kinetic energy molecular clouds have re-
cently been observed. For example, Jackson et al.
(2018), reported unusually large line-widths of the
G337.342-0.119 gas structure, which is also known
as the Pebble. These kinds of clouds are expected

not to collapse in terms of the virial theorem, be-
cause a gas structure such as the Pebble reaches a
virial parameter of 3.7.2

In spite of this, numerical simulations have shown
that there are gas structures with a large kinetic
energy, so that their virial parameter is around or
greater than 2, and are in a state of global collapse,
see for instance Ballesteros et al. (2018). In addi-
tion, Arreaga (2018) determined the extreme kinetic
energy allowed for a turbulent core to collapse under
the influence of its own self-gravity. The results that
these authors found are given in terms of the ratio β,
which is defined here in equation 5 of § 2.2, so that a
turbulent core can have an initial β as high as 2− 8
and with an initial Mach number within 3 − 9 and
still finish its evolution in a collapsed state.

For clouds in the CMZ, the gas is observed to be
highly turbulent, with high non-thermal line-widths
in the range from 20 to 50 km/s. Considering an
isothermal sound speed within the range from 0.3 to
0.6 km/s for gas temperatures from 30 to 100 K, the
typical Mach numbers are in the range from 10 to 60,
which is a highly supersonic turbulence, see Bally et
al. (1998) and Mills (2017).

2.3. The Azimuthal Velocity

Let us consider a massive agent, such as a dwarf
spheroidal galaxy, which is located at the origin of a
coordinate system. Let us place the molecular cloud
of interest here to be in the z-axis, at a distance
ZC . This massive agent induces an escape velocity
at each radius R (with respect to the center of the
massive agent), so that

Vcir =
√

2GM(R)/R , (8)

whereM(R) is the mass contained up to the radius R
and G is Newton’s gravitational constant. In spher-
ical coordinates R, θ and φ, the velocity vector ~V
has components VR, Vθ and Vφ, respectively. These
spherical components are related to the Cartesian
components of velocity Vx, Vy and Vz by three si-
multaneous equations, whose coefficients are given
in terms of the sine and cosine of the polar and az-
imuthal angles θ and φ, as follows:

VR=Vx sin(θ) cos(φ) + Vy sin(θ) sin(φ) + Vz cos(θ),

Vθ=Vx cos(θ) cos(φ) + Vy cos(θ) sin(φ)− Vz sin(θ),

Vφ=−Vx sin(φ) + Vy cos(φ).

(9)

2Recall that the virial theorem states that a gas structure
with a virial parameter less than 1 will collapse; otherwise,
if the virial parameter is greater than 1, then a gas structure
will not collapse.
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Let us assume that ZC and the radius of the cloud
( which is defined in § 2 R0 = 3 pc with respect to the
center of the cloud), satisfy the relation R0/ZC � 1,
then as sin(θ) = R0/R ≈ R0/ZC � 1 then θ ≈ 0,
for which cos(θ) ≈ 1 and sin(θ) ≈ 0. In addition,
in the particular case that the cloud follows a cir-
cular orbit around the massive center at radius R,
then the velocity vector would only have a non-zero
polar velocity component, Vθ, while the radial and
azimuthal components VR and Vφ are zero. Let us
denote this velocity as Vθ = −Vcir, where the minus
sign indicates that the assumed rotation of the cloud
is counter-clock-wise in its orbit around the massive
agent. Under these simplifications, the relations 9
between Cartesian and spherical components of ve-
locity are reduced to

Vx = −Vcir cos(φ),

Vy = −Vcir sin(φ),

Vz = 0,

(10)

so that the magnitude of the velocity of a particle
located at any radius R is therefore always given by√
V 2
x + V 2

y = Vcir. These Cartesian components of

the velocity will be added to the particle velocity
defined in equation 1 to generate four new models
in which this approximation will be implemented. It
should be noted that the azimuthal angles have the
same projection in both coordinate systems: the first
is based on the cloud center and the second is located
at the gravitational agent center.

We will call this velocity the “azimuthal velocity”
because it is given only in terms of the azimuthal
angle φ. Then, the approximation that replaces the
tidal force by an azimuthal velocity, as described in
equation 10, does not depend explicitly on the dis-
tance of the massive center to the cloud as long as
ratio between the cloud radius to this distance is
quite small.

Following with the model of a cloud of the CMZ,
the mass of this massive agent has been fixed at
MB = 3.6 × 106M�, which corresponds to the black
hole located at the center of the Milky Way. In this
case, the escape velocity at 500 pc is 5.57 km/s. To
compare this velocity with those displayed at Fig-
ure 2, in terms of the speed of sound c0 defined in
§ 2.2, we have a Mach number of Vcir = 2.47. It
must be noted that the magnitude of this circular
velocity Vcir is quite small as compared to that pro-
posed by Molinari et al. (2011), in which a model
for the orbit of the gas stream near the massive cen-
ter Sgr B2 is around 80 km/s. For this reason, we
have also included a second set of models in which

the massive agent is considered to be molecular gas
concentrated in the nuclear bulge of the Milky Way,
see Launhardt et al. (2002), so that the total mass
is MH = 8.4 × 108M�, see also Mills (2017), for
which the escape velocity at 500 pc is 85 km/s, such
that the normalized velocity in terms of the speed of
sound 37.82.

2.4. The Collision Models

It is important to emphasize that the cloud en-
tirely contains the two subsets of particles that are
going to collide. Let us call these subsets the pre-
collision sub-clouds. They are located initially along
the x-axis, so that the centers are: for the left-hand
clump (-2.55, 0, 0) pc and for the right-hand clump
(2.55, 0, 0) pc.

The radius of the pre-collision sub-clouds are cho-
sen to be equal for two models, and different for an-
other two models. The former models are head-on
collisions. An impact parameter b has also been con-
sidered for the latter models, so that they are oblique
collisions, in which b takes the value 1.5 pc along
the y-axis. Bekki and Couch (204) have demon-
strated observationally that the most likely impact
parameter b in cloud collisions in the Large Mag-
ellanic Cloud and the Small Magellanic Cloud is
0.5D < b < D where D is the diameter of the cloud.
For the radius R0 of the cloud considered in this pa-
per, b has been chosen such that b = 0.25D.

We show all these models in Table 1. The la-
bel is shown in Column one. The impact parameter
value is shown in Column two. In Columns three
and four, the relationship of the radius and trans-
lational velocities are shown, for the left-hand and
right-hand sub-clouds, respectively. It is important
to emphasize that the relative pre-collision velocity
of the sub-clouds is 29 km/s and is formed for non-
identical velocities for the left-hand and right-hand
sub-clouds. In Column five, the value of the ratio of
the kinetic energy to the gravitational energy for the
initial configuration of particles is shown, see equa-
tion 5. Finally, Column six gives the value of the
azimuthal velocity added to the cloud particles, see
§ 2.3. It must be clarified that these models are a
sample from a larger set of models that was consid-
ered in a first manuscript, so that the numbers of the
labels do not show any ordering.

2.4.1. A Note on the Physical Parameters chosen
for the Sub-clouds.

As we mentioned in § 1, the idea that the Brick
could be formed by a non-identical cloud-cloud col-
lision has been explored for some time. Habe and
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Fig. 1. Schematic diagram of the pre-collision geometry for a head-on collision (left-hand panel) and an oblique collision
(right-hand panel). The color figure can be viewed online.

TABLE 1

THE COLLISION MODELS

Model b rL : rR vL : vR β0 Vcirc0

[pc] [pc] [km/s]

U5 0 0.75:1.5 14:-15 0.5 0

U13 0 1.5:1.5 14:-15 0.5 0

U9 1.5 0.75:1.5 14:-15 0.5 0

U11 1.5 1.5:1.5 14:-15 0.5 0

U5b 0 0.75:1.5 14:-15 50 0

U13b 0 1.5:1.5 14:-15 50 0

U9b 1.5 0.75:1.5 14:-15 50 0

U11b 1.5 1.5:1.5 14:-15 50 0

U5r 0 0.75:1.5 14:-15 0.5 2.47

U13r 0 1.5:1.5 14:-15 0.5 2.47

U9r 1.5 0.75:1.5 14:-15 0.5 2.47

U11r 1.5 1.5:1.5 14:-15 0.5 2.47

U5rb 0 0.75:1.5 14:-15 0.5 37.82

U13rb 0 1.5:1.5 14:-15 0.5 37.82

U9rb 1.5 0.75:1.5 14:-15 0.5 37.82

U11rb 1.5 1.5:1.5 14:-15 0.5 37.82

b is the impact parameter; r L :r R is the initial relation
of the colliding sub-cloud radii; v L :v R is the relation
of the translational velocities or pre-collision velocities;
β0 is the initial ratio of kinetic energy to gravitational
energy; and Vcir/c 0 is the ratio between the azimuthal
velocity and the speed of sound .

Ohta (1992) assumed that the mass ratio of the col-
liding clouds is 1:4 and the radius ratio is 1:2. Later,
Lis and Menten (1998) followed this collision model,
so that their pre-collision velocities of the clouds are

taken for this paper exactly as these authors intro-
duced them.

More recently, using observations, Kauffmann et
al. (2013) estimated that the virial parameter of the
Brick is around βvir ≤ 0.8 and considered the same
geometry of un-equal clouds at the same relation pro-
posed by Habe and Ohta (1992) and Lis and Menten
(1998). In this paper, we have taken the value of
β0 = 0.5, so that we expect to have a value of the
virial parameter of ≈ 1, see § 2.2.

Shortly after, Higuchi et al. (2014) reconsidered
this idea and continued the exploration of a cloud-
cloud collision model in which the relative speed of
colliding clouds was within the range from 30 to 60
km/s, and the radii were of 1.5 and 3 pc, for the
small and big clouds, respectively.

In this paper, the translation velocity shown in
Table 1, vL : vR, is given in terms of the sound speed
c0 by 6.2:6.6 Mach, so that the relative velocity of
approach is a little greater than 12 Mach.

To allow comparison of the results of the present
paper with Lis and Menten (1998), Kauffmann et al.
(2013) and Higuchi et al. (2014), we use here the
same values for the mass, radius and translation ve-
locity of the cloud-cloud collision model that were
used by these authors.

It must be noted that the gas particles of all
the models described in Table 1 include the Carte-
sian components of velocity described in equation 1,
which are the turbulent velocity spectrum and the
translation velocity vL : vR of the sub-clouds. How-
ever, only the last four models include a third set of
velocity components already described equation 10,
which are needed to implement the approximation
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that replaces the tidal force by an azimuthal veloc-
ity. All three types of velocities enter as initial con-
ditions of the SPH particles, as we will describe in
§ 2.5.

2.5. Characterization of the Initial Turbulence

To show the nature of the turbulence that is im-
plemented in § 2.1.2, we consider the distribution
functions of the initial velocity.

In Figure 2, we show the distribution functions
of the radial component of the velocity at the initial
snapshot, so that in the vertical axis the fraction f
of the simulation particles whose magnitude of the
velocity is smaller than that value shown in the hor-
izontal axis. The radial component has been calcu-
lated with respect to the origin of the coordinates
located in the center of the cloud, which is located
at the center of the simulation box.

According to the left-hand column panels of Fig-
ure 2 that is, for models U and Ub, half of the simu-
lation particles have a negative radial velocity com-
ponent, while the other half have a positive radial
component. This symmetry is expected from the
random process described in § 2.1 to generate the
direction of the velocity vectors.

It must be emphasized that for the right-hand
column panels of Figure 2 that is, for models Ur
and Urb, which include an azimuthal velocity, the
symmetry of the curves with respect to the posi-
tive and negative radial components has been lost.
These panels indicate that the azimuthal velocity fa-
vors that 80 percent of the particles have negative
radial component of the velocity.

It must also be emphasized that both types of
models U , Ur and Urb have the same initial turbu-
lent velocity spectrum with the same level of energy,
as defined in § 2.1 and § 2.2, and have the same
translational velocity. The only difference between
them is whether or not they include the azimuthal
velocity, as described in § 2.3. It is observed in Fig-
ure 2 that the distribution function of the models U
shows a magnitude of the velocity 12 percent smaller
than that of models Ur.

Later, we will compare these curves at the initial
snapshot with curves obtained for an snapshot of the
final evolution stage.

A brief description of the dynamics of the isolated
cloud is given in § 5.1.

2.6. The Evolution Code

The simulations of this paper are evolved using
the particle-based Gadget2 code, which implements
the SPH method to solve the Euler equations of hy-
drodynamics; see Springel (2005). Gadget2 has a

Monaghan-Balsara form for the artificial viscosity,
see Balsara (1995), so that the strength of the viscos-
ity is regulated by setting the parameter αν = 0.75
and βν = 1

2 .×αv, see Equations 11 and 14 in Springel
(2005). The Courant factor has been fixed at 0.1.

The SPH sums are evaluated using the spheri-
cally symmetric M4 kernel and so gravity is spline-
softened with this same kernel. The smoothing
length h establishes the compact support, so that
only a finite number of neighbors to each particle
contribute to the SPH sums. The smoothing length
changes with time for each particle, so that the mass
contained in the kernel volume is a constant for the
estimated density. Particles also have gravity soft-
ening lengths ε, which change step by step with the
smoothing length h, so that the ratio ε/h is of order
unity. In Gadget2, ε is set equal to the minimum
smoothing length hmin, which is calculated over all
particles at the end of each time step.

2.7. Resolution

Truelove et al. (1997) demonstrated that the res-
olution requirement of a hydrodynamic simulation
can be expressed in terms of the Jeans wavelength
λJ , which is given by

λJ =

√
π c2

Gρ
, (11)

where G is Newton’s gravitation constant, c is the
instantaneous sound speed and ρ is the local density,
so that a mesh-based simulation must always have its
grid length scale l such that l < λJ/4.

Bate and Burkert (1997) demonstrated that the
resolution requirement for a particle-based code, the
Jeans wavelength λJ is better written in terms of the
spherical Jeans mass MJ , which is defined by

MJ ≡
4

3
π ρ

(
λJ
2

)3

=
π

5
2

6

c3√
G3 ρ

, (12)

so that an SPH code will produce correct results as
long as the minimum resolvable mass mr is always
less than the Jeans mass MJ . The mass mr is given
by mr ≈ MJ/(2Nneigh), where Nneigh is the num-
ber of particles included in the SPH kernel (i.e., the
number of neighbors). Therefore, our simulations
will comply with this resolution requirement if the
particle mass mp is such that mp/mr < 1.

As we mentioned in § 2.1, we have N =
13366240 SPH particles in each simulation and there-
fore mp = 7.4 × 10−3M�. Now, if we consider that
the highest peak density in our collision models is
ρmax = 5.0 × 10−12 g/cm3, then the minimum Jeans
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Fig. 2. Distribution function for the radial component of the velocity at the initial snapshot at t/tff = 0, for the model
(top left-hand) U with a low level of turbulence; (top right-hand) Ur with a small azimuthal velocity; (bottom left-hand)
Ub with a high level of turbulence and (bottom right-hand) Urb with a large azimuthal velocity. f is the fraction of
particles whose magnitude of the velocity vr/c0 (normalized with the sound speed) is smaller than that value shown in
the horizontal axis. The color figure can be viewed online.

mass would be given by (MJ)min ≈ 0.594048M�, so
that we obtain mr = 7.4× 10−3M�. Thus, for that
peak density the ratio mp/mr ≤ 1, and the Jeans
resolution requirement is satisfied. In this sense, we
are sure to avoid the growth of numerical instabil-
ities or the occurrence of artificial fragmentation in
all our simulations, up to densities smaller or equal
than ρmax. In the next sections, we will present
our results in terms of a normalized density, so that
log (ρmax/ρ0) is given by 7.9, where ρ0 is the average
density of the initial cloud, as we mentioned in § 2.

2.8. Equation of State

Most simulations in the field of collapse used an
ideal equation of state or a barotropic equation of
state (BEOS), as was proposed by Boss et al. (2000):

p = c20 ρ

[
1 +

(
ρ

ρcrit

)γ−1
]
, (13)

where γ ≡ 5/3 and ρcrit is a critical density, a pa-
rameter which we explain now. This BEOS takes
into account the increase in temperature of the gas
as it begins to heat once gravity has produced a sub-
stantial contraction of the cloud. In this paper, we

also use this BEOS scheme for simplicity with a crit-
ical density ρcrit = 5.0 × 10−14 g/cm3, which is 100
times smaller than the peak density considered in
§ 2.7 for the resolution requirement estimate; that
is, ρmax. However, it should be emphasized that it
is only an approximation. Consequently, to describe
correctly the transition from the ideal to the adia-
batic regime, one needs to solve the radiative trans-
fer problem coupled to gravity in a self-consistent
way.

3. RESULTS

3.1. Evolution of the Density Peak

In Figure 3 we show the time evolution of the
global density peak, irrespective of where the particle
with the highest density is located in the simulation
volume. As can be seen in this figure, all models
collapse at different times (as expected).

Let us consider the top left-hand panel of Fig-
ure 3, the models with a low level of turbulence.
The fastest collapse is that of Model U13; followed
by the collapse of Models U9 and U5, respectively.
The slowest collapse is that of Model U11.
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Fig. 3. Evolution of the density peak for all the models (top left-hand) U with low level of turbulence; (top right-hand)
Ur with a small azimuthal velocity (bottom left-hand) Ub with high level of turbulence and (bottom right-hand) Urb
with a large azimuthal velocity. The color figure can be viewed online.

This ordering seems to be a consequence of the
gas dragging, which is caused by the asymmetry in
radius and velocity. Consequently, as the gas flows,
it is more difficult to condense by the action of the
gravity. Model U13 does not show any sign of gas
dragging, because the gas remains of the head-on
collision is still around of the pre-collision center.
This is the reason why this model collapses first.

The density peak curve of Model U9 very closely
follows that of Model U13; This happens because
the right-hand sub-cloud acts as a primary member
in the binary system formed, which is only slightly
perturbed by the left-hand sub-cloud, that acts as a
secondary member of the binary. The collapse takes
place first in the primary, which is more massive.

The density peak curve of Model U5 is the third
to reach the collapse. This happens because the
right-hand sub-cloud entirely swallows the left-hand
sub-cloud during the collision, so it produces a mass
perturbation in the central region, which must first
settle down for the collapse to continue. The slowest
collapse is that of Model U11. This happens because
the dragging of the colliding sub-clouds is maximum,
so the mass does not stack easily.

Let us now consider the bottom left-hand panel
of Figure 3, the Models Ub with a high level of turbu-
lence. In this case, the behavior of all of the curves is
the same as that explained earlier for the top panel,
but for the panel of Model Ub there is a slight shift
to the right to longer evolution times, above all for
the Models U5b,U9b and U13b. The collapse time
of Model U11b is almost similar to that observed in
Model U11.

We observe a very significant change in the time
scale for the right column panels of Figure 3; in
the top right-hand panel, Models Ur that include
a low azimuthal velocity, the collapse is accelerated,
so that the collapse time is shorter than the previ-
ous models U and Ub by 40 percent, approximately.
In the bottom right-hand panel, Models Urb that
include a high azimuthal velocity, the collapse is ex-
tremely fast and the time scale has been reduced to a
range from 0.1 to 0.15 t/tff . In addition, the curves
for Models Urb do not show any sign of the early
random collisions between the SPH particles, due to
the turbulence spectrum induced on each particle ve-
locity.
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3.2. Column Density Plots

The main outcome of the collision models is
shown by means of column density plots of a thin
slice of gas, parallel to the x-y plane. To make a
proper comparison between the different models, we
have selected for each model a snapshot whose peak
density is such that log (ρmax/ρ0) ≈ 5.

In Model U5, once the head-on collison between
the left-hand and right-hand sub-clouds has taken
place, the asymmetry in the original sub-clouds in
both radius and translational velocity, makes the
right-hand sub-cloud (the biggest and the fastest
cloud) swallow and drag the left-hand sub-cloud (the
smallest and slowest cloud). The resulting stirred
gas oscillates from the left-hand side to the right-
hand side along the x-axis. The spatial symmetry
in the original configuration of the right-hand sub-
cloud is translated to the symmetry in the arms de-
veloped around the central cloudlet, as can be seen
in the top left-hand panel of Figure 4. In § 3.1, this
phenomenon was simply referred to as gas dragging,
which was a useful way to explain the time of col-
lapse by means of the density peak curves.

When the asymmetry in the radius is removed,
the final result is a central cloudlet, that is elongated
along the x-axis, with a strong bipolar outflow along
the y-axis, as can be seen in the top right-hand panel
of Figure 4, which is the outcome of Model U13. Be-
cause of this result, we note that the asymmetry in
the velocities of the collision model is not as impor-
tant as the asymmetry in the radii with respect to
the outcome of the simulations.

Different results are obtained when an impact
parameter is taken into account. In the case of
Model U9, as illustrated in the bottom left-hand
panel of Figure 4, the asymmetry in the radii and ve-
locities together with an impact parameter produce a
weak binary system, in which the the left-hand sub-
cloud (the smallest and slowest cloud) passes by and
is attracted by the right-hand sub-cloud (the biggest
and fastest cloud), so that part of the mass of the
former is pulled out. Nevertheless, an arm is still
visible around the remains of the pre-collision left-
hand sub-cloud and a long arm also develops around
the central cloudlet, which is analogous in origin to
the arm formed in Model U5.

In the case of Model U11, when the symmetry
in the radii of the pre-collision sub-clouds is restored
but still in the presence of the impact parameter as
in Model U9, a binary system is formed as the main
outcome, in which several gas bridges are seen to be
strongly connecting the remains of the two collid-

ing clumps, as can be seen in the bottom right-hand
panel of Figure 4.

In Figure 5 we show the column density plots
of Models Ub, with a high level of turbulence. As
expected, there is a lot of similarity with the previous
Models U , with a low level of turbulence, because the
initial structure of the velocity spectrum is the same
for both Models U and Ub. The only difference is
the magnitude of the velocity. The larger magnitude
of the velocity for Models Urb makes the arms and
tails larger and better defined than those in Models
U .

Let us now consider the iso-density plots for Mod-
els Ur, which are shown in the Figure 6. In this case,
we show two columns of density plots. In the right-
hand column of Figure 6, we show the density plots
for the snapshots with almost the same density peak
shown in Figure 4 to allow comparison with Models
U and Ub. We only observe an homogeneous and
spherical collapse as the final result of simulations
Ur.

In the left-hand column of Figure 6, we choose
snapshots of the first stage of evolution, to show the
early development of a central lump of gas, which is
a direct consequence of the azimuthal velocity added
to the particle velocity, see § 2.3. This central lump
of gas makes the collapse of the cloud faster, as can
be seen in Figure 3, because it acts as a centrally
located mass attractor.

Finally, let us consider the iso-density plots for
Models Urb, which are shown in Figure 7. We ob-
serve the formation of a massive lump of gas at the
cloud center, at the beginning of the evolution, sim-
ilarly to those shown in the left-hand column of Fig-
ure 6. However, for each Model Urb, the massive
lump of gas is quite bigger than for models Ur. This
is a direct consequence of the higher azimuthal ve-
locity added to the particle velocity, see § 2.3. This
massive central lump of gas makes the collapse quite
faster than that observed for Models Ur, as we notice
happens in the bottom right-hand panel of Figure 3.

3.3. 3D Rendered Plots

In Figure 8, we show the spatial structure of the
models U using 3D plots, for the same time and den-
sity chosen for the snapshot shown in Figure 4. Until
now, the figures displayed in § 3.2, have been cuts
parallel to the equatorial plane of the initial sphere,
so that around of 10,000 particles are included in
the slice shown. For the 3D plots, all of the parti-
cles with a density greater than log (ρmax/ρ0) ≈ 0.7
and located within the region [-2.5,2.5] in the three
Cartesian coordinates x, y, z, entered in the 3D plots.
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Fig. 4. Column density plots of the collision models U , for a thin slice of gas parallel to the x-y plane. The unit of
length is one parsec. The models are shown in panels as follows: (top left-hand) U5 (at time t/tff = 1.65 and peak
density log (ρmax/ρ0) = 5.0); (top right-hand) U13 (at time t/tff = 1.34 and peak density log (ρmax/ρ0) = 4.3); (bottom
left-hand) U9 (at time t/tff = 1.42 and peak density log (ρmax/ρ0) = 5.0); (bottom right-hand) U11 (at time t/tff = 2.4
and peak density log (ρmax/ρ0) = 5.0). The color figure can be viewed online.

In this case, the number of particles that are used to
make the 3D plots ranges from 181266 to 5616884.
The log of the density is rendered in the 3D plots
by assigning a color and a vertical bar located in
the bottom right-hand corner of each panel. It must
be noted that an arbitrary rotation is done on the
Cartesian coordinates to show some of the details of
the spatial structure.

In the top left-hand panel of Figure 8, we see the
remains of Model U5, view from the rear (along the
positive x-axis), in which one can see an elongated
bulb. In the region where the unequal sub-cloud col-
lision takes place, on the negative side of the x-axis,
one can see a thick disk of gas surrounding the elon-
gated bulb. This structure looks like a mushroom
pointing toward the negative x-axis.

In the top right-hand panel of Figure 8, we see
the remains of Model U13; recall that this collision
is head-on along the x-axis between two equal sized
sub-clouds. For this reason, one can see an elongated
solid tube of gas along the x-axis, surrounded by an
almost spherical gas region, which is formed by the

particles bounced from the collision, most of which
escape away along the y-axis in both directions, pos-
itive and negative.

In the bottom left-hand panel of Figure 8, we
see the remains of Model U9, in which two unequal
sized sub-clouds have an oblique collision. One can
see only the remains of each separate sub-clouds, af-
ter their close encounter, so one can notice that the
bottom sub-cloud is almost destroyed by the tidal
force caused by the top sub-cloud.

In the bottom right-hand panel of Figure 8, we
see the remains of Model U11, in which two equal-
sized sub-clouds have an oblique collision. For this
reason, the symmetry is evident between the top and
bottom gas tubes, which are formed as the tracks of
the original colliding sub-clouds. There is a complex
bridge of gas connecting these top and bottom tubes.
A disk of gas is surrounding the bridge.

3.4. Distribution Function of the Radial Component
of Velocity

In Figure 9 we show in the vertical axis the frac-
tion of particles with a velocity smaller than that
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Fig. 5. Column density plots of the collision models Ub, for a thin slice of gas parallel to the x-y plane. The unit of
length is one parsec. The models are shown in panels as follows: (top left-hand) U5b (at time t/tff = 2.15 and peak
density log (ρmax/ρ0) = 4.34); (top right-hand) U13b (at time t/tff = 1.73 and peak density log (ρmax/ρ0) = 8.63);
(bottom left-hand) U9b (at time t/tff = 2.08 and peak density log (ρmax/ρ0) = 5.20); (bottom right-hand) U11b (at
time t/tff = 2.42 and peak density log (ρmax/ρ0) = 5.14). The color figure can be viewed online.

shown in the horizontal axis. This distribution func-
tion of the velocity is taken at the same time and
density as the snapshots shown in Figures 4, 5, 6
and 7. We consider only the radial component of
the velocity, which is calculated with respect to the
center of the cloud.

By comparing with the panels of Figure 2 in § 2.5,
one can see that the fraction of the simulation parti-
cles with a negative component of the radial velocity
has increased from 0.5 at time t/tff = 0 for all the
models, to 0.9 for Models U , at time of the Figure 4;
to 0.8 for Models Ub and to 0.9 for Models Ur. This
means that a high fraction of the simulation parti-
cles have likely reached already (Models U5, U9 and
U13) or are flowing towards (Model U11) an accre-
tion center.

4. DYNAMIC CHARACTERIZATION OF THE
SIMULATIONS OUTCOME

Let us define a cloudlet as the densest region of a
simulation outcome, whose physical properties must
be determined. The center of the cloudlet and a ra-

dius are the main parameters to delimit the cloudlet
region and calculate its physical properties. These
centers do not coincide in general the center of mass
of each simulation, although both kind of centers are
close to each other, as can be seen in Figure 10, in
which we show the center of each cloudlet in Mod-
els U .

4.1. Radial Profile of the Density and Mass

In Figure 11 we show the radial profile of the
density (in the left-hand column) and the mass (in
the right-hand column), calculated with respect to
the center of each cloudlet as defined in Figure 10.

It must be clarified that the density ρbin(r) and
massM(r)bin, shown in the vertical axis of Figure 11,
are determined by taking into account only those
particles located within the radii r and δr, where δr
is given by 4/500 pc per bin, and r goes from r = 0
(the cloudlet center) to rmax = 4 pc (even further
than the edge of the cloudlet, because we want to
study the environment of the cloudlets as well).
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Fig. 6. Column density plots of the collision models Ur, with an azimuthal velocity included, see § 2.3. The models
are shown in panels (from top to bottom) as follows: (first line) Model U5r, (left) at time t/tff = 0.24, peak density
log (ρmax/ρ0) = 0.79 and (right) at time t/tff = 1.05, peak density log (ρmax/ρ0) = 5.2; (second top line) Model
U9r, (left) at time t/tff = 0.25, peak density log (ρmax/ρ0) = 0.8 and (right) at time t/tff = 1.05, peak density
log (ρmax/ρ0) = 4.8; (third line) Model U11r, (left) at time t/tff = 0.23, peak density log (ρmax/ρ0) = 0.78 and (right)
at time t/tff = 1.05, peak density log (ρmax/ρ0) = 4.9; (fourth line) Model U13r, (left) at time t/tff = 0.22, peak
density log (ρmax/ρ0) = 0.74 and (right) at time t/tff = 0.92, peak density log (ρmax/ρ0) = 4.7. The color figure can be
viewed online.
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Fig. 7. Column density plots of the collision models Urb, for a thin slice of gas parallel to the x-y plane. The unit of
length is one parsec. The models are shown in panels as follows: (top left-hand) U5rb (at time t/tff = 0.12 and peak
density log (ρmax/ρ0) = 5.0); (top right-hand) U13rb (at time t/tff = 0.12 and peak density log (ρmax/ρ0) = 4.62);
(bottom left-hand) U9rb (at time t/tff = 0.09 and peak density log (ρmax/ρ0) = 4.63); (bottom right-hand) U11rb (at
time t/tff = 0.15 and peak density log (ρmax/ρ0) = 4.62). The color figure can be viewed online.

Let us consider the top line of Figure 11 for Mod-
els U . For Model U11, there are two cloudlets. Con-
sequently, we label the cloudlet located to the left
of the vertical axis and above the horizontal axis, as
Cloudlet “a” (in the upper left-hand region). We la-
bel the cloudlet located to the right of the y-axis and
below the x-axis as Cloudlet “b”, as can be seen in
the bottom right-hand panel of Figure 10.

The curves of ρbin for Models U5, U9, U11a and
U11b are not steep, as opposed to the curve for
Model U13. This means that the cloudlets of these
models must have a mass increasing with radius, as
can be seen in the right-hand panel of the top line of
Figure 11.

Model U13 is the only one that shows a density
curve ρbin(r) decreasing significantly with radius r.
For this behavior, the massM(r)bin(r) is almost kept
constant for a wide range of radii. This would be
the standard behavior of a dense cloudlet formed by
gravitational attraction in a simulation.

In the second and third lines of Figure 11, from
top to bottom, we show the curves for Models Ub

and Ur, respectively. The behavior observed here is
quite similar to the one described earlier for Model
U . In the bottom line, we show the curves for Models
Urb, which include a high azimuthal velocity and
as we have seen in § 3.2, the simulation outcome
changed significantly. In this case, the density curves
are kept constant and the mass curves are slightly
increasing functions of the radius, above all in the
range of radius 0-3 pc.

Rathborne et al. (2015) found curves for the ra-
dial profile of the mass and density of the Brick, such
that the mass curve is always an increasing function
of their effective radius, while the density curve is
always a decreasing function, both curves extending
up to a effective radius of 2 pc. For instance, the
mass contained within its central one pc is approx-
imately 6 103M�, while the density curve follows a
power-law over radii r−1.2.

The increasing mass curves shown in the right-
hand column of Figure 11 are of the same order
of magnitude as those reported by Rathborne et al.
(2015), taking into account that the curves of Fig-
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Fig. 8. 3D-plots of the collision Models U for the same snapshots of Figure 4, rotated arbitrarily to reveal more details
of the configurations, in a window of spatial dimension from -2.5 to 2.5, in each of the axis-xyz, in which only those
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ure 11 are not cumulative (as we mentioned earlier).
Therefore, the exterior layers (outside of the densest
central region) of the cloud, contain a substantial
amount of mass.

4.2. Radial Profile of the Radial and Tangential
Components of the Velocity

In Figure 12, we show the radial profile of the
radial (left-hand column) and tangential (right-hand
column) components of the velocity. We apply here
the same radial partition described in § 4.1; that is,
from the cloudlet center up to 4 pc.

Let us clarify the meaning of the tangential com-
ponent of the velocity. In spherical coordinates
(r, θ, φ), a gas particle has a magnitude of the ve-
locity vector vp with the components vr,vθ and vφ.
Then, we split the components of the velocity into
radial vr and tangential vt = (vθ + vφ)/2, so that
we can follow both components separately. We do
this separation because the radial component can be
associated with a collapse trend while the tangential
component can be considered as a manifestation of
turbulence, see Guerrero and Vázquez (2020).

The left-hand column panels Figure 12 indicate
that many particles move to the cloudlet center,
mostly from the innermost region of the cloud. The
right-hand column panels Figure 12 indicate that

there is a non-zero, almost constant, tangential com-
ponent of the velocity. These observations indicate
that a lot of particles are falling towards the cloudlet
center in trajectories that are slightly curved (i.e.,
not from a purely radial direction, such as in a free-
fall).

Let us recall the behavior of a test particle and
let its velocity magnitude be given by vg. This vg
is determined by vg =

√
2GM(r)/r, where M(r) is

the mass contained up to radius r and G is Newton’s
gravitational constant. This vg can be considered as
the velocity when a test particle arrives at distance r
from the central mass M , having started from rest at
infinity, where its gravitational potential is zero. As
is well known, for a spatially bounded mass of radius
Rg, the velocity vg must increase with the radius r,
such that 0 < r < Rg. Once the radial coordinate r
is outside the bounded mass, that is, for r > Rg the
velocity vg simply decreases.

It must be noted that a significant fraction of
the total velocity magnitude vp comes from its ra-
dial component vr, though a minor fraction of vp
comes from the tangential components grouped in
vt. Then, we can think about a curve of vp if we
see a curve of vr, because we only need to transform
from vr to vp by changing the velocity sign, from
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negative to positive values, so that the behavior of
both curves, vr and vp, would be very similar.

Let us consider the panels of the top line of Fig-
ure 12, which are for Models U . In terms of the
“imagined curves” of vp(r), the cloudlets U11a and
U11b follow the behavior expected for the test par-
ticle velocity, indicating that the cloudlet radius R
(the analog of the bonded mass) is around 1 pc for
both cloudlets of Model U11. The curves for Models
U9 and U13 indicate that the bounded mass has a
very small radius R, which is slightly smaller than
0.5 pc. For Model U5, the resolution of the radial
partition is not fine enough to indicate a radius R of
the cloudlet found. This bounded mass can be iden-
tified with the size of the region from the center of
the cloud, which is a particle reservoir, out of which
the particles flow towards the cloud center. The core
of the collapsing cloud, which is formed by the parti-

cles with higher density of the simulation, is located
in these cloud centers.

The panels of the second line of Figure 12, from
top to bottom, show the curves for the Models Ub,
which are very similar to those already described for
Models U .

The panels of the third line of Figure 12, which
are for Models Ur, with a low azimuthal velocity,
indicate a behavior very similar to that observed for
Models U9 and U13, that is, a region of particle
reservoir is about 1 pc in radius from the center of
the cloud. These behaviors can be better seen in the
panels on the bottom line of Figure 12, which are for
Models Urb. Models Urb have a high azimuthal ve-
locity, whose effect is more clearly seen because the
in-fall velocity is quite higher than in the previous
Models U , Ub and Ur. Instead of a bounded mass,
the size of the region of strong in-fall gas is deter-
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mined by the size of the centrally located lump of
gas induced by the azimuthal velocity, see the left-
hand column of Figure 6, for an illustration.

4.3. Integral Properties of the Cloudlets

In Figure 13 we show the values of the dimension-
less ratios α and β, respectively, calculated only for
a cloud region that includes the cloudlets and their
surroundings. Two parameters are used: the first pa-
rameter is log (ρmin), which is a lower bound for den-
sity; and the second parameter rmax is a maximum
radius, which is taken with respect to the cloudlet’s
center. To calculate the ratios αf and βf for the
cloudlets, we consider only those particles that have
a density greater than log (ρmin) and are located at a
radius smaller than rmax. To make a comparison be-
tween all the models and to calculate the properties
of all the models shown in Figure 13, we have used
the following values log (ρmin) = 0.0 and rmax = 1.5
pc.

One can see in the top left-hand panel of Fig-
ure 13 that Models U5, U9 and U13 have a sim-
ilar value for the ratio αf , which is around 0.1.
For the cloudlets “a” and “b” of Model U11 (i.e.,

U11a and U11b) αf is around 0.05. The values of
the ratio βf ranges from 0.1 for Model U13, around
0.13 for Model U5, and a little higher than 0.2 for
Model U9. Cloudlets U11a and U11b have the high-
est values of βf ≈ 0.55. Cloudlets U11a and U11b
are the only ones over-virialized, because their sum
αf + βf > 1/2; while Models U5, U9 and U13 are
sub-virialized, because their sum αf+βf < 1/2. The
same behavior is observed for Models Ub, with a high
turbulence, as can be seen in the bottom left-hand
panel of Figure 13.

In both the top right-hand panel and the bot-
tom left-hand panel of Figure 13, we see that curves
for the Models Ur and Ub, respectively, show a be-
havior that is very similar to that already observed
for the curves of Models U . For all Models Ur and
Ub the ratio αf is around the value 0.09, with a
clear tendency to lower values. The ratio βf for
these models ranges from 0.1 to 0.5 Models Ur, Ur5,
Ur9 and Ur13 are sub-virialized, because their sum
αf + βf < 1/2. Meanwhile, the two cloudlets of
Model Ur11 are over-virialized, because their sum
αf + βf > 1/2. The same behavior is observed for
Models Ub.
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Fig. 11. (Left-hand panel) Radial profile of the density and (right-hand panel) radial profile of the mass. In the vertical
axis we show the mass and density averaged over those particles located within the radial spherical shell defined by r, so
that these functions are not cumulative. In the horizontal axis, r starts at 0, the center of each cloudlet, as illustrated in
Figure 10 for Models U and analogously calculated for all the other models. The panels on the top line are for Models U ;
the panels on the middle line are for Models Ur and the panels on the bottom line are for Models Urb. The snapshots
are taken at the same time and peak density as in Figure 4, Figure 5, Figure 6 and Figure 7, respectively. The color
figure can be viewed online.
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On the opposite side, all Models Urb, as shown in
the bottom right-hand panel of Figure 13, are over-
virialized, because the high initial azimuthal velocity
is manifested in the excess of kinetic energy, such
that the βf ratio for these models is in the range
7-11. In spite of this excess of kinetic energy, all
Models Urb have collapsed.

We show the mass associated with the cloudlets
of the models on the vertical axis of Figure 14. We
have considered the mass of only those particles that
entered into the calculation of the physical properties
shown in § 4. In the horizontal axis, we show Models
from 1 to 4, ordering the models in the following way:
U5, U9, U11 and U13, respectively.

The mass of the cloudlets for Models U5, U9
and U13 are shown in the top left-hand panel, so
that the mass ranges from log (Mf/M�) =3.6 to 3.8.
Two cloudlets of Model U11 have the largest masses,
around log (Mf/M�) = 4.6.

In contrast to what we have observed when com-
pared to other physical properties of Models U with
Ub, the behavior is different; in the case of the mass
of the cloudlets, without any trend.

The mass of the cloudlets for Model Ur is shown
in the top right-hand panel of Figure 14. We see
that Models Ur5, Ur9 and Ur11 all have similar
cloudlet masses, which are around log (Mf/M�) =
4.5. Meanwhile, the cloudlet mass for Model Ur13
is a little smaller than the mass of the other models,
≈ log (Mf/M�) = 4.4.

Given that Models Urb have the highest in-fall
radial velocity of the all the models, as can be seen
in 12, then their mass accretion rate must be the
highest too; for this, the mass enclosed is systemati-
cally higher than in the other models, although there
is not much difference in the mass values observed
in the panels of Figure 14 when compared to the big
difference in the infall radial velocity.

It must be emphasized that the mass scale shown
in Figure 14 is in agreement with the mass observed
for an open cluster of stars, which is around 104 M�,
while the mass scale of a globular cluster of stars is
around 105 M�, see Kumai et al. (1993).

The results of the collapse of a gas core (e.g.,
in the so called “standard isothermal simulation”)
are identified as protostars (Boss (1995), Boss et
al. (2000), Burkert and Alves (2009) and Arreaga
(2007)). In the same sense, the gas structures ob-
tained from the simulations of the present paper and
whose properties are shown in § 4 can be called a
proto-cluster of protostars. As is well-known for sim-
ulations of the collapse of a gas core, the mass of
the proto-stars depends on the mass of the parent

cloud, see for instance Arreaga (2016). The same is
expected to be true for proto-clusters.

Finally, it must be recalled that the results dis-
played in Figure 13 and Figure 14 are taken when
the collapse is still ongoing, so that the peak den-
sity is around log (ρmax/ρ0) ≈ 5. As we have seen in
§ 3.1, the final state of the collapse reaches a peak
density around log (ρmax/ρ0) ≈ 8.

5. DISCUSSION

Although the dynamics of an isolated turbulent
cloud is well-known (see for instance Goodwin et al.
2001a, Goodwin et al. 2004b and Goodwin 2006),
in § 5.1 we begin by describing the evolution of the
isolated turbulent cloud, to discuss its influence on
the collision models considered in § 5.2, § 5.3 and
§ 5.4. After this, we commence the discussion about
the most important features of the collision models
presented in § 3.

5.1. The Collapse of the Isolated Turbulent Cloud

We mentioned in § 1 and § 2.2 that the initial
conditions of the isolated cloud are chosen to favor
its gravitational collapse. The curve of the peak den-
sity for the isolated cloud develops a small peak at a
time smaller than t/tff = 0.1. This increase of den-
sity happens because of the multitude of gas lumps
formed by the collisions between gas particles that
occur simultaneously throughout the cloud. This
density peak does not appear for low levels of initial
kinetic energies, which is measured by the β ratio
defined in equation 5; for high values of the β ratio,
this early peak is quite noticeable.

In contrast, the time required by the isolated
cloud to reach the highest density values, for instance
log (ρmax/ρ0) ≈ 6, does not depend significantly on
the level of the initial energy, at least for a wide range
of the initial β ratio. This is due to the fact that
almost all of the kinetic energy available is equally
dissipated by the random collision of particles, as
described in the previous paragraph. The time re-
quired for the cloud to reach its highest peak density
is around t/tff = 2.5, which is of the same order of
time that can be seen in Figure 3 for the collapse of
the collision models.

In the time interval between 0.1 < t/tff < 2.0, a
relaxation of the small gas lumps occurs throughout
the cloud, so that the peak density curve decreases
quickly. From there, it increases very slowly, up to
times t/tff > 2.0, at which the final collapse takes
place very quickly.

From the point of view of the column density
plots, the occurrence of collisions between gas parti-
cles, as a consequence of the turbulent velocity field
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Fig. 13. The ratio of the thermal energy to the gravitational energy α versus the ratio of the kinetic energy to the
gravitational energy β, of the cloudlets defined in § 4.3, at the same time as the snapshots shown in Figure 4, Figure 5,
Figure 6 and Figure 7, respectively. (top left-hand) U with a low level of turbulence; (top right-hand) Ur with a low
azimuthal velocity; (bottom left-hand) Ub with a high level of turbulence and (bottom right-hand) Urb with a high
azimuthal velocity. The color figure can be viewed online.

implemented initially, is seen as a random formation
of many over-dense lumps of gas, which are homoge-
neously distributed across the entire cloud volume,
see the left-hand panel of Figure 15. Later, when
the initial kinetic energy of the cloud is dissipated,
the cloud reaches a physical state similar to a free-fall
collapse, which is seen as a clear tendency to a global
collapse towards its central region. However, at the
final evolution stage that could be followed in this
paper, the mass accretion with spherical symmetry
is lost, so that a central dense filamentary structure
forms that is highly anisotropic and with a high pos-
sibility of fragmenting, see the right-hand panel of
Figure 15. The behavior described in this section is
paradigmatic of turbulence.

5.2. Does the Turbulence make a Difference in the
Collision Simulations ?

The occurrence of the collision between the sub-
clouds induced by the translation velocity vL : vR
prevents the gas particles from forming small lumps
of gas throughout the cloud by means of early ran-
dom collisions; as explained in § 5.1.

There is over-dense gas in the contact region be-
tween the colliding sub-clouds. This over-density ac-
celerates the collapse of the remaining gas of the
cloud, so that the turbulence does not have time
enough to get relaxed by dissipation of the kinetic
energy. For this reason, the turbulence does not play
a fundamental role in the outcome of the simulations,
such as U and Ub. In fact, if one turns off the tur-
bulence and keeps only the collision process of the
sub-clouds in these models, then the results are ba-
sically the same.

5.3. Does the Level of Turbulence make a Difference
in the Collision Simulations ?

We recall that the level of turbulence in the simu-
lations can be modified by introducing an arbitrary
multiplicative constant in equation 1. As we men-
tioned in § 2.2.1, there is interest in considering mod-
els of turbulent clouds with extreme initial kinetic
energy in addition to those clouds with low-level tur-
bulence, which are more favored statistically. Con-
sequently, we have studied the effect of the level of
turbulence on the simulations (i.e., Models Ub), as
can be seen in Table 1.
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Fig. 15. Column density plots of the isolated turbulent cloud, for a thin slice of gas parallel to the x-y plane. The unit
of length is one parsec. The plots are shown in panels as follows: (left-hand) at time t/tff = 0.02 and peak density
log (ρmax/ρ0) = 0.53; (right-hand) at time t/tff = 2.5 and peak density log (ρmax/ρ0) = 8.0. The color figure can be
viewed online.

The average Mach velocity Mp of the gas par-
ticles for the low-level of turbulence Models U is
around Mp ≈ 2.9. For the radial component of the
velocity (calculated with respect to the origin of co-
ordinates of the simulation box), the average Mach
number is Mr ≈ −0.13. For the tangential com-
ponent of the velocity, the average Mach number is
Mt ≈ 0.01. In the meantime, the translational ve-

locities (around 15 km/s) given to the particles that
are to collide are of orderMc ≈ 6.6. Then, for Mod-
els U , Mc �Mp,r,t.

For the high-level of turbulence Models Ub, we
have an average Mp ≈ 25. Despite this significant
increase of the magnitude of the velocity, the aver-
age radial and tangential components do not change
appreciably with respect to those of Models U ; that
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is, Mr ≈ −0.12 and Mt ≈ 0.01. In contrast, for
Models Ub we have Mc �Mp.

In spite of the opposite features in the relation of
Mach numbers for Models U and Ub with respect to
the translational velocity, the outcome of the simu-
lations U and Ub do not show any significant differ-
ence with respect to the final configuration of Mod-
els U5, U9 and U13. The only differences that can
be observed are: (i) that the double bridge of gas
formed in Model U11 becomes only one bridge in
Model U11b; and (ii) that the density peak curves,
shown in Figure 3, for the Ub models are displaced
to the right-hand side at large free-fall times, so that
the collapse takes a little longer than for Models U .

5.4. How Useful is the Approximation of an
Azimuthal Velocity to Mimic Tidal Forces in

the Collision Simulations ?

There is an obvious problem with the approxima-
tion of a velocity instead of a tidal force, as described
in § 2.3, which is that the azimuthal velocity entered
only once in the simulations, as an initial condition
of the gas particles. Obviously, this is a severe limi-
tation of the model, similar to that of the turbulence,
which is not replenished continually during a simu-
lation. Therefore, the effect of the tidal interaction
must be activated during all the simulation time.

However, we observe in Figure 6 that the immedi-
ate effect of the azimuthal velocity on the simulated
cloud is a strong tendency for the gas to be accu-
mulated quickly at the cloud’s center. In this case,
if the azimuthal velocity terms given in equation 10
were implemented at every time step of the simu-
lation, then to model more appropriately the tidal
force over all the simulation time one would expect
this tendency to accelerate the central collapse of the
cloud.

It should be emphasized that the previous state-
ment is based on the results of a very naive model,
in which the only information about the massive
center exerting a gravitational force on the cloud is
by means of the circular velocity, which is given by√

2GM(R)/R, as described in § 2.3.
According to § 2.3, the approximation of the az-

imuthal velocity is valid as long as the ratio between
the cloud radius to the distance to the gravitational
center is quite small. A way to check the applicabil-
ity of this approximation is obviously to make the
calculation without the approximation. However,
this is not an immediate calculation. The main diffi-
culty is the difference in length and mass scales when
considering a small cloud (with very few parsecs of
radius) near a massive object (probably with a scale

of kpc in radius, separated from the cloud by several
hundreds of pc, or even a kpc, and whose mass can
quite greater than that of the cloud), both of which
must have evolved together in the same simulation
code.

For instance, Gnedin (2003) resorts to a re-
simulation technique, so that a low-resolution sim-
ulation of the massive object (e.g., a central dwarf
galaxy) is first carried out to obtain an approximate
gravitational potential. This is then used in a second
high-resolution simulation of the cloud, in which this
potential is taken into account as an external time-
varying field on the gas particles. However, applying
this technique to the problem presented in this work
would require a future paper.

5.5. A Brief Review of the Literature on this Subject

Many papers have simulated isolated clouds and
followed their collisions. However, simulations of
clouds under the influence of an external gravita-
tional potential are limited in number.

Let us now mention briefly some results of more
accurate calculation methods of the tidal effects on
clouds, which is a subject that has a long history.
For instance, Sigalotti and Klapp (1992) used a
time-varying gravitational potential to calculate the
equal-sized cloud-cloud tidal interaction of clouds
that are in an elliptic orbit, and reported configu-
ration transformations on the clouds in their course
to collapse.

More recently, Longmore et al. (2013) proposed
that the collapse of the Brick is a progenitor of a
star cluster, whose collapse was triggered as a con-
sequence of the tidal compression exerted by Sgr B2
during the most recent peri-center passage of the
Brick.

Kruijssen et al. (2015) determined a realistic or-
bit of a dense gas streams in the CMZ. In a subse-
quent paper, Kruijssen et al. (2019) calculated the
tidal interaction of the galactic center on the or-
bit followed by the dense gas streams of the CMZ.
They found that the tidal interaction acting upon
the clouds makes a compression on the vertical direc-
tion, which causes the clouds to become pancake-like
structures.

Later, Dale et al. (2019) simulated the evolution
of turbulent clouds in orbit at the CMZ. The authors
assumed a similar magnitude of the kinetic energy to
the gravitational energy and found that the clouds
collapse rapidly. This paper is a mature way of sim-
ulating tidal force in cloud dynamic evolutions by
introducing the tidal force potential.
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5.6. Applicability of these Simulations to Represent
the Evolved Clouds of the CMZ

In view of § 5.2 and § 5.3, the collision process
(and its parameters) is clearly the dominant physical
mechanism in shaping the appearance of the cloud
in the simulation outcome. It is possible that this
collision of sub-clouds, with the cloud’s self-gravity,
is the dominant process of the cloud evolution, even
over the tidal interaction with the massive center,
and above all, for the small scale of the circular ve-
locity that is induced, as compared to the magnitude
of the other velocities involved, which are the turbu-
lent and the translational velocities, see § 2.3.

For Models U5, U9, and U13, the geometry of
the resulting configuration can be well characterized
by defining a center and a radius of a cloudlet. For
Model U11, this spherical structure does not make
sense, as can be seen in Figures 4 and 8. The out-
come of Model U11 is a complex, structured molecu-
lar gas cloud that exhibits an interconnected network
of components. This is the only model that can be
compared or approximated to the cloud configura-
tion called the Brick.

In fact, for the Brick, a shell-like structure with
radius of 1.3 pc has been revealed from observations
in the integrated intensity map of SO. For instance,
see Figures 1 and 3 of Longmore et al. (2012); Fig-
ures 1 and 3 of Kauffmann et al. (2013); Figures 1
and 2 of Higuchi et al. (2014). Kruijssen et al. (2019)
presented three panels in their Figure 6, to compare
the results of ALMA observations of the Brick to
a synthetic observation obtained from a numerical
simulation. A complex gas structure can be seen in
these panels, in which the gas condenses in a persis-
tent diagonal direction with many twisted and bend-
ing filaments connected in a messy way. Model U11
of this paper clearly shows a similar diagonal direc-
tion of the dense gas.

It may seem that there is a huge problem with
Models Ur, given that all of the different structures
obtained as a result of the collision process in Model
U are destroyed because of the azimuthal velocity of
Models Ur. However, the configuration obtained in
Models Ur can be well recognized as the final out-
come of the formation process of a YMC, which is
observed to be a strong central condensation of gas,
with an enclosed mass of stars of about 104M� with
a size of one pc; see for instance Rathborne et al.
(2015). The Arches cloud is an example of this kind
of observed configuration; see Portegies al. (2010).

6. CONCLUDING REMARKS

We examined models with three kinds of veloci-
ties, namely turbulent, translational and azimuthal.

These velocities were introduced as initial conditions
of the simulation particles. Then, the particles were
left to evolve as a self-gravitating gas by using the
public hydrodynamic code Gadget2.

The role played by these velocities determines the
subsequent evolution of the cloud. It must be em-
phasized that all the models considered in this paper
include the same turbulent velocity spectrum (cali-
brated to fix the initial energies and physical prop-
erties which favors the global collapse of the cloud)
and the same translational velocity (which produces
the collision between two dissimilar sub-clouds).

In Models U with a low level of turbulence, we
observed the coalescence of the sub-clouds, enriched
by the asymmetry in radii and translational veloci-
ties of the sub-clouds. When the impact parameter
was introduced, the model produced a binary system
with interconnected arms and with a complex struc-
ture. In Models Ub, with a high level of turbulence,
we obtained a similar structure to that observed in
models U . However, in Model Ub, the arms and tails
are larger than those of Models U . The most signifi-
cant change between these simulations was observed
in Models U11 and U11b, such that the double bridge
of gas found in Model U11 becomes a single bridge
in Model U11b.

The free parameters of Models U and Ub (i.e., the
impact parameter, the radii and the translational ve-
locities of the sub-clouds) have been kept fixed. If
these parameters were allowed to vary, then certainly
more interesting configuration outcomes will be pro-
duced.

In addition to the turbulent and the translational
velocities, the last models, Ur and Urb, also in-
clude a small and a large azimuthal velocity, respec-
tively. The purpose of this azimuthal velocity was to
mimic, at least initially, the effect of the tidal force
on the cloud. The magnitude of the azimuthal ve-
locity induced in the cloud depends explicitly on the
distance R from the cloud and the mass M of the
gravitational center by means of the circular veloc-
ity
√

2GM(R)/R.

We observed that the presence of this azimuthal
velocity in the simulation always induces a centrally
located lump of gas in the cloud. If Vcir is small,
then the collision process of the sub-clouds domi-
nates the dynamics of the cloud, even over the tur-
bulence and therefore the cloud evolution changes lit-
tle compared to that observed without the azimuthal
velocity. However, if Vcir is large compared with the
other velocities involved, then the cloud evolution
changes significantly: reducing too much the col-
lapsing time, suppressing any sign of the collision
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of the sub-clouds, and producing a central conden-
sation, so that the different structures obtained as a
result of the collision process are destroyed. In fact,
we observed that the cloud collapses faster when the
azimuthal velocity is larger.

We recall that this approximation is only valid
when the ratio between the cloud radius to the dis-
tance to the gravitational center is quite small; in
other words, only for spatially compact clouds. For
this kind of cloud, the observation described above is
in good agreement with the known fact that clouds
in the CMZ are observed to be denser than clouds
in the ISM. Furthermore, because gravity is an ubiq-
uitous force, this azimuthal velocity approximation
allows us to explain why centrally condensed clouds
are more abundant than uniform clouds in the ISM,
see Ward-Thompson (1994) and André et al. (1998).

In addition to information on shapes, we have
also provided information about the physical prop-
erties of the final collapse products and their sur-
rounding region, which include the density, mass and
velocity profile. As mentioned in § 5.6, we have found
proto-cluster structures that are still in their forma-
tion process. Furthermore, by the mass scale and the
radius of the resulting centrally condensed configu-
rations, the outcomes of Models Ur and Urb can be
identified with the final process of the formation of
a young massive proto-cluster. Basically, the mod-
els show a strong flow of particles towards the cloud
center, at different radial velocities ( a few Mach )
and with some bending trajectories.

The author gratefully acknowledges the com-
puter resources, technical expertise, and support
provided by the Laboratorio Nacional de Su-
percómputo del Sureste de México through Grant
number 202201010N.
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Guillermo Arreaga-Garćıa: Departamento de Investigación en F́ısica, Universidad de Sonora. Apdo. Postal
14740, C.P. 83000, Hermosillo, Sonora, Mexico (guillermo.arreaga@unison.mx).

Longmore, S. N., Kruijssen, J. M. D., Bally, J., et al.
2013, MNRAS, 433, 15, https://doi.org/10.1093/
mnras/slt048
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