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ABSTRACT

The present paper surveys the more recent techniques related to the swing-by
maneuver, where a spacecraft changes its energy and angular momentum by passing
close to celestial bodies. It is focused on the literature related to extensions of this
maneuver, with emphasis in the powered version, where an impulse is applied to the
spacecraft near the closest approach. Several mathematical models are considered,
including the patched-conics approximation for analytical studies, and the restricted
three-body problem for the numerical simulations. The main goal is to show the
models and the main conclusions available in the literature for those maneuvers.
Some key results are shown to discuss important aspects of this maneuver, including
the analysis of the energy variation of the spacecraft, the behavior of the trajectories
and other applications.

RESUMEN

Presentamos una reseña de los resultados recientes sobre la maniobra de
columpio, en la cual una nave espacial cambia su enerǵıa y momento angular al
pasar cerca de un cuerpo celeste. Nos concentramos en la literatura sobre las ex-
tensiones de esta maniobra, con énfasis en la versión con potencia aplicada, en
la cual se le impone a la nave un impulso durante el máximo acercamiento. Se
consideran varios modelos matemáticos, incluyendo la aproximación de la cónica
parcial para estudios anaĺıticos y el problema restringido de los tres cuerpos para
las simulaciones numéricas. Nuestro objetivo principal es mostrar los modelos y las
conclusiones disponibles en la literatura para estas maniobras. Con los principales
resultados discutimos aspectos interesantes de la maniobra, incluyendo el análisis
de la variación de la enerǵıa de la nave y el comportamiento de las trayectorias.
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1. INTRODUCTION

Missions to distant planets, asteroids and comets
have been planned and performed frequently by
space agencies around the world. A significant and
important issue for the development of these mis-
sions is the high fuel consumption required by those
missions. It is well known that the cost to send a
spacecraft to space is high and one of the most ex-
pensive parts of the mission is the large amount of
fuel necessary to send materials to space. There-
fore, to minimize this cost is a fundamental prob-
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lem in astrodynamics. The well-known bi-impulsive
Hohmann transfer (Hohmann 1925) is a major and
first step into this problem, studying the minimum
fuel consumption to transfer a spacecraft between
two co-planar circular orbits. This maneuver shows
that a transfer ellipse tangential to both the initial
and final orbits is the solution that gives the min-
imum increments of velocities. After that, Hoelker
& Silber (1959) and Shternfeld (1959) showed that
the tri-impulsive bi-elliptic transfer is more econom-
ical to transfer a spacecraft between two coplanar
circular orbits, if the radius of the external orbit di-
vided by the radius of the interior orbit is larger than
11.93875. Those are the first solutions to the prob-
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lem of minimizing fuel consumption in space maneu-
vers, which will later include gravity assisted maneu-
vers.

After that, several, alternatives of maneuvers
with minimum fuel consumption appeared in the lit-
erature, showing extensions of those two important
bi-impulsive transfers. Some examples are found in
Edelbaum (1959), Roth (1965), Jezewski & Rozen-
daal (1968), Jin & Melton (1991) and Prussing
(1992). To reduce even more the fuel expenditure,
it is also possible to consider low thrusts, where a
small force is applied to the spacecraft for a rela-
tively long time. The advantage of this approach
is the high specific impulses of those thrusts, which
can generate large increments of velocity with a
small mass of fuel consumed. Good examples are
shown in Lawden (1953), Lawden (1954), Sukhanov
& Prado (2001), Casalino & Colasurdo (2007), Oz-
imek & Howell (2010), Zhang et al. (2015), Carvalho
et al. (2016) and Fernandes & Carvalho (2018). A
particularly interesting example is shown in Qi &
Ruiter (2020). A method to obtain preliminary con-
tinuous thrust powered swing-by (PSB) orbits was
constructed considering a series of discrete optimal
single impulsive PSBs. Using these initial guesses,
optimal continuous thrust PSB orbits were designed
by using optimal control problem techniques. An-
other good example is available in Konstantinov &
Thein (2017), which simplifies the problem using a
method which allows us to avoid the difficulties of
solving the optimization problem of the interplane-
tary trajectory of a spacecraft propelled by electric
power using a sequence of swing-bys.

Considering those advances in the swing-by tech-
niques, the present paper has the goal of making a
complete survey, covering all the options available
for mission designers. Some of the main models
are briefly explained and the pertinent literature is
indicated for more details. Particular importance
is given to the powered version of this maneuver,
where an impulse is combined with the close ap-
proach. The different mathematical models used to
solve this problem are also showed and key results
are discussed, in particular in terms of the energy
variations of the spacecraft. Several important ap-
plications are described, also indicating the appro-
priate literature.

The following sections describe the history and
mathematics behind the pure gravity swing-by ma-
neuver, when only the gravity of the body is consid-
ered in maneuver, and the powered swing-by (PSB),
when propulsion is applied to the probe to improve
the maneuver. In § 2, the history and applications of

the pure gravity maneuver in space missions are pre-
sented, as well as an introduction on the extension
of the pure gravity maneuver to the powered swing-
by maneuver. § 3 shows the mathematical model
of the pure maneuver, including the “patched con-
ics approach” for an analytical study and the “cir-
cular and elliptical restricted three-body problem”
for numerical simulations, in addition to the analyt-
ical equations that show the effect of the maneuver.
Throughout the work the historical context is cited.
§ 4 presents the different types of powered exten-
sions available in the literature. § 5 shows a detailed
description of the powered swing-by maneuver, fo-
cusing on the mathematical and geometric presen-
tation of the problem, in addition to the historical
description, and presenting a summary of the ana-
lyzes available in the literature. Finally, § 6 talks
about captures of the spacecraft.

2. THE PURE GRAVITY SWING-BY
MANEUVER

To reduce even more the fuel consumption in orbital
maneuvers, a new concept appeared in the litera-
ture of space missions, the swing-by maneuver. Negri
& Prado (2020) show a historical description of the
early years of this maneuver, considering the pure
gravity maneuver. In this sense, the present paper
is a continuation of Negri & Prado (2020), show-
ing some of the later advances and generalizations of
this technique, covering all the options available for
mission designers. Particular importance is given,
in this work, to the powered version of this maneu-
ver, where an impulse is combined with the close
approach. Some of the main models are briefly ex-
plained and the pertinent literature is indicated for
more details.

In terms of practical applications, Minovitch,
in 1961, wrote an important document (Minovitch
1961), where he showed the basic physics involved in
this close approach maneuver when applied to space-
craft trajectories, and the possibility of using this
technique to send a spacecraft out of the Solar Sys-
tem with a much smaller fuel consumption, when
compared to maneuvers made exclusively based in
propulsion systems. A detailed description of the re-
search developed by Minovitch is shown in Dowling
et al. (1990) and Dowling et al. (1991). Looking at
real missions that already used this technique, it is
possible to find several examples. Flandro (1966)
showed a detailed plan for the Voyager mission,
which was composed by two spacecraft that made
a series of close approaches to several planets of the
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Solar System to gain energy for the trip. The calcu-
lations were made based on the equations developed
by Minovitch (1961), and it was possible to verify
the efficiency of this maneuver in a grand tour of the
Solar System. It was one of the most important in-
terplanetary missions that would not have been pos-
sible without the use of close approaches to the plan-
ets visited. Several other missions used passages by
the planets of the Solar System to increase their en-
ergy, so helping the spacecraft to complete the goals
of the mission. Some examples are shown in Far-
quhar & Dunham (1981) and Farquhar et al. (1985).
Another good example is the Galileo mission, which
used pure gravity swing-by maneuvers to gain en-
ergy, as shown in D’Amario et al. (1981), D’Amario
et al. (1982) and Byrnes & D’Amario (1982). This
same concept was also used in the Messenger and
Bepi-Colombo missions, which were two missions di-
rected to the planet Mercury (McNutt et al. 2004,
2006; Grard 2006), but in this case the goal was to
reduce the two-body energy Sun-spacecraft. Those
possibilities will be explained later in the present pa-
per.

One of the good descriptions of this maneuver
available in the literature is shown in Broucke (1988).
It is a paper presenting the basic celestial mechanics
of the pure gravity assisted maneuver. A few books
also mention this problem, but usually very quickly,
like Ruppe (1967), Opik (1976) and Kaplan (1976).

Looking for extensions of this pure gravity based
maneuver, the concept of “powered swing-by maneu-
ver” appeared in the literature, which is a combi-
nation of a pure gravity swing-by, which depends
only on the gravity field of the celestial body ap-
proached and the geometry of the passage, with the
application of an impulse in the spacecraft at some
point inside the sphere of influence of the body in-
volved in the maneuver. The use of this maneuver is
an important option when the energy obtained from
the pure gravity swing-by maneuver is not enough
to complete a given mission. It gives new options
to the mission design and can enable missions that
could not be achieved without this technique. The
best choice for the geometry can give higher energy
variations to the spacecraft and, consequently, more
velocity after it leaves the system. If the objective
is to remove energy to insert the spacecraft in or-
bit around a celestial body, this type of maneuver
is also efficient. There are studies that analyze the
best geometry for this maneuver and the effects of
the parameters related to it, which are described in
some detail later. When considering elliptical sys-
tems (which increases the accuracy of the results, in

particular when the planets Mars and Mercury are
involved, because they have larger eccentricities) it
is necessary to use two more parameters to describe
the maneuver, both of them related to the geome-
try of the primaries: the eccentricity of their orbits
and the true anomaly of the secondary body in its
orbit around the primary at the moment of closest
approach.

To show that the powered swing-by maneuver
can benefit some missions, it is necessary to make a
detailed comparison between maneuvers performed
with the impulse applied near the close approach of
the spacecraft around the celestial body and maneu-
vers performed with the impulse applied after the
spacecraft leaves the sphere of influence of the body.
This point is shown in Striepe & Braun (1991) in
a mission from Earth to Mars making a powered
swing-by in Venus. Following that, Prado (1996)
made a detailed and general analysis of this maneu-
ver for circular systems, to verify its efficiency. The
author considered the situation where the impulse
is applied to the spacecraft at the moment when it
passes through the periapsis of its orbit, as well as
the situation where the impulse is applied at a point
outside the sphere of influence of the secondary body.
The results showed that, in many circumstances, to
apply the impulse at the periapsis has advantages
in terms of getting extra gains of energy from the
impulsive maneuver. This study was followed by
Casalino et al. (1999a), which extended this maneu-
ver for the situation where the application of the im-
pulse is not made at the periapsis of the orbit of the
secondary body. The next step was to consider this
problem when the impulse is applied in the periap-
sis of the close approach trajectory in systems with
elliptical orbits for the primaries, thus studying the
effects of the eccentricity of the primaries on the ma-
neuver. It was done in Prado (1997), Ferreira et al.
(2017) and Ferreira et al. (2018a). It is important to
study those systems, because elliptical systems are
numerous in space, and important celestial bodies,
like the planets Mars and Mercury, are among them,
and they have been used for swing-by maneuvers.
The results showed that the eccentricity gives strong
effects in the maneuver.

Taking into account those considerations, this re-
view has the goal of presenting a more detailed dis-
cussion of some of the main extensions of the swing-
by maneuver, including the key conclusions available
in the literature. Before going in detail into this ma-
neuver, an introduction to the work related to the
unpowered version of the maneuver is also made, to
explain the most important aspects of this technique
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and some lines of research related to them. The
reader interested in more details about this history
should look at Negri & Prado (2020).

3. MATHEMATICAL MODELS FOR THE PURE
GRAVITY SWING-BY MANEUVERS

Analytical and numerical studies are available in the
literature regarding the pure gravity swing-by ma-
neuver, and both approaches will be summarized
next. Analytical studies are based on the “patched-
conics” model and numerical studies derive from the
use of the restricted three-body problem (RTBP) for
the circular and elliptic case (Szebehely 1967).

3.1. “Patched-Conics” Approach

The “patched-conics” approach (Bate et al. 1971)
is a method for simplifying the calculation of tra-
jectories that employs the concept of the sphere of
influence of a celestial body. The approximation is
made by dividing the space into several parts and
then assigning a sphere of influence to each body of
the system.

When the spacecraft is within the sphere of in-
fluence of a body, only the effect of the gravitational
force of this body is considered, regardless of the size
of the bodies. The effects of the forces coming from
the other bodies of the system are neglected and the
spacecraft follows a Keplerian orbit. For a swing-
by maneuver the sequence is the following (Broucke
1988):

− The spacecraft (M3) initially comes from an or-
bit around the main body of the system (M1).
At this phase of the motion only the gravita-
tional force of M1 acts on M3, and the effect of
the gravity of the secondary body (M2) is ne-
glected;

− When M3 reaches a certain distance from M2,
its gravity starts to dominate the motion of
the spacecraft, and the effect of M1 can be ne-
glected, so the gravity of the secondary body
(M2) is assumed to be the only force acting in
the motion of M3;

− Then, the spacecraft escapes from M2 and goes
again toward the main body. The gravity of M1

is then assumed to be the only force acting in
the spacecraft again.

This method reduces the more complex three-
body problem to a sequence of two-body problems,
for which the solutions are the usual conic sections
(Keplerian orbits).

3.2. Circular and Elliptical Restricted Three Body
Problem

The “three-body problem” is the simplest particular
case, and perhaps the most popular one, of the N-
body problem. It is a non-integrable problem so, in
general, there is no analytical solution, but for some
mass values and initial conditions there are periodic
or quasi-periodic solutions. This is the case of the
“restricted three-body problem”, that can be circu-
lar or elliptical. In this version, there is a larger
body, called M1, which is the primary body of the
system. It is followed by the secondary body M2,
the second largest in mass, and the problem stud-
ies the motion of a massless body M3, which can be
a spacecraft that orbits the system formed by the
other two bodies.

The circular restricted three-body problem
(CRTBP) (Szebehely 1967; Murray & Dermott 2000;
Valtonen & Karttunen 2006; Pourtakdoust & Sayan-
jali 2014; Zotos 2015; Qian et al. 2016) assumes that
M1 and M2 are in circular orbits around the com-
mon center of mass of the system. In this review, the
motion is always limited to the orbital plane of the
primaries. The mass of M1 is given by 1 − µ, with
µ = m2

(m1+m2)
the mass parameter of the system. m1

and m2 are the masses of the bodies M1 and M2,
respectively. These choices are compatible with the
canonical system of units, which is a system where
the total mass of the system is one; the unit of dis-
tances is the semi-major axis (a) of the orbit of the
primaries; the gravitational constant is one; and the
unit of time is defined such that the orbital period
of the primaries is 2π (Szebehely 1967).

For the elliptical restricted three-body problem
(ERTBP), the bodies M1 and M2 are moving in el-
liptical orbits around their common center of mass
(Szebehely 1967; Murray & Dermott 2000; Val-
tonen & Karttunen 2006; Szebehely & Giacaglia
1964). From basic celestial mechanics, it is known
that the distance between M1 and M2 is given by

d = a(1−e2)
(1+e cos ν) , where a is the semi-major axis, e is

the eccentricity of the orbit of the primaries and ν is
the true anomaly of the secondary body. The equa-
tions of motion (equation 1) are integrated in time
and the mathematical model can be built using a
reference system with the origin fixed in the center
of mass of the bodies

ẍ = − (1− µ)(x− x1)

r31
− µ(x− x2)

r32
,

ÿ = − (1− µ)(y − y1)

r31
− µ(y − y2)

r32
. (1)
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Fig. 1. Geometry of the restricted three-body problem.

In those equations, r1 =
√

(x− x1)2 + (y − y1)2

represents the distance between M1 and the space-
craft; r2 =

√
(x− x2)2 + (y − y2)2 the distance be-

tween M2 and the spacecraft; (x, y) the position of
the spacecraft; (x1, y1) and (x2, y2) the positions of
M1 and M2, respectively, as shown in Figure 1.

In contrast to the patched-conics model, simula-
tions in the CRTBP and ERTBP consider the influ-
ence of the two massive bodies on the spacecraft at
all times. There are no analytical solutions, but the
numerical approach generates more accurate results
than the “patched conics” approach.

3.3. Analytical Equations to Measure the Effects of
the Pure Gravity Swing-by Maneuver

After reviewing those basic concepts, it is time to
look in more detail at the pure gravity swing-by ma-
neuver. Broucke (1988) presented a theoretical ex-
position of the celestial mechanics and the funda-
mental principles of the gravity-assisted maneuver,
or pure gravity swing-by. It started from references
that investigated this maneuver before, like Deer-
wester (1966); Hiller (1969); Longman (1970); Hol-
lenbeck (1975); Diehl & Myers (1987) and Diehl et
al. (1987). The most common goal of this maneu-
ver is to give energy to the spacecraft to follow its
journey, but there are also some researches show-
ing maneuvers ending in captures by the secondary
body of the system after a close approach (Helton
1972; Cline 1979; Nock & Upholf 1979).

Broucke (1988) derived analytically, from the
patched-conics approach, the geometric results of the
maneuver, which was basically obtained from the ro-
tation of the velocity vector of the spacecraft at the
time of close approach. He also calculated the varia-
tions in energy and angular momentum of the space-

Fig. 2. Geometry of the pure gravity swing-by (adapted
from Broucke (1988)).

craft with respect to the primary body of the system.
Besides that, he made numerical integrations based
on the restricted three-body problem, to get more
accurate trajectories.

The maneuver is realized around the less massive
primary of the system and the variations are mea-
sured with respect to the main body of the system.
The system has circular orbits, angular velocity ω
and planar motion.

Figure 2 is an adaptation based on Broucke
(1988). The spacecraft comes from a Keplerian two-
body orbit with main body (M1), passes close to the
secondary body (M2), and is affected by the gravity
of this body, which causes a rotation of the velocity
vector of the spacecraft. Then, it moves away from
the secondary body to a new Keplerian two-body
orbit around M1. The angle of curvature of the ve-
locity vector is 2δ for the whole maneuver; ~Vinf− is
the approach velocity of the spacecraft relative to
M2; ~Vinf+ is the escape velocity relative to M2; ψ
is the angle of approach; ~rp is the radius of the pe-

riapsis and ~V2 the velocity of M2 around the cen-
ter of mass of the system, which makes an angle of
90 deg with the x-axis. From this geometry Broucke
derived equations 2-4 for the variations of velocity,
energy and angular momentum of the pure gravity
maneuver

∆V = 2Vinf− sin δ, (2)

∆E = −2V2Vinf− sin δ sinψ, (3)

∆C = −2ωV2Vinf− sin δ sinψ. (4)
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Examining the formula for ∆E, an analysis of
the configuration of the gains and losses of energy
due to the maneuver can be made (Broucke 1988).
If 0 < ψ < 180 deg, the periapsis of the orbit of
the spacecraft is in front of M2 and there are losses
of energy due to gravity. Missions like Mariner 10,
Messenger and BepiColombo (McNutt et al. 2004,
2006; Grard 2006; NASA 1999-2012, 2021; Dunne
& Burgess 1978; Jehn et al. 2008) used the pure
gravity swing-by to remove energy from the space-
craft to insert it into orbit. On the opposite side,
if 180 < ψ < 360 deg, the periapsis of the orbit of
the spacecraft is behind M2 and the spacecraft gains
energy due to the gravity of the secondary body.
Broucke (1988) also included a classification of the
types of orbits resulting from the gravity assisted ma-
neuver, obtained from numerical explorations of the
problem using the restricted three-body problem.

An analytical equation to show the variation of
energy of the spacecraft in a pure gravity elliptic
swing-by maneuver was derived in Ferreira et al.
(2018b). It is shown in equation 5 below. It ex-
tends the literature by expanding analytical studies
based in the patched-conics approach to elliptical or-
bits. In this equation, “a” is the semi-major axis of
the orbit of the primaries, “e” is the eccentricity of
this orbit, µ the mass parameter of the system, Vinf
the velocity of approach of the spacecraft when get-
ting closer to M2, ν the true anomaly of M2 when
the close approach occurs, ψ is the angle of approach
and β = cos−1(−Vr

V2
), with Vr the radial velocity of

M2, and V2 the magnitude of the velocity of M2 with
respect to M1

∆E=2Vinf

√√√√(1− µ)

(
2

a(1−e2)
1+e cos ν

− 1

a

)
sin δ cos(ψ+β).

(5)
Equation 5 shows that the energy variation is de-

pendent on the angle between the velocity of M2

around the center of mass and the axis connect-
ing the primaries (180◦ − β). The angular momen-
tum variation is also obtained (equation 6), and it is
shown that it is directly dependent on the distance

between the bodies d = a(1−e2)
(1+e cos ν) , but not on the

angle β

∆C = −2
a(1− e2)

1 + e cos ν
Vinf sin δ sinψ. (6)

This same reference (Ferreira et al. 2018b) identi-
fied the configurations of maximum gains and losses
of energy due to the gravity effect of the secondary
body. It concluded that maneuvers with energy loss

occur when 90 < ψ + β < 270 deg, with maximum
loss at ψ + β = 180 deg. The region of gains of en-
ergy is −90 < ψ + β < 90 deg, with maximum in
ψ + β = 0 deg or ψ + β = 360 deg. The effect of
the swing-by in the energy variation is zero when
ψ + β = 90 deg or ψ + β = 270 deg. Numerical
simulations validated the equations presented in the
paper. It was also shown that the variation of veloc-
ity in the elliptic maneuver does not depend on the
orbit of the secondary body. It remains the same as
that obtained from the circular maneuver.

Regarding differences in the results obtained
from the two-and restricted three-body dynamics in
the pure gravity maneuver, there are also some com-
parisons available in the literature measuring the ef-
fects of the analytical approximations on the results
for a swing-by maneuver. Good examples are Cam-
pagnola et al. (2012); Negri et al. (2017) and Negri
et al. (2019), which show the errors made by the
patched-conics approach in different aspects, includ-
ing those errors as a function of the mass parameter
of the system.

Several other applications of this type of maneu-
ver exist, like the use of the inner planets of the Solar
System to send a spacecraft to the Sun, considered in
Sukhanov (1999); or a mission leaving and returning
to the Earth with an intermediate swing-by with the
Moon (Gagg Filho & Fernandes 2018). A graphical
method to solve this problem is developed in Strange
& Longuski (2002). Some references also studied the
problem of multiple swing-by maneuvers, like (Dun-
ham & Davis 1985; Marsh & Howell 1988; Ross &
Scheeres 2007; Jerg et al. 2009; Vasile & Campag-
nola 2009; Kloster et al. 2011). Swing-by with a
cloud of particles was also studied, like in Gomes &
Prado (2008, 2010); Gomes et al. (2013); Formiga et
al. (2018). Other studies showed the flyby transfers
between Sun Earth Moon libration point orbits with
different energies in the Sun Earth Moon restricted
four-body problem, like in Qi et al. (2017). There are
also some researches considering the particular case
of orbits for a spacecraft travelling around the Sun
and perturbed by Jupiter, even when the spacecraft
does not enter the sphere of influence of the planet
(Carusi et al. 1982; Greenberg et al. 1988; Carusi et
al. 1990, 1995).

Swing-bys are also considered in the “endgame
problem”, whose goal is to minimize the energy re-
quired to insert a spacecraft around a celestial body
at the end of a multi-body mission (Woolley &
Scheeres 2009; Campagnola & Russell 2010a,b). A
dynamical system approach, using the RTBP as the
mathematical model, is also used to study the pure
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gravity swing-by maneuvers in Koon et al. (2000,
2001, 2002, 2008); Howell et al. (2001); Anderson
(2005); Belbruno et al. (2008); Anderson & Lo (2010,
2011) and Qi & Ruiter (2018a).

4. EXTENSIONS OF THE PURE GRAVITY
MANEUVER

Another version of the family of the close approach
maneuver available in the literature is the one where
the atmosphere of a planet is used to change the tra-
jectory of the spacecraft, which is a type of tran-
sition to the powered maneuver, since the atmo-
sphere acts like a continuous propulsion applied to
the spacecraft during the atmospheric flight. It is
the so called “aero-gravity assisted maneuver”. Sev-
eral papers exist covering this topic. Some of them
are more generic, trying to understand the whole
effect of the atmosphere and the shape of the space-
craft, like McRonald & Randolph (1992); Lohar et
al. (1994); Elices (1995); Lohar (1996); Bonfiglio et
al. (2000); Armellin et al. (2006, 2007) and Prado &
Broucke (1995). There are also studies concentrated
on the atmosphere of the Earth, which has more ac-
curate models available for its density distribution,
like Gomes et al. (2013, 2016) and Piñeros & Prado
(2017). Another main line of research includes at-
mospheres of planets and focuses on interplanetary
trajectories using the atmosphere of an intermedi-
ate planet, like in Gillespie & Ross (1967); Lewis
& McRonald (1992); Randolph & McRonald (1992);
Sims et al. (1995, 2000); Lohar et al. (1997); Lavagna
et al. (2005); Murcia et al. (2018a,b).

The literature also considers space maneuvers
that include a combination of low thrust and a close
approach by a celestial body, in two separate steps.
Examples are shown in Casalino et al. (1999b); Mc-
Conaghy et al. (2003) and Okutsu et al. (2016).

Applications of the gravity-assisted maneuvers
also exist linked to the gravitational capture maneu-
ver (Belbruno 1987, 1990, 1994; Yamakawa 1992; Ya-
makawa et al. 1992, 1993; Belbruno & Miller 1993;
Machuy et al. 2007), where one or more swing-bys
are performed to help the capture of a spacecraft by
a celestial body.

5. THE POWERED SWING-BY MANEUVER

As already explained, the powered swing-by maneu-
ver is a technique where the spacecraft approaches
a celestial body and uses the gravity of this body
to modify its trajectory, but the maneuver is com-
bined with an impulse applied to the spacecraft by
a propulsive system. It is a more complex maneuver

when compared to the pure gravity “swing-by” ma-
neuver, where the only forces acting in the motion
of the spacecraft are the gravity fields of the celes-
tial bodies involved. The impulse can be applied
in different locations of the trajectory of the space-
craft and in different directions, but always inside the
sphere of influence of the celestial body. In this way,
the main objective of these researches is to study the
effects of different geometries and characteristics of
the impulse in the variations of the energy of the
spacecraft, in particular in finding the locations of
the points and directions of the impulses that gives
maximum and minimum variations of energy.

This particular maneuver is also an extension of
the pure gravity maneuver, and the main goal of the
present paper is to review and to describe it in more
detail. The study made by Broucke (1988) was later
expanded by adding an impulse to the spacecraft
during the maneuver, at the time of the close ap-
proach (Prado 1996). This impulse is free to vary its
magnitude and direction. A set of analytical equa-
tions is derived which calculate the increment in ve-
locity, energy and angular momentum of the space-
craft after the combined maneuver, similarly to the
ones available in Broucke (1988), but with the pres-
ence of the impulse (Ferreira et al. 2018a). The most
important ones are shown in equations (7-10), which
give the variations of velocity and energy.

The velocity variation is given by ∆~V = ~Vo − ~Vi,
being ~Vi = ~Vinf− + ~V2 the approach velocity

and ~Vo = ~Vinf+ + ~V2 the departure velocity of
the spacecraft, both with respect to M1. Soon,
∆V =

√
(Vinf+x + Vinf−x)2 + (Vinf+y + Vinf−y)2,

obtained from the components of ~Vinf− and ~Vinf+,
which are given by equations 7.

Vinf−x = −Vinf− sin(ψ − δ),
Vinf−y = Vinf− cos(ψ − δ),
Vinf+x = −Vinf+ sin(ψ − δ + Θ),

Vinf+y = Vinf+ cos(ψ − δ + Θ),

(7)

where Θ = δ−f0+flim+90 deg is the total deflection
angle of the impulsive maneuver derived in Ferreira
et al. (2018a); f0 is the angle between the radius of
the periapsis (~rp) of the initial maneuver and the new
radius of the periapsis (~rp+) obtained after the ap-
plication of the impulse; flim is the true anomaly of
the asymptotes of the second orbit of the spacecraft,
after the impulse is applied; and the other variables
have already been defined in Figure 1, § 3.

∆V =
√
V 2
inf− + V 2

inf+ − 2Vinf−Vinf+ cos Θ. (8)
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For the energy variation we have ∆E = 1
2 (~V 2

o − ~V 2
i ),

with ~Vo and ~Vi being already defined, and the com-
ponents of ~V2 given by ~V2 = (−V2 cosβ, V2 sinβ),

where 180 deg−β is the angle between ~V2 and the
M1 −M2 line. The complete mathematical and ge-
ometric explanation of these equations is given in
Ferreira et al. (2018a).

∆E =
1

2

(
V 2
inf+ − V 2

inf− − 2V2Vinf− sin(β − δ + ψ)+

2V2Vinf+ sin(β − δ + Θ + ψ)
)
. (9)

This paper also shows the efficiency of the pow-
ered swing-by maneuver, which is defined as the
amount of extra energy that is obtained by the space-
craft when the impulse is applied at the moment of
closest approach, if compared to a maneuver where
an impulse, with the same magnitude, is applied af-
ter the spacecraft leaves the sphere of influence of
M2. The analysis was performed according to the
gravitational parameter of the secondary body (µ),
periapsis radius (rp), orientation of the swing-by ma-
neuver (ψ) and approach velocity (Vinf−). The rea-
son for the positive efficiency of this maneuver is that
when the impulse is applied at the periapsis and us-
ing different initial conditions, with variations in the
magnitude and direction of the impulse, the energy
variations due to the gravitational part of the ma-
neuver can be changed, which means that optimal
situations can be found. It happens because the or-
bit changes instantly when the impulse is applied,
so its geometry of approach is different, including a
new periapsis distance and a new angle of approach,
which not only change the results of the impulsive
part of the maneuver, but also the effects of the grav-
itational contribution of the maneuver.

Results were obtained based in the two-body and
in the restricted three-body problem models, using
the same variables and initial conditions as Broucke
(1988), namely, the angle of approach (ψ) equals to
90 degrees (condition of maximum loss of energy)
and 270 degrees (condition of maximum gain of en-
ergy). The results showed that the maximum trans-
fer of velocity and energy to the spacecraft occurs
around α = −20 degrees, where α is the angle be-
tween the impulse and the velocity of the spacecraft,
while the minimum occurs for extreme values of α
(around ±180) degrees. This occurs for the cases
of gains of energy, considering ψ = 270 degrees.
For losses of energy (ψ = 90) degrees the maxi-
mum transfer is around α = 20 degrees. A compar-
ison between the models (two and restricted three

body problems) showed that the errors are smaller
than 10%.

A more detailed study of the powered swing-by
maneuver with the impulse applied at the periap-
sis of the orbit of the spacecraft around the Moon
was later made by (Ferreira et al. 2015), presenting
a study of the maximum gains and losses of energy.
Also shown in more detail were the situations where
there are captures and collisions of the spacecraft
with the Moon, a point that analytical approxima-
tions are not able to make. In addition to the analy-
sis of the results, empirical equations were obtained
that give the maximum and minimum variations of
energy, as well as an analysis of the effect of the pe-
riapsis distance in the maneuver.

Another version of this maneuver can be made
by giving freedom to the application point of the im-
pulse. Casalino et al. (1999a) showed this more flex-
ible maneuver, where a constraint on the periapsis
altitude replaces the fixed point where the impulse
is applied, so leaving the location of the application
point of the impulse as a free parameter. They mod-
eled the problem using the patched-conics approach
and showed that the gains or losses of energy have
some peculiarities and need to be addressed with
some differences in the approach used to solve the
problem. The main conclusion is that it is possible
to get some extra energy by making an optimized
choice of this parameter.

Following this paper, Ferreira et al. (2017) and
Silva et al. (2013) made numerical mappings of the
energy gains, also considering the position of the ap-
plication of the impulse as a free parameter, which
is used to control the maneuver. Having the magni-
tude and direction of the impulse as variables, this
study extended the research on this problem by an-
alyzing different positions within the sphere of in-
fluence of the secondary body to apply the impulse.
This new variable of control is an angle θ, measured
from the periapsis line, and it defines the position for
the application of the impulse. This variable must
be selected such that the application point of the
impulse is always inside the sphere of influence of
the secondary body. As examples, different initial
conditions were considered for the Earth-Moon and
Sun-Jupiter systems. A superficial look at this prob-
lem suggests that the best place to apply the impulse
is when the spacecraft passes by the periapsis of its
orbit, because it is the point of maximum velocity,
which increases the energy transfer from the impul-
sive maneuver to the spacecraft. However, these re-
searches showed that, for the circular case, this is
not true, and some deviations in the direction of the
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impulse and in the point of the application of the im-
pulse can increase the energy gains of the combined
maneuver.

As a natural sequence of those researches, the
problem of powered swing-by was extended to sys-
tems where the primaries are in elliptical orbits
(Prado 1997; Ferreira et al. 2017, 2018a,b; Qi &
Ruiter 2018a,b). This is interesting from the aca-
demic point of view, to learn the effects of the eccen-
tricity of the primaries in this maneuver, as well as
from the engineering side, because there are several
systems with considerable eccentricity in the Solar
System. Good examples are Mars, which has an ec-
centricity of 0.093, and Mercury, with an eccentricity
of 0.2056. Both of those planets have been consid-
ered many times for swing-by maneuvers (McNutt et
al. 2004, 2006; Grard 2006; NASA 1999-2012, 2021;
Dunne & Burgess 1978; Jehn et al. 2008; Hollister &
Prussing 1966).

The physical reasons for the better results in
terms of larger variations of energy in elliptical sys-
tems are the well-known facts that the velocity of a
celestial body in an elliptic orbit is not constant, and
that the larger the eccentricity, the smaller the dis-
tance between the primary bodies at the periapsis,
for a fixed semi-major axis. This means that there
will be an important influence of the eccentricity of
the orbits on the results, considering that the energy
of the spacecraft (with respect to the main body) be-
fore and after the maneuver is proportional to those
parameters.

Another study of this type of maneuver was made
by Qi & Ruiter (2018b), where the optimal two-
impulsive strategy for the powered swing-by maneu-
ver was investigated and compared with the one-
impulse case. They considered the ERTBP, with
both the location and direction of the impulsive ma-
neuver as free parameters. Numerical results showed
that the swing-by epoch and the phase angle of the
periapsis influence only the value of the energy vari-
ation. Other parameters influence also the capture
and collision regions. For example, the increase of
the magnitude of the impulsive maneuver extends
these regions. However, the effect of the eccentricity
of the incoming orbit is opposite to that of the impul-
sive maneuver. The increase of the periapsis distance
enlarges the capture regions and shrinks the collision
regions.

One problem that appears in this type of maneu-
ver is the existence of errors in the magnitude and
direction of the applied impulse. This problem is
addressed in Ferreira et al. (2019); they show under
which conditions the maneuver is still efficient, even

in the presence of those errors. The literature also
shows that it is possible to combine a close approach
with impulsive and low thrust maneuvers (Gao et
al. 2019) for a mission to the Earth’s Trojan aster-
oid 2010TK7, which was defined as the main target
for a mission that has the goal of passing by several
asteroids. The multiple flyby sequence mission for
asteroid explorations was proposed, and the orbit of
the spacecraft was optimized for that purpose. Low-
thrust and impulsive maneuvers were combined, re-
spectively, to design the trajectories for this mission.
The main goal was to reduce the fuel consumption.

Another form of powered swing-by maneuver is
the one where a tether is involved. Yamasaki (2018)
considers the situation where two spacecraft are
linked to each other by a tether. When the tether
is cut, one satellite accelerates, while the other one
decelerates. This is equivalent to a propulsive ma-
neuver that does not require additional propellant
consumption, and benefits from the combination of
a close approach and an impulsive maneuver.

6. CAPTURES RESULTING FROM THE
MANEUVER

From the studies of the swing-by maneuver, it is
well known that one of the consequences of its use
is the capture or collision of the spacecraft by the
secondary body. The impulsive maneuver can in-
crease those occurrences, because the spacecraft can
be directed to the body close enough to be captured
or to collide with its surface. Some specific char-
acteristics of the geometry generate these results,
which basically come from the reduction of the en-
ergy that causes the spacecraft to slow down and,
consequently, the orbital curvature to increases and
to tend to approach the body.

According to Broucke (1988), the selection of the
periapsis to be located such that ψ = 90 degrees with
respect to the secondary body favors the use of the
gravity effect in the reduction of the energy of the
spacecraft, since this geometry causes the spacecraft
to pass in front of the body, and so it is decelerated
due to the gravity of M2. It is shown that captures
and collisions occur, usually, for extreme values of α,
when the spacecraft is stopped and sent towards M2

(Ferreira et al. 2017).
Still related to captures, a flyby approach and

capture method for uncontrolled spacecraft capture
was developed (Matsumoto et al. 2003). The ba-
sic ideas come from the gravity-assisted maneuver
and the bi-elliptic transfer orbit. The results show
that a smaller time of flight results in smaller sav-
ings in energy. Swing-by in the Galilean satellites
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to capture a spacecraft into the orbit of Jupiter by
combining gravity assisted maneuvers and solar elec-
tric propulsion was also analyzed in the literature
(Landau et al. 2010), as well as a method for cap-
turing a Near-Earth-Asteroid (NEA) using a lunar
flyby to reduce the energy required by the capture
(Gong & Li 2015). Planetary captures were consid-
ered in terms of astronautical activities (MacDon-
ald & McInnes 2005), as well as astronomy (Ag-
nor & Hamilton 2006; Nesvorny et al. 2007). They
used gravity assists to understand captures of natu-
ral bodies, like moons and asteroids.

Very recent applications of powered swing-by ma-
neuvers can be also seen in Yang et al. (2019) and
Pan & Hou (2020). Yang et al. (2019) develop a
powered gravity-assist maneuver based on the pseu-
dostate theory. Using this tool, it is possible to
solve the gravity-assist segments using the restricted
three-body problem to model the dynamical system.
Pan & Hou (2020) study transfers from orbits around
the co-linear equilibrium point L2 to orbits around
the equilibrium triangular point L4, considering the
Earth-Moon system. They start by using the sim-
plified circular planar restricted three body problem
model for the Earth-Moon system. Two types of low-
energy transfer orbits are considered. Type-I uses
planar Lyapunov orbits and powered lunar gravity
assist, while type-II uses two tangential maneuvers,
the first one at the departure and the second one at
the nominal orbit.

7. CONCLUSIONS

This paper made a survey of the swing-by maneuver,
showing many options available for this maneuver,
as well as citing articles available in the literature on
the subject. The main focus was to show more recent
versions of this maneuver, which appeared in the lit-
erature after the well-known pure gravity maneuver.
Initially, a historical and mathematical review of the
pure gravity maneuver was made, as well as the ex-
position of a large list of real applications of the
swing-by maneuver in space missions. The survey
then explored the context of the extensions of this
type of maneuver. Particular attention was given
to the powered maneuver. However, different types
of the propulsion studied were also presented, such
as atmospheric drag, tethers, continuous propulsion,
among others.

The powered swing-by combines the gravity of
the body with the application of an impulse on the
spacecraft, whose position of application in the orbit
can vary. The best choice for the geometry can give

larger energy variations to the spacecraft and, con-
sequently, a larger velocity after it leaves the system,
or can simply change the orbit within the same sys-
tem. If the objective is to remove energy to insert the
spacecraft in orbit around a celestial body, this type
of maneuver is also efficient. The results of the var-
ious works presented showed the best configuration
of the geometry and parameters of the initial orbit,
in addition to the maneuver efficiency, the effect of
possible errors in the assignment of parameters, the
several models available to study this problem, like
the patched-conics for analytical approximation and
the restricted three-body problem models, in the cir-
cular and elliptic versions, for numerical studies. The
text also highlighted the importance of the powered
maneuver, because this is a good option when the
energy obtained from the pure gravity swing-by ma-
neuver is not enough to complete a given mission. It
provides new options to the mission design, and can
make possible missions that could not be achieved
without this technique.

In the last section, this work presented a histor-
ical note of works that focused on the study of cap-
tures of the spacecraft occurring due to the swing-by
maneuver, and described the favorable geometry for
this type of event.

Finally, this survey aimed to gather a large
amount of different studies on the swing-by maneu-
ver and its extensions available in the literature. Sev-
eral key results were shown, as well as mathemati-
cal and geometrical descriptions obtained from these
works.
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