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ABSTRACT

We apply a machine learning algorithm called XGBoost to explore the peri-
odicity of two radio sources: PKS 1921-293 (OV 236) and PKS 2200+420 (BL Lac),
both radio frequency datasets obtained from University of Michigan Radio Astron-
omy Observatory (UMRAO), at 4.8 GHz, 8.0 GHz, and 14.5 GHz, between 1969
to 2012. From this methods, we find that the XGBoost provides the opportunity
to use a machine learning based methodology on radio datasets and to extract in-
formation with strategies quite different from those traditionally used to treat time
series, as well as to obtain periodicity through the classification of recurrent events.
The results were compared with other methods that examined the same datasets
and exhibit a good agreement with them.

RESUMEN

Aplicamos un algoritmo de aprendizaje automático llamado XGBoost para
explorar la periodicidad de dos fuentes de radio: PKS 1921-293 (OV 236) y
PKS 2200+420 (BL Lac), ambos conjuntos de datos de radiofrecuencia obtenidos
del Observatorio de Radio Astronomı́a de la Universidad de Michigan (UMRAO),
a 4.8 GHz, 8.0 GHz, y 14.5 GHz, entre 1969 y 2012. A partir de estos métodos, en-
contramos que XGBoost brinda la oportunidad de utilizar una metodoloǵıa basada
en aprendizaje automático en el conjunto de datos de radio y extraer información
con estrategias bastante diferentes de las utilizadas tradicionalmente para tratar
series temporales y obtener periodicidad a través de la clasificación de eventos re-
currentes. Los resultados se compararon con los obtenidos en otros trabajos que
examinaron el mismo conjunto de datos y muestraron resultados compatibles.

Key Words: galaxies: active — galaxies: BL Lacertae objects: general — galaxies:
quasars: general — methods: data analysis — methods: numerical

1. INTRODUCTION

Ever since the discovery of first radio
sources (Matthews & Sandage 1963; Schmidt
1963) in 1963, a considerable amount of work and
computing resources have been invested in exploring
the observable Universe to detect radio sources.
Quasar and BL Lacertae objects are supermassive
rotating black holes, with jet ejection and rotation
axes, which emit in radio, X-rays and gamma rays.
Their radio signals are observable when the axis
of their emission cone is directed along the line of
sight to the instrument. Subsequently, they have

1Federal University of Alfenas, Brazil.
2Center for Radio Astronomy and Astrophysics Mackenzie,

São Paulo, Brazil.
3Brazilian National Institute for Space Research, São José

dos Campos, Brazil.

also been observed throughout the electromagnetic
spectrum. A review of the various observational
properties of quasars and other kinds of active
galaxy nuclei (AGN) can be found in Véron-Cetty
& Véron (2010).

AGNs, particularly quasars, have been studied
at many radio frequencies to understand the mech-
anisms and regimes of energies involved in the phe-
nomenon. As a result, a unified model was elabo-
rated in which the different denominations given to
the AGN are derived from the orientation of the jets
in relation to the viewing angle of the observer (An-
tonucci 1993; Urry & Padovani 1995; Beckmann &
Shrader 2012).

The variability is the aspect of AGN that attracts
the most attention. Some radio sources have pe-
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108 SOLTAU & BOTTI

riodicities measured in a scale of years, but due to
the delay between the measurements made in several
frequencies, it is difficult to accurately specify the
periodicity. Delays make it difficult to study time
series when comparing light curves at different fre-
quencies. In addition, the data set comprises a time
series of irregular sampling due to various factors in-
fluencing the acquisition of astronomical data from
ground stations, such as weather conditions, system
maintenance, receivers, etc. These sampling diffi-
culties produce unequally spaced time series, which
impose limitations on more conventional methods of
analysis.

Multifrequency studies explore distinct aspects
of compact radio sources, in particular, flux den-
sity variations, to determine periodicities in light
curves (Abraham et al. 1982; Botti & Abraham 1987,
1988; Botti 1990, 1994; Aller et al. 2009; Aller &
Aller 2010, 2011). Methods for determining period-
icities in the radio range include Fourier Transform,
Lomb-Scargle Periodogram, Wavelet Transform and
Cross Entropy, among others (Cincotta et al. 1995;
Tornikoski et al. 1996; Santos 2007; Soldi et al. 2008;
Vitoriano & Botti 2018). A combination of methods,
like decision trees, random forests and autoregressive
models is usual for the specific goal of exoplanets de-
tection in stellar light curves (Caceres et at. 2019).

Advances in artificial intelligence have provided
machine learning algorithms, such as neural net-
works, ensemble and deep learning (LeCun et al.
2015), that aid astrophysical studies and provide
computational approaches dissimilar to previous
methods, including potential applications for radio
source analyses (Witten et al. 2016).

Motivated by the successful performance of
XGBoost (Chen & Guestrin 2016) in International
Challenges on Machine Learning (Xu 2018), and
animated by the many different kinds of results
presented by Pashchenko et al. (2017), Smirnov &
Markov (2017), Bethapudi & Desai (2018), Abay
et al. (2018), van Roestel et al. (2018), Saha et al.
(2018), Lam & Kipping (2018), Shu et al. (2019),
Liu et al. (2019), Askar et al. (2019), Calderon &
Berlind (2019), Chong & Yang (2019), Jin et al.
(2019), Menou (2019), Plavin et al. (2019), Wang
et al. (2019), Yi et al. (2019), Li et al. (2020), Lin
et al. (2020), Hinkel et al. (2020), Tamayo et al.
(2020) and Tsizh et al. (2020), we decided to test
how this kind of algorithm would perform specific
tasks related to the treatment of time series in ra-
dio datasets of AGNs, such as light curves of quasars
and BL Lacs. For this reason we selected two well-

TABLE 1

IRREGULARLY SPACED TIME SERIES*

Frequency PKS 2200+420 PKS 1921-293

(GHz)

4.8 1977–2012 1979–2011

8.0 1968–2012 1974–2011

14.5 1974–2012 1975–2011

*The UMRAO datasets were acquired in frequencies of
4.8 GHz, 8.0 GHz and 14.5 GHz from radio sources
PKS 1921-293 (OV 236) and PKS 2200+420 (BL Lac-
ertae).

studied objects, the PKS 1921-293 (OV 236) quasar
and PKS 2200+420 (BL Lac) for a case study.

The outline of this paper is as follows. In § 2,
the AGNs datasets from the UMRAO survey, along
with the features used for training and tests, are de-
scribed. In § 3, we show the machine learning al-
gorithms applied to the AGNs datasets. The imple-
mentation of XGBoost is described in detail. We
discuss the feature selection procedure methods in
§ 4. We report and discuss the results of machine
learning algorithms for the selected tasks in § 5. We
present a summary and conclusions in § 6.

2. INSTRUMENT AND DATASETS

The Michigan Radio Astronomy Observatory
(UMRAO), has a parabolic reflector antenna of
about 26 meters in diameter. This radio telescope
has been used extensively since 1965 to monitor
continuous full-flux density and linear polarization
of variable extragalactic radio source in the frequen-
cies of 4.8 GHz (6.24 cm), 8.0 GHz (3.75 cm) and
14.5 GHz (2.07 cm). More details about UMRAO
characteristics and their astrophysics applications
are reviewed and can be found in Aller (1992); Aller
et al. (2017).

In our study, we used UMRAO datasets for
PKS 1921-293 (OV 236) and PKS 2200+420
(BL Lac), in the time intervals presented in Table 1.

It is worth mentioning that these are irregularly
spaced time series, so the years indicated in Table 1
refer to the range of years covered in this study. The
differences in the years of radio datasets start for
each frequency, for both objects of study, are due to
the fact that the UMRAO began to operate in each
one of the frequencies in different epochs.

For all objects in the dataset collection and at all
operating frequencies, UMRAO provides daily time
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PERIODICITY DETECTION IN AGN 109

TABLE 2

OBSERVATIONS IN TIME SERIES*

Frequency PKS 2200+420 PKS 1921-293

(GHz)

4.8 692 618

8.0 843 910

14.5 962 1 035

*The UMRAO datasets acquired at frequencies of
4.8 GHz, 8.0GHz and 14.5GHz from radio sources
PKS 1921-293 (OV 236) and PKS 2200+420 (BL Lac).

series4. Due to several inherent aspects of obser-
vations, such as weather and instrumental mainte-
nance, the data sets are irregularly spaced, requiring
treatment before being used in the research. The
procedures adopted during processing for this pur-
pose will be described later, in § 4.

The Figures 9 and 10 in Appendix A, show the
light curves for the objects PKS 2200+420 (BL Lac)
and PKS 1921-293 (OV 236), respectively, arranged
in graphs according to the same time interval, for
comparison purposes.

The characteristics of the radio source
PKS 2200+420 (BL Lac)5 used in this study
are galactic coordinates 92.5896 −10.4412, equa-
torial coordinates (J2000) RA 22h02m43, 291s
DE +42o16′39, 98, constellation Lacerta, appar-
ent magnitude V = 14.72, absolute magnitude
MV = −22.4 and redshift z ≈ 0.069.

The characteristics of the radio source PKS 1921-
293 (OV 236)6 are equatorial coordinates (J2000)
RA 19h24m51.056s DE −29o14′30, 11, galactic co-
ordinates 9.3441 −19.6068, constelation Sagittarius,
apparent magnitude V = 17.5, absolute magnitude
MV = −24.6 and redshift z ≈ 0.353.

The UMRAO datasets are provided in digital
files in the American Standard Code for Informa-
tion Interchange (ASCII) coding standard and con-
tain, listed in daily sequences, the acquisition date
in modified Julian date format, the flux density and
the associated measurement error, both in jansky.
Table 2 shows the number of observations per fre-
quency for each radio source addressed in this study.

4Publicly available in https://dept.astro.lsa.umich.edu/
datasets/umrao.php with permission.

5Available data http://simbad.u-strasbg.fr/simbad/
sim-id?Ident=NAME%20BL%20Lac.

6Available data http://simbad.u-strasbg.fr/simbad/
sim-id?Ident=PKS%201921-293.

3. XGBOOST

XGBoost, an acronym for eXtreme Gradient Boost-
ing, is a set of machine learning methods boosted
tree based, packaged in a library designed and op-
timized for the creation of high performance algo-
rithms (Chen & Guestrin 2016). Its popularity in
the machine learning community has grown since its
inception in 2016. This model was also the winner of
High Energy Physics Meets Machine Learning Kag-
gle Challenge (Xu 2018). In astrophysics, XGBoost
was recently used for the classification of pulsar sig-
nals from noise (Bethapudi & Desai 2018) and also
to search for exoplanets extracted from the PHL-EC
(Exoplanet Catalog hosted by the Planetary Habit-
ability Laboratory)7 using physically motivated fea-
tures with the help of supervised learning (Saha et
al. 2018).

Gradient boosting is a technique for building
models in machine learning. The idea of boosting
originated in a branch of machine learning research
known as computational learning theory. There are
many variants on the idea of boosting (Witten et al.
2016). The central idea of boosting came out of the
question of whether a “weak learner” can be modi-
fied to become better. The first realization of boost-
ing that saw a great success in its application was
Adaptive Boosting or AdaBoost and was designed
specifically for classification. The weak learners in
AdaBoost are decision trees with a single split, called
decision stumps for their shortness (Witten et al.
2016).

AdaBoost and related algorithms were recast in
a statistical framework and became known as Gra-
dient Boosting Machines. The statistical framework
cast boosting as a numerical optimization problem,
where the objective is to minimize the loss function
of the model by adding weak learners using a gradi-
ent descent like procedure. The Gradient Boosting
algorithm involves three elements. (i) A loss function
to be optimized, such as cross entropy for classifica-
tion or mean squared error for regression problems.
(ii) A weak learner to make decisions, integrating a
decision tree. (iii) An additive model, used to add
weak learners to minimize the loss function. New
weak learners are added to the model in an effort to
correct the residual errors of all previous trees. The
result is a powerful modeling algorithm.

XGBoost works in the same way as Gradient
Boosting, but with the addition of an Adaboost-like
feature of assigning weights to each sample. In ad-

7The latest updated (July 2, 2018) dataset can be down-
loaded from the PHL website: http://phl.upr.edu/projects/
habitable-exoplanets-catalog/data/database.

https://dept.astro.lsa.umich.edu/datasets/umrao.php
https://dept.astro.lsa.umich.edu/datasets/umrao.php
http://simbad.u-strasbg.fr/simbad/sim-id?Ident=NAME%20BL%20Lac
http://simbad.u-strasbg.fr/simbad/sim-id?Ident=NAME%20BL%20Lac
http://simbad.u-strasbg.fr/simbad/sim-id?Ident=PKS%201921-293
http://simbad.u-strasbg.fr/simbad/sim-id?Ident=PKS%201921-293
http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database
http://phl.upr.edu/projects/habitable-exoplanets-catalog/data/database
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110 SOLTAU & BOTTI

dition to supporting all key variations of the tech-
nique, the real interest is the speed provided by the
implementation, including: (i) parallelization of tree
construction using all computer CPU cores during
training; (ii) distributed computing for training very
large models using a cluster of computers; (iii) out-
of-core computing for very large datasets that do
not fit into memory; (iv) cache optimization of data
structures and algorithms to make best use of hard-
ware (Mitchell & Frank 2017).

The XGBoost core engine can parallelize all
members of the ensemble (tree), giving substan-
tial speed boost and reducing computational time.
On the other hand, the statistical machine-learning
classification method is used for supervised learn-
ing problems, where the training data with multi-
ple features are used to forecast a target variable,
and the regularization techniques are used to con-
trol over-fitting. The XGBoost method uses a non-
metric classifier, and is a fairly recent addition to
the suite of machine learning algorithms (Chen &
Guestrin 2016). Non-metric classifiers are applied
in scenarios where there are no definitive notions of
similarity between feature vectors.

Traditionally, gradient boosting implementations
are slow because of the sequential nature in which
each tree must be constructed and added to the
model. XGBoost solves the slowness problem
putting trees to work together, and creating the con-
cept of forest. This approach improves the perfor-
mance in the development of XGBoost and has re-
sulted in one of the best modeling algorithms that
can now harness the full capability of very large hard-
ware platforms (cf. benchmark tests in (Zhang et al.
2018; Huang, Yu-Pei, Yen, Meng-Feng 2019)).

In a typical machine-learning problem, the pro-
cessed input data try to combine a large number of
regression trees with a small learning rate to pro-
duce a model as output. In this case, learning means
recognizing complex patterns and making intelligent
decisions based on input dataset features provided
by the human supervisor.

The algorithm comes up with its own prediction
rule, based on which a previously unobserved sam-
ple will be classified as of a certain type, e. g. high
and low activity period, to give a pertinent example,
with a reasonable accuracy. In order to appropri-
ately apply a method (including preprocessing and
classification), a thorough study of the nature of the
data should be done; this includes understanding the
number of samples in each class, the separability of
the data, etc. Depending on the nature of the data,
appropriate preprocessing and post processing meth-

ods should be determined along with the right kind
of classifier for the task (e.g. binary classification or
multiclass classification, LeCun et al. 2015).

XGBoost has only two distinct machine learning
capabilities: regression and classification trees. All
tasks and problems to be solved need be reduced to
these two categories. Regression trees are used for
continuous dependent variables. Classification trees
for categorical dependent variables. In regression
trees, the value obtained by the terminal nodes in
the training data is the mean response of the obser-
vation falling in that region. In classification trees,
the value obtained by the terminal node in the train-
ing data is the mode of observations falling in that
region. In this research, the developed method uses
both of capabilities, as will be shown in § 4.

XGBoost is readily available as a Python API
(Application Program Interface), which is used in
this work.8

To the best of our knowledge, XGBoost algo-
rithms have never been used before in AGN research
for regularization of time series or during the post-
processing of outbursts selection candidates.

4. METHOD

We prepare the machine to learn the features associ-
ated with the training and test data to fill irregularly
spaced time series and to identify the occurrence of
outbursts in radio sources datasets from UMRAO
through the machine classification algorithm XG-
Boost. The goal, as stated earlier, is to test the
ability of the algorithm to be used in astrophysics
studies of AGN-like radio sources with a reasonably
high accuracy, thereby establishing the utility of this
method where different approaches are useless. The
classification of outbursts was done with classifica-
tion tree, whilst the regularization of time series was
done with regression tree.

The entire method can be summarized in the
following steps: (i) obtaining and preparing the
data (preprocessing); (ii) regularizing the time se-
ries; (iii) detection of outbursts; and, (iv) calculation
of periodicity within defined limits of accuracy. Here
we will highlight the regularization of time series and
the detection of outbursts, mainly.

4.1. Preprocessing

Preprocessing is an essential preliminary step in any
machine learning technique, as the quality and effec-
tiveness of the following steps depend on it (Brighton

8The source code was available at https://github.com/
sbs-PhD/astroph.

https://github.com/sbs-PhD/astroph
https://github.com/sbs-PhD/astroph
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PERIODICITY DETECTION IN AGN 111

Fig. 1. Light curve of PKS 2200+420 radio source, at
8.0 GHz. The raw dataset is shown. The color figure can
be viewed online.

& Mellish 2002). This covers from obtaining the
original UMRAO files, in ASCII digital format, to
preparing the data with the application of algorithms
whose purpose is to check data consistency, eliminate
incomplete lines or other inconsistencies typical of
experimental datasets stored in formatted files such
as spurious characters, formatting, etc. All the pro-
cedures applied in this phase act directly and only on
the original data, but without altering them in their
fundamental characteristics. The procedure also has
the purpose of removing the beginning or end of the
data in the case of a big time lag to the next data, re-
ducing the error propagation and the computational
time.

The original data files of the UMRAO contain all
three frequencies acquired, 4.8 GHz, 8.0 GHz and
14.5 GHz unsorted in the file lines. Each line corre-
sponds to a daily measurement in a given frequency.
During preprocessing, rows of the same frequency
were collected and stored together in a separate file.
In this way, each frequency can be treated indepen-
dently for each object studied.

At the end of this step, the graphs of the original
daily flux density data were plotted. For simplic-
ity, only the 8.0 GHz data are shown in Figure 1
for the PKS 2200+420 (BL Lac) radio source. All
other frequencies, 4.8 GHz and 14.5 GHz are shown
in Figures 11 and 12, Appendix B.

Likewise, the same preprocessing step give the
result shown in Figure 2 for the PKS 1921-293
(OV 236) radio source. In this way, it was possi-
ble to visualize the segments of light curves that had
most discontinuities. As before, Figures 13 and 14
for frequencies 4.8 GHz and 14.5 GHz are shown in
Appendix B.

Notice that the time intervals for each radio
source shown in Table 1 and in Figures 9 in Ap-
pendix A, differ from those shown in Figure 1 and
Figures 11 and 12. Also, the curves in Figure 10

Fig. 2. Light curve of PKS 1921-293 radio source at
8.0 GHz The raw dataset is shown. The color figure can
be viewed online.

Fig. 3. Schematic representation of how the algorithm
using XGBoost finds a missing point to fill and complete
the irregularly spaced time series. The error bars can
limit the search space.

in Appendix A, differ from those show in Figure 2
and Figures 13 and 14. Such discrepancy is due to
the head and tail elimination of the dataset effected
during the preprocessing procedure.

4.2. Regularizing Time Series

The UMRAO datasets containing the individual fre-
quencies have several time gaps configuring an ir-
regularly spaced time series. In this method step,
XGBoost was used to fill the intervals by applying
machine learning regression techniques, rather than
conventional techniques or methods of usual statistic
adjusting. The strategy employed with XGBoost is
shown in Figure 3.

In Figure 3, the black point represents the best
point found, i.e., flux density value, to fill the series
at that missing point. Gradually darker gray points
represent the successive efforts does by the new weak
learners added to the model to correct the residual
errors of all previous trees to choose the point to be
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112 SOLTAU & BOTTI

Fig. 4. Light curve of PKS 2200+420 (BL Lac) at
8.0 GHz. The regularized space-time series is shown.
The color figure can be viewed online.

tested in the scenario. In this schematic representa-
tion, the darker the point, the greater its assigned
weight to minimize the loss function.

The term “regression” here refers to the logis-
tic regression or soft-max for the classification task.
XGBoost uses a set of decision trees as described the
working principle detailed in § 3.

In the interval defined by each error value, εo, fea-
tures were prepared using weighted moving averages,
recursively, that is, mean of average, etc., providing
the XGBoost training phase over several intervals of
time below, εo−n, and above, εo+n, the point consid-
ered. Since

εo−n, . . . , εo−2, εo−1, εo, εo+1, εo+2, . . . , εo+n , (1)

the algorithm search for the best value that can be
set at the missing point εo.

The method of classification was to select known
points, hide them from the algorithm as the training
set and use the remaining samples in the dataset as
the test set (subject to artificial balancing by under-
sampling the known flux density values). The points
chosen by the algorithm fully match the previously
hidden points for the same position in the time se-
ries. By this process, applied for all UMRAO radio
sources datasets, the irregularly spaced time series,
becomes a regularly spaced one.

Figure 4 shows the time series regularized for
PKS 2200+420 (BL Lac) at 8.0 GHz frequency, by
the process described. Appendix C contains Fig-
ures 15 and 16 for the frequencies 4.8 GHz and
14.5 GHz.

Likewise, Figure 5 shows the regularized time se-
ries for the PKS 1921-293 (OV 236) radio source.
The frequencies 4.8 GHz and 14.5 GHz are shown in
Figures 17 and 18 in Appendix C.

The accuracy of the regularization of the time se-
ries procedure was tested in three steps as follows. In
the first step, approximately one quarter of points,

Fig. 5. Light curve of PKS 1921-293 (OV 236) at
8.0 GHz. The regularized space-time series is shown.
The color figure can be viewed online.

constituted of flux density versus time from the origi-
nal raw dataset of each frequency, are randomly cho-
sen and put separately in different datasets for the
next step. The files that contain one quarter of the
points randomly extracted from the raw dataset are
reserved for future comparisons. Three quarters of
the raw data are put in another file to be processed
by the algorithm of regularization of time series, gen-
erating another file with the regularized time series.

The file with one quarter of the randomly selected
points in the first step and the file with the regu-
larized time series generated in the second step are
compared. The agreement between the separate and
the new points produced by the regularization algo-
rithm is checked through the Kolmogorov-Smirnov
test (K-S Test) (Marsaglia et al. 2003; Bakoyannis
2020; Sadhanala et al. 2019; del Barrio et al. 2020).

After dataset regularization by the strategy im-
plemented using XGBoost, any well-established sta-
tistical autoregressive model could be conveniently
applied to the time series. However, we wanted to
experiment and extend the use of XGBoost as much
as possible and to investigate the possibilities of us-
ing machine learning also as a tool for time series
regularization.

4.3. Finding Outbursts in Light Curves

In this method, XGBoost was used to classify light
curve segments as probably representative of an out-
burst. Therefore, it is a binary classification. First,
a data segment of the light curve containing a known
outburst was used during the training session. Sec-
ond, in the test session, the light curve of each fre-
quency dataset was modified by the synthetic minor-
ity over-sampling technique, SMOTE (Chawla et al.
2002; Bethapudi & Desai 2018; Hosenie et al. 2020),
producing a new artificial dataset, basically by in-
troduction of noise.
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Fig. 6. Light curve of PKS 2200+420 (BL Lac) at
8.0 GHz, showing the detected outbursts to periodicities
found. The color figure can be viewed online.

By generating a known amount of the simulated
noise signal and hiding it among a dataset as if being
background noise, one can test if the analysis works,
showing that the physics signal of the radio source is
indeed detectable among the many unknown effects.
It is is possible also to take note of how many false
positives and negatives are introduced in each filter-
ing step and to use those data to (a) optimize the
XGBoost features and (b) evaluate the systematic
uncertainly of the analysis.

The XGBoost algorithm detected peaks in the
light curves at all frequencies during the training and
testing processes, using the series artificially created
by SMOTE. This procedure assigns a high degree
of confidence to the algorithm, since it was able to
identify the same peaks in the artificial and in the
original light curve.

The method steps can be described as follows:

1. In the training and testing processes, the light
curve of each frequency is already regularized by
the previous step (§ 4.2). The peak of largest
value was taken, assuming that it characterizes
an outburst.

2. Preparation steps follow, including selecting
samples samples covering a range of flux den-
sity with several time intervals, in days, before
and after the occurrence of the largest peak in
each light curve.

3. In the testing process, the algorithm is applied
for outburst detection on the synthetic datasets
created with SMOTE.

4. Finally, the algorithm is applied on real data
sets, looking for segments of the light curve at
each frequency containing, or not, an outburst;
this is a binary classification.

At the end of this step, the outburst candi-
dates detected by the algorithm for PKS 2200+420

Fig. 7. Light curve of PKS 1921-293 (OV 236) at
8.0 GHz, showing the detected outbursts to periodicities
found. The color figure can be viewed online.

(BL Lac) at 8.0 GHz were plotted as a graph, shown
in Figure 6. All other frequencies for this object are
shown in Figures 19 and 20, Appendix D. Also shown
are graphs for PKS 1921-293 (OV 236) in Figure 7
and Figures 21 and 22, Appendix D.

4.4. Periodicity

The calculation to determine the periodicity takes
the combination of the differences of time among all
the outburst candidates identified in the classifica-
tion by the XGBoost algorithm in the previous step
(§ 4.3). The goal was to determine all possible com-
binations between the occurrences of outbursts by
collecting the corresponding time intervals.

Each outburst candidate corresponds to an or-
dered pair of flux density with an occurrence date.
The difference between all possible occurrence date
combinations of all outburst candidates provides a
set of time intervals, which may contain the pe-
riodicity of the phenomenon within the appropri-
ate boundary conditions. This boundary conditions
were proposed by Rasheed et al. (2011).

At this point, it is necessary to define what we
considered ‘periodicity’ within the scope of this re-
search.

Rasheed et al. (2011) distinguish between seven
different definitions of periodicity. The one that in-
terests in our context is the Periodicity with Time
Tolerance. This postulates that, given a time series
T which is not necessarily noise-free, a pattern X is
periodic in an interval [startPos, endPos] of T with
period p and time tolerance tt ≥ 0, if X is found at
positions

startPos+p±tt, startPos+2p±tt, . . . , endPos+p±tt .
(2)

Because it is not always possible to achieve per-
fect periodicity we need to specify the confidence in
the reported result. Rasheed et al. (2011) define the
periodicity confidence, as follows.
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The confidence of a periodic pattern X occurring
in time series T is the ratio of its actual periodicity
to its expected perfect periodicity.

Formally, the confidence of pattern X with peri-
odicity p starting at position startPos is defined as:

conf (p, startPos, X) =
PActual (p, startPos, X)

PPerfect (p, startPos, X)
,

(3)
where the perfect periodicity is,

PPerfect (p, startPos, X) =

[
|T | − starPos + 1

p

]
,

(4)
and the actual periodicity PActual is calculated by
counting the number of occurrences of X in T , start-
ing at startPos and repeatedly jumping by p posi-
tions.

Thus, for example, in T = abbcaabcdbaccdbabbca,
the pattern ab is periodic with startPos = 0, p = 5,
and conf(5, 0, ab) = 3/4. Note that the confidence
is 4/4 = 1 when perfect periodicity is achieved.

The correspondence between the time series, T ,
and the chain of binary digits, in which the ’1’s mark
the position of the periodic pattern X occurrence in
the series, helps to clarify the definition.

abbcaabcdba ccdbabbca

10000100000000010000

Applying the confidence definition (equa-
tion 3) in Periodicity with Time Tolerance like
T = abce dabc cabc aabc babc c, the frequency is
freq(ab, 4, 0, 18, tt = 1) = 5 and the confidence is
conf(ab, 4, 0, 18, tt = 1) = 5/5 = 1 (Rasheed et al.
2011).

The concepts as defined here were used to com-
pute and validate the periodicities found in the
datasets, T , of the radio sources examined.

The outbursts represent the periodic pattern, X.
The time tolerance, tt, assumed was that of the arith-
metic mean difference in days between the arrival
times, to the observer, of the main outbursts at each
frequency (equation 5).

tt =
∆t|f1−f2| + ∆t|f1−f3| + ∆t|f2−f3|

3
. (5)

This way of stipulating the time tolerance tt is
based on the ansatz that any real comparison or cor-
relation between two or more radio sources frequen-
cies examined must take into account the temporal
separation between the incoming of the characteris-
tic peaks of the outbursts to the observer point of
view.
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Fig. 8. In (a) the typical algorithm of machine learning
to which, whatever the purpose, any task ends up being
reduced. In (b) Sequences of the general method em-
ployed. Each box in diagram (b) may have one or more
steps as described in (a).

This way of stipulating tt is as expressed in equa-
tion (2) to a temporal interval.

Figure 8 shows a synthesis diagram of the steps
of the applied method, emphasizing how the aspects
inherent to the use of the XGBoost and those re-
ferring to the data and to the phenomenon studied
were contemplated in the design of the method.

As in the case of the methodological option as-
sumed in the regularization of time series in § 4.2,
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TABLE 3

RESULT OF THE K-S TEST APPLIED ON TWO SAMPLES*

PKS 2200+420 (BL Lac) PKS 1921-293 (OV 236)

Frequency (GHz) statistic p value statistic p value

4.8 0.03571429 0.99989572 0.03246753 0.99999660

8.0 0.03349282 0.99974697 0.03097345 0.99988705

14.5 0.03361345 0.99913286 0.02734375 0.99997300

*One with the raw empirical data of flux density and another calculated, for the same point, with the algorithm of
regularization based on tree boosting.

here, too, we have chosen to explore the limits of pos-
sibilities, without making use of traditional methods
of calculating periodicity. For this reason, we have
adopted the postulates proposed by Rasheed et al.
(2011) to compute and validate the periodicities.

5. RESULTS AND DISCUSSION

The initial methodological step, presented in § 4.1,
eliminated flux density data temporally very far from
each other only in the head and tail of the datasets.
This process was necessary to reduce computational
time of the next steps; otherwise, the time series reg-
ularization would be harder for the algorithm. As
result, the time series was shortened by a few days
in the head and tail. This did not bring perceptible
losses to the accuracy of the method since the time
series datasets were very extensive. At the head of
the time series, the dates eliminated were in Novem-
ber of one year and in February of the following year.
In the tail of the time series, the days of the following
year were eliminated. Eliminating these days from
the heads and tails of the time series allowed us to
balance the computational time/accuracy ratio.

After refining and tuning the datasets as de-
scribed above, separating frequencies into distinct
files to prepare the XGBoost features was the next
process.

The strategy used in the next step of the method
is to have the XGBoost-based algorithm consider
past and future events of flux density, to weigh and
predict which flux density value within the same fre-
quency examined is most suitable to be placed at a
point missing between the past and future points of
the time series.

The features delivered to XGBoost for processing
in this step were prepared as a “sliding window” that
traverses the points that make up the light curves of
each frequency one by one, and repeating the process
with each increment.

Some known points (originally existing in the
time series) were hidden and the algorithm was asked
to compute its value without knowing it previously
as described before. The results for the p values can
vary slightly due to the fact that the selected random
points change with each execution of the algorithm
which calculates the K-S test. Even so, the p values
variation does not deviate from aproximately 99% as
summarized in Table 3.

The empirical data versus values calculated by
the time series regularization algorithm have a very
high statistical adherence of about 0.99. Thus, the
K-S Test rejects the the null hypothesis that the sam-
ples are drawn from the same distribution in the two-
sample case. This means that there is no evidence
to say that the set of values does not adhere, so it is
understood that the calculated values come from the
same probability distribution, since the correlation is
high in all cases. In other words, the probability of
these two samples not coming from same distribution
is very low. But, statistically speaking, one cannot
be 100% sure.

For this reason the method of regularization
based on tree boosting is used instead of conventional
techniques. This process offers more convincing re-
sults than the use of more conventional techniques
such as spline, that smooth too much the curves from
experimental data.

The curves shown in Figure 4 (§ 4.2) and Fig-
ures 15 and 16 (Appendix C) of PKS 2200+420
(BL Lac) and Figure 5 and Figures 17 and 18 of
PKS 1921-293 (OV 236), are actually plots of daily
points, merging previously obtained points from
UMRAO and points forecast by the XGBoost algo-
rithm. This is not a line in fact. The tessellated
aspect results from the fact that some values of the
flux density (real or forecast) are much higher or
lower than their predecessors or successors.
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TABLE 4

HYPER PARAMETERS OF XGBOOST
MODELS*

Number of estimators 1000

Learning rate 0.001

Maximum depth 4

Regularization alpha 0.01

Gamma 0.1

Sub sample 0.8

*Used for the method applied for time series regulariza-
tion discussed here.

Table 4 summarizes the hyper parameters values
with which XGBoost was configured in this step of
the method.

XGBoost Python API9 provides a method to as-
sess the incremental performance by the number of
trees. It uses arguments to train, test and to mea-
sure errors on these evaluation sets. This allows
us to adjust the model performance until best re-
sults in terms computational time/accuracy ratio are
reached.

In Table 4, as in Table 5, the XGBoost hyper
parameters are (Aarshay 2016):

Number of estimators : sets the number of trees
in the model to be generated.

Learning rate : affects the computation time per-
formance which decreases incrementally the
learning rate, while increasing the number of
trees.

Maximum depth : represents the depth of each
tree, which is the maximum number of different
features used in each tree.

Regularization alpha : is the linear booster term
on weight; it controls the complexity of the
model which prevents overfitting,

Gamma : specifies the minimum loss reduction re-
quired to make a node splitting in the tree. This
occurs only when the resulting split gives a pos-
itive reduction in the loss function.

Sub sample : is the percentage of rows obtained
to build each tree. Decreasing it, reduces per-
formance.

9All information needed to properly install and use
XGBoost Python API is available at: https://xgboost.
readthedocs.io/en/latest/python/python intro.html.

TABLE 5

HYPER PARAMETERS OF XGBOOST
MODELS*

Number of estimators 200

Learning rate 0.001

Maximum depth 10

Regularization alpha 0.0001

Gamma 0.1

Sub sample 0.6

*Used for the method for outburst detection. We used
the same set of hyper parameters for both the non-
SMOTE and SMOTE datasets.

Good performance of XGBoost-based algorithms
depends on the ability to adjust the hyper parame-
ters of the model. It took time of processing in the
training and testing processes, after preparing the
models features, to achieve the results shown in Fig-
ure 4 and Figures 15 and 16 for the PKS 2200+420
(BL Lac) datasets, Figure 5 and Figures 17 and 18
for the PKS 1921-293 (OV 236) datasets.

The XGBoost-based algorithms exhibited a po-
tential ability for detection of outbursts in the light
curves of radio sources. Even when the datasets
were disturbed with artificial noise introduced by
SMOTE, the XGBoost algorithm retained the ability
to identify outbursts, matching previous findings in
all frequencies, without noise. The robustness of the
method and the solid boosted tree implementation
behind the algorithms are validated by the proxim-
ity of the scores computed for different datasets of
both radio sources.

Figure 6 and Figures 19 and 20 of PKS 2200+420
(BL Lac) and Figure 7 and Figures 21 and 22 of
PKS 1921-293 (OV 236), show the peaks identified
by the XGBoost-based algorithm, according to the
methodological strategy described in § 4.4.

Table 5 summarizes the hyper parameter val-
ues with which XGBoost was configured. The hy-
per parameters were the same in both SMOTE sim-
ulated and non-simulated, with acquired UMRAO
data. This strategy was inspired by Bethapudi &
Desai (2018).

As in the previous methodological step, at this
stage also it was essential to adjust the hyper pa-
rameters to obtain the results discussed here.

The use of previously adjusted datasets con-
tributed to gain precision in the accuracity of de-
tection of the outbursts, since it enlarged the sample
space and the temporal resolution.

XGBoost, as well as other implementations of
tree optimization algorithms, is a good choice for

https://xgboost.readthedocs.io/en/latest/python/python_intro.html
https://xgboost.readthedocs.io/en/latest/python/python_intro.html
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TABLE 6

PERIODICITY OBTAINED FOR
PKS 2200+420 (BL LAC)*

Frequency Time interval Periodicity

(GHz) (year)

4.8 1978–2011 1.7, 3.4, 5.7

8.0 1969–2011 1.7, 3.8, 5.2

14.5 1975–2011 1.7, 2.9, 4.7

*After computational procedure to classify flux density
segments as potential outbursts. Values with a precision
of 88.95%.

both classification and prediction. But decision tree
ensemble models are not directly applicable for vari-
ability or periodicity studies. A smart strategy was
required to be able to extract periodicity from the
light curves using tree boosting.

In fact, the XGBoost contribution to the peri-
odicity calculation ended with the identification of
outburst candidates from the light curves. There-
after, the method is reduced to calculate differences,
subtracting all pairs of peaks found from each other,
and verifying if the values found fall within a time
tolerance.

The algorithm based on XGBoost was subjected
to two tests. In the first, artificial datasets SMOTE
were used to verify if the algorithm would find
the candidate peaks of outburst, despite the intro-
duced random combination of artificial noises by the
SMOTE technique. In the second, the light curves
were inverted in such a way that the first point of
the curve became the last and vice versa. After re-
training the algorithm, all points were identified in
both cases.

Finally. after the training and test procedures,
the algorithm was applied to the UMRAO datasets
of both object, obtaining good results.

The results were compared with those of previ-
ous works obtained using the same datasets, but with
different statistical methods. In addition to the dif-
ference in method and size of the time series (which
were smaller than the time series used in this work,
since they were from years ago, when the datasets
used here were not available) a characteristic of the
works consulted is that they employed conventional
ways to treat irregular time series.

The results for PKS 2200+420, shown in Ta-
ble 6, are compared with the results found in sev-
eral works, collected in Table 7 for the methods:
Discrete Fourier Transform, Discrete AutoCorrela-
tion Function (DFT/ACF) Villata et al. (2004),

Simultaneous Threshold Interaction Modeling Al-
gorithm (STIMA) Ciaramella et al. (2004), Power
Spectral Analysis Method (PSA) Yuan (2011), Date-
Compensated Discrete Fourier Transform (DCDFT)
Fan et al. (2007) and Continuous Wavelet Transform,
Cross-Wavelet Transform (WT) Kelly et al. (2003).

The results for PKS 1921-293, shown in Table 8,
are compared with the results found in the Gastaldi
(2016) work, collected in Table 9, unlike the vari-
ous works collected to compare with the result of
PKS 2200+420 (BL Lac). Gastaldi (2016) made a
full review in his PhD thesis about other methods to
find periodicities to compare with his own method
to calculate periodicities in PKS 1921-293.

When comparing the results of Table 6 with Ta-
ble 7 and of Table 8 with Table 9, it is noted that
they are similar. It is recommended to keep in mind
that the time series intervals are different and smaller
than those used in this paper. In spite of this, and of
the methods used in the manner in which the data
are processed, it is seen that the periods are similar,
in particular those of the frequency 14.5 GHz of the
PKS 2200+420 radio source.

These results can only be considered compati-
ble if a time tolerance limit is assumed, estimated
through the arrival delay of the maximum peaks of
the several frequencies at the observer. The value of
this delay for PKS 1921-293, is, on average, approxi-
mately 42 days, and circa 21 days for PKS 2200+420.

6. SUMMARY AND CONCLUSIONS

In order to implement, test and improve a method
that incorporates the tree boosting-based machine
learning algorithm (XGBoost) for the analysis and
study of characteristics of radio sources, and to figure
out the potential capabilities that this specific tool
has for astrophysics purposes, two typical datasets of
radio sources are explored in the form of time series.
The objects chosen were PKS 1921-293 (OV 236)
and PKS 2200+420 (BL-Lac), because they were the
most studied in the radio range and for which sev-
eral attempts to discover the periodicity were per-
formed by different methods. The datasets from
University of Michigan Radio Astronomy Observa-
tory (UMRAO), which operates at frequencies of
4.8 GHz, 8.0 GHz and 14.5 GHz were chosen.

A boost-based algorithm was tested. The method
consists of using XGBoost in two different steps. In
the first this machine learning library was exploited
in its potential to act as a regression tool and thus to
regularize non-spaced temporal series, making them
regular. In the second, the potential of XGBoost
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TABLE 7

COMPARISON OF THE PERIODICITY OBTAINED FOR PKS 2200+420 WITH PERIODICITIES
ESTIMATED BY DIFFERENT METHODS

Time interval Method 4.8 GHz 8.0GHz 14.5GHz

1968–2003 DFT/ACF 1.4 yr 3.7 yr 7.5; 1.6; 0.7 yr

1977–2003 STIMA 7.8 yr 6.3 yr 7.8 yr

1968–1999 PSA 5.4; 9.6; 2.1 yr 4.9; 9.6; 2.8 yr 2.4; 4.3.14.1 yr

1977–2005 DCDFT 3.9; 7.8 yr 3.8; 6.8 yr 3.9; 7.8 yr

1984–2003 WT 1.4 yr 3.7 yr 3.5; 1.6; 0.7 yr

TABLE 8

PERIODICITY OBTAINED FOR PKS 1921-293
(OV 236)*

Frequency Time interval Periodicity

(GHz) Time interval (year)

4.8 1980–2011 1.2, 3.6, 5.0

8.0 1975–2011 1.3, 2.8, 5.2

14.5 1976–2011 1.6, 3.2, 6.3

*After computational procedure to classify flux density
segments as potential outburst. Values with a precision
of 89.83%.

as a classification tool was emphasized to select re-
gions in the light curves that mark outbursts. In
both cases the researcher expertise is an indispens-
able component of the success of the methodological
process.

XGBoost shows precise probabilistic results, as
long as the researcher has a good understanding
of the problem and clearly specifies the character-
istics of the phenomenon to be studied through well-
defined boundary conditions and a validity and tol-
erance interval of well-established values in the fea-
tures.

The success or failure of using XGBoost-based
algorithms depends on the researcher’s skills to ad-
just the hyperparameters of the model. It should be
noted that XGBoost cannot be used by itself for pe-
riodicity detection or calculation, such as some sta-
tistical methods or other Fourier derivative methods.
The method uses the strategy of classifying outbursts
in the light curve, a task viable for XGBoost, and
later calculating the temporal difference between the
candidates to an outburst identified by XGBoost, us-
ing a confidence interval that establishes the preci-
sion and thus, in spite of discrepancies falling within
the interval, finding periodic values.

TABLE 9

PERIODICITY OBTAINED FOR PKS 1921-293
(OV 236) AND PERIODICITIES ESTIMATED

BY THE LOMB PERIODOGRAM AND
WAVELET METHODS

Frequency) Time Method Periodicity

(GHz) interval (year)

4.8 1980–2006 Lomb 1.8, 3.3, 9.5

Wavelet 1.2–1.9, 2.7–2.8,

5.2–5.3

8.0 1981–2006 Lomb 1.3, 2.8, 3.0, 5.0,

8.5u

Wavelet 1.2–1.4, 2.3–2.6, 3.2,

4.3–5.1

14.5 1982–2006 Lomb 1.3, 2.5, 4.3, 6.5

Wavelet 1.3–2.3, 3.6, 5.0–5.5

The results found were quite close to those found
by other, more orthodox, methods. They have the
advantage of low computational time, and the po-
tential to be applied to big datasets.

In this first approximation of XGBoost to astro-
physics through the study of radio sources, the great
potential of this algorithm, and of machine learning
in general, was perceived. The present results, by
themselves, justify investigating other potential uses
for this tool.

Future perspectives involve the extension of the
study for other energy ranges, such as X-rays and
gamma rays, and the exploration of the use of meth-
ods based on tree boosting and other machine learn-
ing techniques that allow for application in multifre-
quency analysis .

It is also expected to associate the tree boost-
ing with XGBoost with the Monte Carlo technique
to evaluate how well the available models are able
to describe energy regimes, variability, and other as-
pects of radio sources.
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Fig. 9. Raw dataset of PKS 2200+420 (BL Lac), made
available by UMRAO, before adjustments. Note that
several point segments in the time series are missing at
all available frequencies. The color figure can be viewed
online.

Fig. 10. Raw dataset of PKS 1921-293 (OV 236), made
available by UMRAO, before adjustments. Note that
several point segments in the time series are missing at
all available frequencies. The color figure can be viewed
online.
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APPENDICES

This appendices contain supplementary material
which is an important part of the research itself, and
therefore may be useful in providing a more compre-
hensive understanding of the work, but is too cum-
bersome to include in the body of the paper.

A. RAW DATASET OF OBJECTS PKS 2200+420
AND PKS 1921-293

Figures 9 and 10 show the datasets of the two ob-
jects, PKS 2200+420 (BL Lac) and PKS 1921-293
(OV 236) respectively, as made available by UMRAO

Fig. 11. Light curve of PKS 2200+420 at 4.8 GHz. The
raw dataset is shown. The color figure can be viewed
online.

Fig. 12. Light curve of PKS 2200+420 at 14.5 GHz. The
raw dataset is shown. The color figure can be viewed
online.

Fig. 13. Light curve of PKS 1921-293 at 4.8 GHz. The
raw dataset is shown. The color figure can be viewed
online.

before adjustments of preprocessing. For clarity, the
original colors used by UMRAO were maintained in
this Appendix, as in the whole paper, according to
the frequencies: red for 4.8 GHz, blue for 8.0 GHz
and green for 14.5 GHz.

B. RAW DATASET OF OBJECTS PKS 2200+420
AND PKS 1921-293 AFTER

PREPROCESSING

Figures 11 and 12 show the light curves of
PKS 2200+420 at 4.8 GHz and 14.5 GHz separately,
after preprocessing.
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Fig. 14. Light curve of PKS 1921-293 at 14.5 GHz. The
raw dataset is shown. The color figure can be viewed
online.

Fig. 15. Light curve of PKS 2200+420 (BL Lac) at
4.8 GHz. The regularized space-time series is shown.
The color figure can be viewed online.

Fig. 16. Light curve of PKS 2200+420 (BL Lac) at
14.5 GHz. The regularized space-time series is shown.
The color figure can be viewed online.

Figures 13 and 14 show the light curve of
PKS 1921-293 at 4.8 GHz and 14.5 GHz separately
after preprocessing.

C. TIME SERIES REGULARIZED FOR
OBJECTS PKS 2200+420 AND PKS 1921-293

Figures 15 and 16 show the light curves of
PKS 2200+420 at 4.8 GHz and 14.5 GHz, after reg-
ularization of the time series step.

Figures 17 and 18 show the light curves of
PKS 1921-293 at 4.8 GHz and 14.5 GHz after regu-
larization of the time series step.

Fig. 17. Light curve of PKS 1921-293 (OV 236) at
4.8 GHz. The regularized space-time series is shown.
The color figure can be viewed online.

Fig. 18. Light curve of PKS 1921-293 (OV 236) at
14.5 GHz. The regularized space-time series is shown.
The color figure can be viewed online.

Fig. 19. Light curve of PKS 2200+420 (BL Lac) at
4.8 GHz. The detected outbursts to the periodicities
found are shown. The color figure can be viewed online.

D. FINDING OUTBURSTS IN THE LIGHT
CURVES OF PKS 2200+420 AND

PKS 1921-293

At the end of the process of looking for explosions,
the outburst candidates detected by the algorithm
for PKS 2200+420 (BL Lac) at frequencies 4.8 GHz
and 14.5 GHz, were plotted in a graph, as shown in
Figures 19 and 20.

The same procedure was done for PKS 1921-293
(OV 236) at frequencies 4.8 GHz and 14.5 GHz, as
shown in Figures 21 and 22.
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Fig. 20. Light curve of PKS 2200+420 (BL Lac) at
14.5 GHz. The detected outbursts to the periodicities
found are shown. The color figure can be viewed online.

Fig. 21. Light curve of PKS 1921-293 (OV 236) at
4.8 GHz. The detected outbursts to the periodicities
found are shown. The color figure can be viewed online.

Fig. 22. Light curve of PKS 1921-293 (OV 236) source
at 14.5 GHz. The detected outbursts to the periodicities
found are shown. The color figure can be viewed online.
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Véron-Cetty, M.-P. & Véron, P. 2010, A&A, 518, 10
Villata, M., Raiteri, C. M., Aller, H. D., et al. 2004, A&A,

424, 497
Vitoriano, R. P. & Botti, L. C. L. 2018, ApJ, 854, 59
Wang, Y., Pan, Z., Zheng, J., Qian, L., & Li, M. 2019,

Ap&SS, 364, 139
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. 2016,

Data Mining: Practical Machine Learning Tools and
Techniques, The Morgan Kaufmann Series in Data
Management Systems (Cambridge, MA: Elsevier Sci-
ence)

Xu, B. 2018, Higgs Boson Machine Learning Challenge,
access date: 28 August, 2018

Yi, Z., Chen, Z., Pan, J., et al. 2019, ApJ, 887, 241
Yuan, Y. 2011, JApA, 32, 43
Zhang, D., Qian, L., Mao, B., et al. 2018, IEEE Access,

6, 21020

https://orcid.org/0000-0002-7211-2533
https://orcid.org/0000-0003-1424-0796

