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ABSTRACT

Blue straggler stars are more massive than the average star in globular clus-
ters, as they originate from the merger of two stars. Consequently, they experience
dynamical friction, progressively sinking to the cluster center. Recently, several
indicators of the degree of dynamical relaxation of a globular cluster have been
proposed, based on the observed radial distribution of blue straggler stars. The
most successful is the Alessandrini indicator, or A+ for short, which is the integral
of the cumulative distribution of the blue straggler stars minus that of a lighter
reference population. A+ correlates with the dynamical age of a cluster both in
realistic simulations and in observations. Here I calculate the temporal dependence
of the A+ indicator analytically in a simplified model of the evolution of the blue
straggler star distribution under dynamical friction only.

RESUMEN

Las estrellas rezagadas azules tienen masas mayores que las de las estrellas
t́ıpicas de los cúmulos globulares, puesto que se originan de la fusión de dos estrellas.
En consecuencia, experimentan fricción dinámica, y se acercan paulatinamente al
centro del cúmulo. Se han propuesto recientemente varios indicadores del grado
de relajamiento dinámico de un cúmulo globular basados en la distribución radial
de las rezagadas azules. El más exitoso es el indicador de Alessandrini (A+), que
es la integral de la distribución acumulada de las rezagadas azules menos la de
estrellas menos masivas. A+ se correlaciona con la edad dinámica del cúmulo tanto
en simulaciones realistas como en las observaciones. Aqúı calculo anaĺıticamente
la dependencia con el tiempo del indicador A+, usando un modelo simplificado de
la evolución de la distribución de las rezagadas azules, que toma en cuenta sólo la
fricción dinámica.

Key Words: blue stragglers — globular clusters: general — methods: analytical

1. INTRODUCTION

Blue straggler stars are found in all globular clus-
ters observed to date in the Milky way (Piotto et al.
2004). They are heavier than the average star in
their host clusters, as they originate from stellar
mergers either through direct collision (Hills & Day
1976) or by close-binary mass transfer (McCrea 1964;
Knigge et al. 2009), or both (Davies et al. 2004;
Mapelli et al. 2004). Since the first observations of
a bimodality in the radial distribution of blue strag-
gler stars when normalized to a reference population
were done (Ferraro et al. 1993; Zaggia et al. 1997),

1INAF, Osservatorio Astronomico di Padova, vicolo
dell’Osservatorio 5, I–35122 Padova, Italy.

2INFN, Sezione di Padova, Via Marzolo 8, I–35131 Padova,
Italy.

attempts at understanding its origin and evolution
have been made based on simulations run with dif-
ferent software and various levels of realism (Mapelli
et al. 2004, 2006; Ferraro et al. 2012; Hypki & Giersz
2013; Miocchi et al. 2015; Hypki & Giersz 2017; Sol-
lima & Ferraro 2019).

In a previous paper Pasquato et al. (2018) showed
that the physical ingredients underlying the forma-
tion and motion of the minimum of the distribu-
tion are dynamical friction and diffusion respectively.
While the two are connected as they ultimately arise
from the same phenomenon, i.e. scatter with lighter
background stellar particles, Pasquato et al. (2018)
varied the diffusion coefficient and dynamical friction
independently, showing that when diffusion is too
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4 PASQUATO

strong a minimum does not reliably form, whereas if
diffusion is too weak a clear-cut minimum forms but
does not move outwards over time. This suggests
that simulation schemes should be carefully assessed
regarding their ability to correctly model the dynam-
ical friction and diffusion phenomena in order to re-
produce the observed evolution of the blue straggler
star distribution minimum with increasing dynami-
cal age.

In this context Alessandrini et al. (2016) intro-
duced a new dynamical clock indicator which did not
require a measurement of the position of the mini-
mum of the normalized blue straggler star distribu-
tion, as it is based on the cumulative radial distribu-
tion of blue straggler stars compared to the cumu-
lative distribution of some other class of reference
stars. The Alessandrini et al. (2016) indicator (or
A+ for short) was introduced in the context of di-
rect N-body simulations, where it was shown that it
increases with the dynamical age of simulated clus-
ters, acting as a mass-segregation powered dynam-
ical clock. Later, Lanzoni et al. (2016) measured
a slightly modified version of the A+ indicator on a
sample of 25 Galactic globular clusters, showing that
it correlates with the cluster dynamical age measured
in terms of a cluster’s current relaxation time.

The A+ indicator is defined as the difference be-
tween the integral of the cumulative distribution of
the blue straggler stars, expressed as a function of
the logarithm of the cluster-centric radius, and that
of a reference distribution. In the following I will
obtain some of its properties analytically under sim-
plifying assumptions.

2. CALCULATIONS

2.1. A Toy Model of Dynamical Friction

I model blue straggler stars as a population of equal
mass particles in circular orbits in a spherically sym-
metric fixed gravitational potential. The radius r of
each orbit evolves due to dynamical friction, as

ṙ = − r

τ(r)
= −v(r), (1)

where r is the distance from the center and τ(r) is
a positive, monotonically increasing function of r,
representing the dynamical friction timescale at ra-
dius r.

Equation 1 shows that orbital radii contract with
an instantaneous velocity v(r) > 0 that depends only
on r. It can be integrated, obtaining∫ r

r0

τ(x)dx

x
= −t, (2)

where r0 is the initial value of the radius at time t = 0
and r is its current value at time t. In general r0 > r
because the radii contract over time. If the function
τ(x) is known, the integral can be calculated and r
can be obtained as a function of r0 and t:

r(r0, t) = I−1(I(r0) − t), (3)

where the primitive

I(r) =

∫
τ(x)dx

x
(4)

is a monotonically increasing function because
τ(x)/x always is positive. Consequently, it is in-
vertible. Note also that r(r0, t) is a monotonically
decreasing function of t for every t > 0 and for every
r0, i.e. the orbit radii keep shrinking over time. This
can be shown by writing

I(r0) − t < I(r0), (5)

which holds for every t > 0, and applying I−1, which
is also monotonic, to both sides, yields

r(r0, t) = I−1(I(r0) − t) < I−1(I(r0)) = r0. (6)

Similarly to equation 3,

r0(r, t) = I−1(I(r) + t), (7)

also holds.
I now denote with N(r, t) the cumulative distri-

bution of particles at a given time as a function of
radius. This is by construction such that N(0, t) = 0
and limr→∞N(r, t) = 1 for all t. If for any two par-
ticles at time t = 0 the condition r01 < r02 held,
then at any subsequent t, r1(t) < r2(t) would also
hold: particles never cross. This holds due to the
uniqueness of the solution of first-order ordinary dif-
ferential equations. Therefore, all particles within
a distance r of the center at time t were within a
distance r0(r, t) at time 0, as can be seen by plac-
ing an imaginary particle exactly at r and observing
that no other particle ever crosses its path. In other
words, Lagrangian radii behave exactly like particle
radii. So

N(r, t) = N(r0(r, t), 0), (8)

the number of particles that had a radius less than
a given r0 at the beginning still have a radius less
than r(r0, t) at time t. This can be rewritten as

N(r, t) = N(I−1(I(r) + t), 0), (9)

which, given knowledge of the function I is a gen-
eral solution for N(r, t). Thus τ(r) fully determines
N(r, t) given an initial N(r, 0).
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ANALYTICAL A+ INDICATOR SOLUTIONS 5

2.2. Recovering the A+ Indicator

In the following I will assume that the reference pop-
ulation of stars to which the blue stragglers are com-
pared to build the A+ indicator initially shares the
same distribution as the blue stragglers and does not
evolve.

Under this assumption it is trivial to obtain the
evolution of the (three-dimensional) A+ indicator
from equation 9. I will write s = log r, so that

N(r, t) = N(I−1(I(es) + t), 0), (10)

and the A+ indicator becomes

A+(t)=

∫ +∞

−∞
N(I−1(I(es)+t), 0)ds−

∫ +∞

−∞
N(es, 0)ds.

(11)

2.3. Monotonicity

Note that at time t2 > t1

A+(t2)−A+(t1) =

∫ +∞

−∞

[
N(I−1(I(es) + t2), 0) −

N(I−1(I(es) + t1), 0)
]
ds, (12)

and the integrand

N(I−1(I(es) + t2), 0) −N(I−1(I(es) + t1), 0) (13)

is positive for every s, because I−1(I(es) + t2) >
I−1(I(es)+ t1) as the two terms represent, per equa-
tion 7, the initial radius of a particle that is at r = es

at t2 and t1 respectively: a particle that took more
time (t2 > t1) to fall to r was further away at the be-
ginning. This implies that A+(t) is a monotonically
increasing function of time, i.e. a working dynamical
clock.

2.4. A+ Linear Dependence in Globular Cluster
Cores

While equation 7 can be solved numerically for any
τ(r), some choices of τ(r) will lead to a simple an-
alytical solution. For example, following equation 1
of Mapelli et al. (2004) I take

τ(r) = τ(0)
σ3(r)ρ(0)

σ3(0)ρ(r)
, (14)

where σ is the velocity dispersion of background stars
at radius r and ρ is their number density. For a
Plummer model this works out as

τ(r) = τ(0)

(
1 +

r2

a2

)7/4

, (15)

where a is the model scale radius and τ(0) the scale
time for dynamical friction at the center. Equation 4
is solved exactly, for this dependence, by

I(u)=τ(0)

[
1

2
log

(
u− 1

u+ 1

)
+arctan(u) +

2

7
u7+

2

3
u3
]
,

(16)
where

u =

(
1 +

r2

a2

)1/4

> 1, (17)

which unfortunately cannot be inverted in terms
of simple functions. However for small radii equa-
tion 15 reduces to a constant, so equation 4 becomes
trivially

I(r) = τ(0) log(r/a), (18)

and, with reference to equation 7

r = r0e
−t/τ(0), (19)

so

N(r, t) = N(aelog(r/a)+t/τ(0), 0) = N(ret/τ(0), 0).
(20)

As the central regions of a Plummer model have ap-
proximately constant density ρ(0), I can take at time
t = 0

Nc(r, 0) = 4πρ(0)r3, (21)

with a radial cutoff at

rc0 = (4πρ(0))
−1/3

, (22)

after which Nc(r, 0) becomes identically 1. At time
t the radius at which Nc(r, t) becomes identically 1
is

rc = rc0e
−t/τ(0). (23)

Therefore

A+(t) =

∫ log rc

−∞
Nc(e

s+t/τ(0), 0)ds+

∫ log rc0

log rc

1ds−∫ log rc0

−∞
Nc(e

s, 0)ds, (24)

which simplifies to

A+(t) = log
rc0
rc

=
t

τ(0)
. (25)

This result actually generalizes to any non-constant
initial density as long as equation 19 holds, because
of the interplay between the logarithm in the defini-
tion of the A+ indicator and the exponential depen-
dence of equation 19, which leads to the first and the
third term in equation 24 canceling out. Thus the
A+ indicator should evolve linearly with time if the
dynamical friction timescale is constant with radius.
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6 PASQUATO

3. CONCLUSIONS

Working within a pure dynamical friction picture,
under a set of simplifying assumptions, I have shown
that the Alessandrini et al. (2016) A+ indicator
evolves monotonically in time and I have found an
analytical solution for its time dependence. I worked
out the case of a dynamical friction timescale that is
constant with radius, which results in the A+ indica-
tor increasing linearly with time. Monotonicity is an
interesting result, as it proves that the A+ indicator
is effectively a dynamical clock, as previously claimed
by Alessandrini et al. (2016) based on the results of
a set of direct N-body simulations. As my simple
model neglects diffusion, which was instead treated
numerically by Pasquato et al. (2018), I showed that
the A+ indicator still works as a dynamical clock
even in the absence of diffusion.
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