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ABSTRACT

This work includes analytical and numerical studies of spacecrafts orbiting
two binary asteroid systems: 1999 KW4 and Didymos. The binary systems are
modeled as full irregular bodies, such that the whole evolution of the results will
show the impact of the irregular gravity field in the lifetime and dynamics of the
spacecraft’s orbit. The equations of motion of the binary system and the spacecraft
are derived from Lagrange Equations. The solar radiation pressure is consired in
the dynamics of the spacecraft.Two distinct methods are used to search for stable
orbits around the binary systems. One is called the grid search method, which
defines the main body as a point mass to estimate the initial state of the spacecraft
based on a circular Keplerian orbit. The second method is the search for periodic
orbits based on zero-velocity surfaces.

RESUMEN

Este trabajo presenta estudios anaĺıticos y numéricos sobre naves espaciales
en órbita en torno a dos asteroides binarios: 1999 KW4 y Didymos. Se modelan
los sistemas binarios como cuerpos irregulares, de modo que la evolución muestre
el impacto del campo de gravedad irregular sobre los tiempos de vida y la dinámica
de la órbita de la nave. Se derivan las ecuaciones de movimiento del sistema binario
y de la nave a partir de las ecuaciones de Lagrange. Se considera la presión de
radiación solar. Se buscan órbitas estables en torno a los sistemas binarios mediante
dos métodos. El primero se conoce como el método de búsqueda en la malla, y
considera al cuerpo principal como punto masa para estimar el estado inicial de la
nave a partir de una órbita Kepleriana circular. El segundo busca órbitas periódicas
mediante las superficies de cero velocidad.

Key Words: methods: numerical — minor planets, asteroids: general — space ve-
hicles

1. INTRODUCTION

There is a great scientific interest in asteroids due to their relatively unchanged status as remnant debris from
the solar system formation process, around 4.6 billion years ago.

Asteroids are leftovers from the Solar System that can offer clues to the chemical mixture from which planets
were formed. In addition, asteroids can pose a danger to Earth depending on the size and course of the object.
Therefore, gaining a better understanding of the physical and chemical parameters of the asteroids can help
humans to prevent impacts between these objects and the Earth, e.g. by using a gravity tractor, a nuclear
explosion, a conventional rocket engine, or a solar energy engine. Moreover, some asteroids have the potential
of being used for mining.

The Solar System has different groups of asteroids. The near-Earth asteroids (NEAs) group includes
asteroids in the Earth’s neighborhood and that have a perihelion distance less than 1.3 AU (NASA 2019). Over

113

https://doi.org/10.22201/ia.01851101p.2020.56.01.12


©
 C

o
p

y
ri

g
h

t 
2

0
2

0
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

2
0

.5
6

.0
1

.1
2

114 OLIVEIRA & PRADO

20,000 NEAs have been discovered, of which more than 895 are large asteroids with an estimated diameter
greater than 1 km while over 8,600 NEAs have an estimated diameter between 140 m to 1 km (JPL 2019).

The group with the largest population of asteroids is the main-belt group. The main-belt asteroids orbit the
Sun and lie between Mars and Jupiter. The belt is estimated to contain between 1.1 and 1.9 million asteroids
larger than 1 km in diameter, and millions of smaller ones (NASA 2019).

The last group of asteroids is the Trojan. The Trojans share an orbit with a larger planet. They are located
at the Lagrangian points L4 and L5. The Jupiter Trojans form the most significant population of Trojan
asteroids. It is thought that they are as numerous as those of the main-asteroid belt (NASA 2019).

There are some asteroids that have natural satellites. The first one was discovered in 1993 around 243 Ida.
Since then, many other binary systems have been discovered. It is estimated that there are more than 160
binary asteroids systems: around 15% are NEAs, 2 to 3% are in the main-belt and between 10 to 30% belong
to other groups of trans-Neptunian objects (Johnston 2014; Margot et al. 2015). Therefore, it is not surprising
that missions to binary asteroid systems will occur in the future.

The Asteroid Impact and Deflection Assessment (AIDA) mission is a proposed pair of space probes which
would study and demonstrate the kinetic effects of crashing an impactor spacecraft into the secondary body of
a binary asteroid system. Its target would be the moonlet of the binary near-Earth asteroid (65803) Didymos,
which is one of the two binary asteroid systems studied in this paper.

The second binary asteroid system studied in this paper is 1999 KW4. This primary asteroid was discov-
ered by LINEAR on May 20, 1999. Its companion was discovered 2001 May 21 using radar and light curve
observations (Ostro et al. 2006). 1999 KW4 has the least accessible ∆V for a spacecraft mission of any known
binary near-Earth asteroid due to its heliocentric inclination of 39 degrees, eccentricity of 0.7, and semi-major
axis of 0.64 au (astronomical units). 1999 KW4 has been classified as a “Potentially Hazardous Asteroid” by
the Minor Planet Center (JPL 2019).

The search for stable orbits around a binary system is performed by utilizing theoretical results and nu-
merical methods that have been used in the circular restricted three-body problem (Scheeres et al. 1996; Woo
2014; Yu & Baoyin 2012a; Yu & Baoyin 2012b).

Among the many research topics in the circular restricted three-body problem, the periodic orbit is a
fundamental and important part. Generally, there are five kinds of periodic orbits in the global spatial space:
libration point orbits, orbits about the primary, orbits about the secondary, orbits about the whole binary
system, and other orbits about neither asteroid (Shi et al. 2018a).

The study of periodic orbits provides a general understanding of the stability and formation of natural
orbits; stable orbits can be directly adopted for close-proximity operations in space (Hu & Scheeres 2004).
Particularly, in the study of asteroids, periodic orbits indicate the potential locations of mutual satellites,
which is significant for assessing the spatial environment (Yu & Baoyin 2012b).

Periodic orbits around asteroids have been approximated using models with various degrees of sophistication.
In general, one will make some assumptions, such as using a simple shape model and restricting the binary
system to be synchronous. Then, the dynamical substitutes in a more precise model can be further determined
based on the prior calculated results (Chappaz & Howelll 2015; Hou & Xin 2018). To describe the non-spherical
shape of an asteroid, an ellipsoid can be used to represent it, which generates the sphere-ellipsoid model and the
ellipsoid-ellipsoid model for the binary asteroid systems. Bellerose & Scheeres (2008, 2008) studied the periodic
orbits in the sphere-ellipsoid binary system, especially the libration point orbits. Both the sphere-ellipsoid
binary system and the ellipsoid-ellipsoid binary system were investigated by Chappaz & Howell (2015), where
the resonant orbits were calculated and analyzed in addition to the libration point orbits. Shang et al. (2015)
searched the global periodic orbits in the ellipsoid-ellipsoid binary system based on the symmetry of the orbits
and obtained different families of periodic orbits. Their results showed that the periodic orbits in an ellipsoid-
ellipsoid binary system are analogous to those in the circular restricted three-body problem. The same results
are obtained in this paper.

A crucial difference is that the ellipsoid model shows symmetry while the real asteroid does not. The high-
fidelity models, such as the polyhedron model and the spherical harmonics model, can reflect the asymmetry
of the real binary system. Particularly, the polyhedron model derived by Scheers (1996) is suitable near the
surface of the asteroid. Libration point orbits of Mars-Phobos binary system were investigated by Biggs (2015)
using spherical harmonics. They indicated that the irregular shape has a significant influence and that the
connections between families of periodic orbits are different from those in the circular restricted three-body
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Fig. 1. Illustration of the binary system (Woo & Misra 2013).

problem. Based on the polyhedron model, Scheeres et al. (2017) also revealed differences of the libration point
orbits and investigated the retrograde periodic orbits about the Phobos. Shi et al. (2018b) studied the libration
point orbits near the binary asteroid system 1999 KW4 using a polyhedron-polyhedron model.

This paper considers the dynamics of the 1999 KW4 and Didymos binary systems as full irregular bodies,
from ellipsoids to double-truncated cones. This paper focuses on the search for stable orbits for spacecrafts
around these systems based on two distinct methods: the grid search method and zero velocity curves. The
grid search method defines the main body as a point mass to estimate the initial state of the spacecraft based
on a Keplerian orbit. The second method searches for periodic orbits based on zero-velocity surfaces. All
the simulations consider the solar radiation pressure as a disturbing force on the dynamics of the spacecraft.
The solar radiation force is a non-conservative force and it can play a key role in the spacecraft orbits around
the Solar System. The solar radiation pressure originates from the interaction of the satellite’s surface with
the photons emitted by the Sun. It is assumed that each photon that hits the satellite is either absorbed or
reflected in a specular or diffuse way.

Periodic orbits are important keys to understand the motion of a massless particle in the vicinity of a
binary asteroid system. Due to the complex gravity generated by the irregular-shaped asteroids, it is difficult
to generate periodic orbits with an analytical method, except with linearized dynamics in a small region around
the libration points. This paper presents a numerical method to search for planar periodic orbits in a global
space. The search method can also be used to find periodic orbits in the vicinity of other binary systems.

2. MATHEMATICAL FORMULATION

This paper studies the planar motion of a binary asteroid system, where a full two body problem is considered
to account for the mutual motion of the asteroids. The two arbitrarily shaped asteroids have masses m1 and
m2, as shown in Figure 1. The system O′x′y′z′ is an inertial reference frame with the unit vectors i′, j′ and k′.

The center of mass of the binary system is located at O, which is also the origin of the local system OXYZ.
The unit vectors of the coordinate system OXYZ are given by i, j and k. Note that this reference frame is a
synodic one.

The centers of mass of m1 and m2 are given by O1 and O2, respectively. The vector R12 connects the point
O1 to O2. The direction of R12 is the positive X axis orientation of the right-handed coordinate system OXYZ.
The orientation of OXYZ relative to the inertial frame is given by the angle θ (Woo & Misra 2014).

Each asteroid has a body-fixed frame, given by OiXiYiZi, for i = 1, 2. The orientation of the body i with
respect to the local frame is given by the angle αi. The unit vectors of the body-fixed frame i is given by ii, ji
and ki.
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The mass of the spacecraft is negligible for the system dynamics and the motion of the spacecraft is given
by the vector r = xi + yj + zk at the local reference frame OXYZ.

2.1. Dynamics of the System

2.1.1. Lagrange’s Mathematical Formulation

The equations of motion of the asteroid binary system are derived from the Lagrange equations. The generalized
coordinates are the distance R12, the orientation angle θ and the orientation body angles α1 and α2.

The kinetic energy for the planar binary system based on Figure 1 is given by (Woo & Misra 2013):

T =
1

2
(m1 +m2)V 2

0 +
1

2

m1m2

m1 +m2
(Ṙ2

12 +R2
12θ̇

2) +
1

2
Izz1(θ̇ + α̇1)2 +

1

2
Izz2(θ̇ + α̇2)2, (1)

where V0 = (Ṙ0 · Ṙ0)1/2 is the speed of the center of mass in the inertial frame and R0 is the position vector of
O in the inertial system; finally, Ixxi, Iyyi and Izzi are the moments of inertia of the ith body in the OXiYiZi
coordinate system, for i = 1, 2.

The potential energy is given by (Woo & Misra 2013):

U = −Gm0(m1 +m2)

R0
− Gm1m2

R12
+

3Gm2

2R3
12

[
Ixx1 cos2 α1 + Iyy1 sin2 α1 −

1

3
(Ixx1 + Iyy1 + Izz1)

]
+

3Gm1

2R3
12

[
Ixx2 cos2 α2 + Iyy2 sin2 α2 −

1

3
(Ixx2 + Iyy2 + Izz2)

]
, (2)

where m0 is the mass of the Sun.
Assuming no other external forces, the Lagrange equations are given by:

d

dt

∂T

∂q̇j
− ∂T

∂qj
+
∂U

∂qj
= 0, (3)

where qj = R12, θ, α1 and α2.

2.1.2. Non-Dimensionalization and other Variables Definitions

We will use dimensionless variables to study the system. To this end, we introduce the mass ratio v = m1

m1+m2
,

the characteristic length of the bodies r0 and the characteristic length of the mutual bodies L.
The moments of inertia Ixx, Iyy and Izz of each body are described by their non-dimensional radii of gyration

pxx, pyy and pzz. The radii of gyration are given by pxxi =
√

Ixxi

mir20
, pyyi =

√
Iyyi

mir20
and pzzi =

√
Izzi
mir20

, for i = 1, 2

Woo & Misra (2013, 2014).
The non-dimensionalized position vector of the spacecraft is given by:

r =
r

L
=
x

L
i +

y

L
j +

z

L
k. (4)

The non-dimensionalized time is defined by: τ = nt, where n is the mean motion of a circular orbit with
radius L. The mean motion is given as follows: (Bellerose & Scheeres 2008; Woo & Misra 2014)

n =
√
G(m1 +m2)/L3. (5)

The time derivatives can be written as:

d(·)
dt

= n
d(·)
dτ

= n(·)′. (6)

The distance R12 is replaced by the variable: u = L/R12.
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2.2. The Circular Mutual Orbit Between the Binary Asteroid System

The equations of motion derived in equation 3 in terms of the non-dimensional quantities are given by (Woo
& Misra 2013):

u′′ − 2u′2

u
+ uθ′2 − u4 − ε3

4
u6(k212 + 3k21 cos 2α1 + 3k22 cos 2α2) = 0, (7)

d

dt

(
θ′ + εu2

[
p2zz1
1− v

(θ′ + α′1) +
p2zz2
v

(θ′ + α′2)

])
= 0, (8)

θ′′ + α′′1 +
3

2
(1− v)

k21
p2zz1

u3 sin(2α1) = 0, (9)

θ′′ + α′′2 +
3

2
v
k22
p2zz2

u3 sin(2α2) = 0, (10)

where ε =
[
r0
L

]2
; k212 = 2p2zz1 − p2xx1 − p2yy1 + 2p2zz2 − p2xx2 − p2yy2; k21 = p2yy1 − p2xx1; and k22 = p2yy2 − p2xx2.

This paper considers binary systems in a mutual circular orbit. This means that the system is in a relative
equilibrium, where u, θ′, α1 and α2 are constant. In other words, u′′(τ) = u′(τ) = θ′′(τ) = α′′1(τ) = α′′2(τ) = 0.

It is assumed that α1(τ = 0) = α2(τ = 0) = 0 for all simulations and also that the body-fixed frames
centered at O1 and O2 are chosen to be aligned with the principal axes. The initial condition for the planar
binary system to move in a circular orbit taking α1 = α2 = 0 is given as follows (Woo 2014; Woo & Misra
2013):

θ′ = H

[
1 + εu2

(
p2zz1
1− v

+
p2zz2
v

)]−1
, (11)

where H is the constant of integration of equation 8.

2.3. The Equation of Motion of the Spacecraft

The orbital motion of the spacecraft is studied by considering the restricted full three-body problem. The
term “restricted” indicates that the mass of the spacecraft does not affect the dynamics of the binary asteroid
bodies. Assuming that the binary asteroid system orbits in a circular orbit, the equations of motion of the
spacecraft in the OXYZ reference frame are given by (Woo & Misra 2015):

x′′ − 2θ′y′ − θ′2x = f1(x, y, z), (12)

y′′ + 2θ′x′ − θ′2y = f2(x, y, z), (13)

z′′ = f3(x, y, z), (14)

where

f1(x, y, z)=−v
[

1

r313
+

3

2r513
ε
[
3p2xx1+p2yy1+p2zz1 −

5

r213

[(
1− v
u

+ x

)2

p2xx1 + y2p2yy1 + z2p2zz1

]]](
1− v
u

+ x

)
−

(1− v)

[
1

r323
+

3

2r523
ε
[
3p2xx2 + p2yy2 + p2zz2 −

5

r223

[(
− v
u

+ x
)2
p2xx2 + y2p2yy2 + z2p2zz2

]]](
− v
u

+ x
)
, (15)



©
 C

o
p

y
ri

g
h

t 
2

0
2

0
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

2
0

.5
6

.0
1

.1
2

118 OLIVEIRA & PRADO

f2(x, y, z) = −v
[

1

r313
+

3

2r513
ε
[
p2xx1 + 3p2yy1 + p2zz1 −

5

r213

[(
1− v
u

+ x

)2

p2xx1 + y2p2yy1 + z2p2zz1

]]]
y−

(1− v)

[
1

r323
+

3

2r523
ε
[
p2xx2 + 3p2yy2 + p2zz2 −

5

r223

[(
− v
u

+ x
)2
p2xx2 + y2p2yy2 + z2p2zz2

]]]
y, (16)

f3(x, y, z) = −v
[

1

r313
+

3

2r513
ε
[
p2xx1 + p2yy1 + 3p2zz1 −

5

r213

[(
1− v
u

+ x

)2

p2xx1 + y2p2yy1 + z2p2zz1

]]]
z−

(1− v)

[
1

r323
+

3

2r523
ε
[
p2xx2 + p2yy2 + 3p2zz2 −

5

r223

[(
− v
u

+ x
)2
p2xx2 + y2p2yy2 + z2p2zz2

]]]
z, (17)

and r213 = ( 1−v
u + x)2 + y2 + z2 and r223 = (−vu + x)2 + y2 + z2.

Equations 12 to 14 are given in a rotating reference frame, under the assumption that binary asteroid moves
in a circular orbit, where the primaries are located on the x axis.

2.4. Lagrangian Points and Zero-Velocity Curves

There are five Lagrangian points in the classical three-body problem with point masses. Three of them are
collinear (L1, L2, L3) and two non-collinear (L4, L5). The Lagrangian points L4 and L5, in the classical
formulations, are located at equal distances from the primary bodies (Thornton & Mariom 2004; Valtonen &
Karttunen 2006). This paper uses the classical approach to locate the equilibrium points in a full three body
problem. The Lagrangian points are found by assuming that all of the forces acting on the system are in
relative equilibrium.

The Lagrange equations are found just like in the classical method to locate the equilibrium points in a full
three-body problem by letting z = 0, x′ = y′ = z′ = 0, x′′ = y′′ = z′′ = 0 in equations 12 to 14. This paper
presents only the Lagrangian points that are close to the classical ones; the other points are ignored. To be
brief, this paper omits a deep discussion about equilibrium points, but related references can be found in Woo
(2014) and Woo & Misra (2014).

The zero-velocity curves are found with the Jacobi constant. The equations of motion in equations 12 to
14 can be written as:

x′′ − 2θ′y′ =
∂Ŭ

∂x
, (18)

y′′ + 2θ′x′ =
∂Ŭ

∂y
, (19)

z′′ =
∂Ŭ

∂z
, (20)

where the gravitational potential Ŭ is given by (Woo, 2014):

Ŭ(x, y, z) =
1

2
θ′2(x2 + y2) + v

[
1

r13
+ ε

3

2r313

[
P1

3
−

( 1−v
u + x)2p2xx1 + y2p2yy1 + z2p2zz1

r213

]]
+

(1− v)

[
1

r23
+ ε

3

2r323

[
P2

3
−

(−vu + x)2p2xx2 + y2p2yy2 + z2p2zz2
r223

]]
, (21)

where Pi = p2xxi + p2yyi + p2zzi for i = 1, 2.
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The Jacobi constant can be re-written as:

C(x, y, z, x′, y′, z′) = 2Ŭ(x, y, z)− (x′2 + y′2 + z′2). (22)

Equation 22 can be re-arranged as a zero-velocity surface equation as follows:

2Ŭ(x, y, z)− C(x, y, z, x′, y′, z′) = (x′2 + y′2 + z′2) > 0. (23)

The Lagrangian points can be used to find critical values of the Jacobi constant C, e.g. CL1 =
C(xL1, 0, 0, 0, 0, 0) where xL1 is the position of the L1 Lagrangian point.

2.5. Search for Stable Orbits around the Binary System

2.5.1. Periodic Orbits

The numerical search for periodic orbits, in this work, uses the same mathematical formulation as Roy (2005).
The search for periodic orbits is conducted on the X − Y plane, which rotates with velocity θ′ along with the
OXYZ plane. It is considered that the third-body is on the X axis and its velocity is on the perpendicular Y
axis, i.e., x′ = z′ = y = z = 0 and y′ 6= 0.

Therefore, a periodic orbit in this case is the position xper that the satellite has when it crosses the x-axis
at times τ1(xper), τ2(xper), τ3(xper),..., with the velocity x′ assumed to be zero. The period of the orbit is given
by T = τi(xper)− τj(xper), for i = j + 1 and i ≥ 2 (Roy 2005).

The Jacobi constant is used for the search of periodic orbits. Substituting: x′ = z′ = y = z = 0; x = xper
and y′ = y′per 6= 0 in equation 23, we have (Roy 2005; Woo 2014):

y′2 = θ′2x2per + 2v

(
1

r13p
+

ε

2r13p3
(P1 − 3p2xx1)

)
+ 2(1− v)

(
1

r23p
+

ε

2r23p3
(P2 − 3p2xx2)

)
− C, (24)

where r13p =
∣∣∣ 1

1−v
u +xper

∣∣∣ and r23p =
∣∣∣ 1

−v
u +xper

∣∣∣.
2.5.2. The Grid Search Method

The Grid Search Method (GSM) is used in this section to find stable orbits around the KW4 and Didymos
binary systems.

The binary system will be modeled as irregular bodies, but for the grid search method it will be assumed
that the primary asteroid is a point mass, to determine the initial state of the spacecraft.

The initial state of the spacecraft orbit is based on a circular Keplerian orbit around the primary body of
the binary system; the second body is ignored in the computation. Therefore, the initial state of the spacecraft
orbit is defined by the classical Keplerian elements: semi-major axis, eccentricity, inclination and true anomaly.
The other two variables of the Keplerian elements are assumed to be zero. The center of the system used to
compute the initial state of the spacecraft is the center of mass of the primary body. To compute the initial
state of the spacecraft the mass of the system is considered to be the mass of the primary body. This estimation
works well in this paper since the mass of the primary body is much larger than that of the secondary for both
binary systems studied. Some adaptations should be done if the secondary body has a considerable mass
compared to the primary body. The semi-major axis is normalized by dividing it by L. The inclination and
true anomaly can be 0 or 180 degrees.

Numerical integrations map the orbits, and measure the lifetime of the orbits before a collision with one of
the asteroids or an escape occurs. The GSM provides good data visualization of the regions where there are
stable orbits. These maps were first shown in Oliveira & Prado (2017).

The maximum simulation time if there is no escape or collision with one of the asteroids was arbitrarily
chosen to be τ = 42. This period of time is assumed to be sufficient to estimate if the orbit is stable around the
asteorids. The solar radiation pressure acts as a perturbation force that will always interfers with the trajectory
of the satellite. Therefore, even if a closed periodic orbit is found around a binary system, the solar radiation
pressure will eventually disturb the trajectory.
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(a) Ellipsoid Shape. (b) Truncated Cone

Fig. 2. The shape of irregular bodies. The color figure can be viewed online.

2.6. The Shape of the Asteroids

The irregular shapes are shown in Figure 2 and the mathematical formulations of the gyration radii are given
in Woo (2014) and Woo & Misra (2013). The origin of the body-fixed xiyizi frame is attached to the center of
mass Oi, where i = 1 or 2. The xiyizi are oriented along the principal axes. The dimensions of the ellipsoid
are ar0, br0, cr0 in the xi, yi, zi directions, respectively.

For the truncated cone, at its largest base, the dimensions are ar0 and br0 in the xi and yi directions,
respectively. At the small base, the x and y dimensions are a′r0 and b′r0, respectively. The height of the full
cone would be cr0. The height of the truncated cone is dr0. For ease of integration, a second x′y′z′ frame
is attached to the vertex O′ of the full cone. The distance between O and O′ is obtained by computing the
location of the center of mass O in the x′y′z′ frame.

2.7. The Solar Radiation Pressure

The solar radiation pressure is the pressure exerted upon any surface due to the exchange of momentum between
the area of the surface and the momentum of light or electromagnetic radiation which is absorbed, reflected,
or otherwise diffused.

The solar radiation force is non-conservative, and it can play a key role in spacecraft orbits in the Solar
System. All spacecraft experience such a pressure, except when they are behind the shadow of a larger orbiting
body.

In this work, the solar radiation flux is calculated based on the solar constant which is 1361 W/m2 at 1 au
(Kopp & Lean 2011). The solar radiation flux depends on the distance between the spacecraft and the Sun.

The solar radiation pressure is not considered in the Lagrangian points and zero-velocity curves computation.
All of the simulations consider the solar radiation pressure as a disturbing force in the dynamics of the spacecraft.
The simulations start at the perigee of the center of mass of the binary system, where the solar radiation pressure
has the largest influence on the spacecraft’s dynamics. It is assumed that the spacecraft is a cube with one of
the faces always facing the center of mass of the primary body. Each face is 10 m2; the mass of the spacecraft
is considered to be 500 kg.

The surface area element dA is the elementary area of the spacecraft in m2. The constant c is the speed of
light. The solar flux is given by Ψ (W/m2).

The unit vector ŝ has the spacecraft-to-Sun direction. The unit vector n̂ is the surface area element unit
normal vector. The angle φ is the angle between the surface normal and ŝ. If cos(φ) is negative, then the area
element is not illuminated by the Sun and will not experience any radiation pressure.
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For each surface area element dA of the spacecraft, the coefficients α, ρ, and δ represent the fraction of the
incident radiation that is absorbed, reflected, or diffused, respectively. These coefficients are related as follows:

α+ ρ+ δ = 1. (25)

The total differential force due to solar radiation pressure on a surface area element dF is the sum of the
differential forces of the absorbed dFα, the speculary reflected dFρ and the diffuse dFδ differential forces, given
by the following equation (Lyon 2004):

dF = dFα + dFρ + dFδ, (26)

where

dFα = −Ψ dA cos(φ)

c
α ŝ, (27)

dFρ = −Ψ dA cos(φ)

c
2 cos(θ)ρ n̂, (28)

dFδ = −Ψ dA cos(φ)

c
δ

(
ŝ +

2

3
n̂

)
. (29)

The equation for the force due to radiation pressure acting on each flat plate is obtained by integrating
equation 26 over the surface area, A, of each side of the spacraft’s faces:

F = −ΨA cos θ

c

[
(1− ρ)̂s + 2

[
δ

3
+ ρ cos θ

]
n̂

]
. (30)

After the non-dimensionalization of the variables given in § 2.1.2, the solar radiation pressure aceleration is
added to the equations of motion of the spacecraft given in equations 12 to 14.

3. RESULTS

3.1. Physical Parameters for 1999 KW4 and Didymos

Tables 1 and 2 present the physical parameters of the 1999 KW4 binary system and Tables 3 and 4 those of
the Didymos binary system.

3.2. Initial Parameters and Asteroid Shapes for 1999 KW4 and Didymos

Tables 5 to 8 present the gyration radii and the initial parameters used in the simulations. The initial parameters
for both binary asteorid system u, θ, α1, α2, u′, θ′, α′1 and α′2 were carefully chosen to satisfy a mutual circular
orbit. The choice of α1 and α2, not being constants, must be included in equations (15) to (17). Due to lack
of space, the equations were omitted here but can be found in Appendix A of Woo & Misra (2014).

The primary asteroid of 1999 KW4 was modeled as a double truncated cone, the secondary as an ellipsoid.
The values of the parameters a, b, c and d for the asteroid shapes and also r0 are based on the physical
parameters given in Table 2.

Figures 3 and 4 present the distance between the asteroid bodies R12 in meters and the rotation period of the
primary (θ+α1) and secondary (θ+α2) bodies for 10 orbital periods for 1999 KW4 and Didymos, respectively.
The numerical simulations of Figures 3 and 4 are consistent with the numerical data for the binary system in
Tables 1 to 4. The bodies move in a nearly circular orbit and the rotation period of the asteroids is constant
and stable. There are small variations of the distance between the bodies, but for practical purposes when the
zero velocity curves are computed it is considered that the mutual asteroid orbits are circular.

For Didymos, the asteroid shape, dimensions and some of the initial parameters are estimated based on
the current knowledge of its physical properties. The binary system is tidally locked (Landis & Johnson 2019),
therefore α′2 = 0.

Current theories of asteroid satellite formation predict that the satellites should have similar or smaller
densities than the primaries. From the system mass 5.27× 1011 kg and the diameter ratio Scheirich & Pravec
(2009), the calculated mass of the secondary is 5× 109 kg (Cheng et al. 2016).

The primary and secondary Didymos bodies are shaped as ellipsoids and their dimensions are based on
Table 4, and the mass estimation on Scheirich & Pravec (2009); Cheng et al. (2016).
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TABLE 1

ORBITAL DATA FOR THE 1999 KW4 BINARY SYSTEM

Binary Asteroid System1 Center of Mass around the Sun2

Semi-major Axis 2548 m 0.642291859 au

Eccentricity 0.0004 0.68846023

Orbital Period 17.4216 h 0.514762413 yr

1(Ostro et al. 2006). 2(Benner 2014).

TABLE 2

PHYSICAL PARAMETERS FOR 1999 KW4*

Primary Body Secondary Body

Mass 2.253× 1012 kg 2.488× 1011 kg

Dimensions 1532× 1495× 1347 m 571× 463× 349 m

Rotation Period 2.7645 h 17.4223 h

*(Ostro et al. 2006; Shi et al. 2017; Fahnestock & Scheeres 2008).

TABLE 3

ORBITAL DATA FOR THE DIDYMOS SYSTEM*

Binary Asteroid System Center of Mass around the Sun

Semi-major Axis 1180 m 1.6445 au

Eccentricity 0.06 0.3836

Orbital Period 0.4958 d 2.1087 yr

*(Zhang et al. 2017; Dell’Elce et al. 2017).

TABLE 4

PHYSICAL PARAMETERS FOR THE DIDYMOS SYSTEM*

Primary diameter 780 m

Secondary Diameter 163 m

Total mass 5.278× 1011 kg

Density (ρ) 2100 kg /m3

Primary rotation period 2.26 h

*(Zhang et al. 2017; Dell’Elce et al. 2017).

TABLE 5

SHAPE AND GYRATION RADII FOR THE 1999 KW4 ASTEROID BODIES

a b c d pxx pyy pzz

Double Truncated Cone 1 0.9758 1.2 0.8792 0.4379 0.4462 0.5460

Ellipsoid 0.3727 0.3022 0.2278 - 0.1662 0.1953 0.2146
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TABLE 6

INITIAL PARAMETERS FOR 1999 KW4

uc θc α1 α2 u′c θ′c α′1 α′2 v ε L r0

1.0010 0 0 0 0 1.0112 5.3014 0.0012 0.9457 0.0904 2548 m 766 m

TABLE 7

SHAPE AND GYRATION RADII FOR THE DIDYMOS ASTEROID BODIES

mass a b c pxx pyy pzz

Primary Ellipsoid 5.288× 1011 1 0.9500 0.8697 0.5760 0.5927 0.6168

Secondary Ellipsoid 5× 109 0.2090 0.1990 0.1900 0.1230 0.1263 0.1291

TABLE 8

INITIAL PARAMETERS FOR THE DIDYMOS ASTEROIDS

uc θc α1 α2 u′c θ′c α′1 α′2 v ε L r0

0.998 0 0 0 0 1.0028 6.2559 0 0.9905 0.1092 1180 m 390 m
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Fig. 3. 1999 KW4 binary system simulation. The color figure can be viewed online.

3.2.1. GSM application in the Binary Asteroid System

This section presents the results of the GSM for the 1999 KW4 and Didymos binary systems. The GSM maps
for 1999 KW4 and Didymos are very similar, therefore only the best GSM maps are shown for Didymos when
the orbits are retrograde (Morais & Giuppone 2012; Scheeres et al. 2017).

Figures 5a and 5b present the maps, based on the GSM, for the 1999 KW4 binary system when the
inclination is zero and the true anomaly is 0 and π, respectively. The zero inclination results in prograde
orbits.

Figures 6a and 6b present the maps, based on the GSM, for the 1999 KW4 binary system for retrograte
orbits when the inclination is π and the true anomaly is 0 and π, respectively. Figures 7a and 7b show maps
for the Didymos binary system when the inclination is π and the true anomaly is 0 and π, respectively.

As expected, there are many more stable retrograte orbits than prograde orbits around the binary asteroid
systems (Morais & Giuppone 2012; Scheeres et al. 2017). The GSM is a good method to find stable orbits
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Fig. 4. Dydymos Binary System Simulation. The color figure can be viewed online.

(a) True Anomaly = 0 (b) True Anomaly = π

Fig. 5. Prograde orbits around 1999 KW4. The color figure can be viewed online.

around binary asteroid systems when the mass of the primary body is much bigger than that of the secondary.
The secondary body acts as a perturbation on the Keplerian orbit, along with the non-spherical shape of the
asteroid bodies and the solar radiation pressure. The inner orbits in the stable orbit band of Figure 6 are the
best candidate orbits in which to place the spacecraft. These orbits are surrounded by stable orbits as well,
therefore slight external disturbing forces such as the solar radiation pressure will not significantly change the
stability.

Figure 8 shows examples of stable orbits around 1999 KW4 based on the orbits found by the GSM shown
in Figure 6.

3.3. Zero-Velocity Curves

Zero-velocity curves can be used to find stable orbits confined to certain regions, e.g., an orbit confined around
the primary body.
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(a) True Anomaly = 0 (b) True Anomaly = π

Fig. 6. Retrograte orbits around 1999 KW4. The color figure can be viewed online.

(a) True Anomaly = 0 (b) True Anomaly = π

Fig. 7. Retrograte orbits around Didymos. The color figure can be viewed online.

Table 9 presents the Lagragian points and also the Jacobi constant C based on these Lagrangian points
computed for 1999 KW4 and Didymos, respectively. Figures 9 show the Jacobi constant C of KW4 and
Didymos based on the Lagrangian points L1, L2 and L3, labelled CL1, CL2 and CL3, respectively.

As shown in Figure 9, for a spacecraft with a specific value of C0 > CL1, the zero-velocity surface consists of
small ellipsoid-like geometries around the primary and secondary, and a large cylindrical-like surface surround-
ing the two-body system. The grey ellipsoidal shapes denote the asteroid bodies; the purple stars indicate the
locations of the Lagrangian points. For CL1 > C0 > CL2, the allowable region for the spacecraft is the two
ellipsoidals connected around the asteroid bodies. And for CL2 > C0 > CL3, the inner and outer allowable
regions connect behind the secondary body.

Figure 10 presents orbits around the primary asteroid for planar motion, where C0 = 3.55.
From a numerical search for the 1999 KW4 system, it was found that x(0) = −0.5 produces a retrograde

orbit around the primary body with y(0) = z(0) = x′(0) = z′(0) = 0. From equation 24, y′(0) = −1.0672 (see
Figure 10a).
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(a) Semi-major axis= 2.05, eccentricity=0, true anomaly=0.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

X

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Y

(b) Semi-major axis=0.35, eccentricity=0.75, true anomaly=π.

Fig. 8. Stable orbits around 1999 KW4. The color figure can be viewed online.

TABLE 9

LAGRANGIAN POINTS

L1 L2 L3 L4 L5

KW4 (x,y) (0.6792, 0) (1.1953, 0) (−0.9887, 0) (0.4192, 0.8897) (0.4192, −0.8897)

C 3.4812 3.3931 3.0701 2.9873 2.9873

Didymos (x,y) (0.6907, 0) (1.2098, 0) (−1.0235, 0) (0.4032, 0.8972) (0.4032, −0.8972)

C 3.3725 3.1853 3.0229 2.9985 2.9985

(a) 1999 KW4 (b) Didymos

Fig. 9. Zero-velocity curves for C1, C2 and C3. The color figure can be viewed online.
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(a) 1999 KW4 binary system.
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(b) Didymos binary system

Fig. 10. Trajectory of the spacecraft in the XY -plane around the primary asteroid. The color figure can be viewed
online.

For Didymos, a numercial search found a periodic retrograde orbit when x(0) = −0.4 and y′(0) = −1.2759
(see Figure 10b).

Due to the high sensitivity on the initial conditions and to the solar radiation pressure perturbation, the
resulting trajectories in Figure 10 are not perfectly periodic, but they may be suffient for practical purposes.

4. CONCLUSION

The binary asteroid systems are modeled as full irregular bodies in a restricted three-body problem. The
physical and orbital parameters of binary asteroid systems 1999 KW4 and Didymos are considered in the
mathematical formulation of the shape and dynamics of the system. Both binary asteroid systems have nearly
circular mutual orbits; therefore, zero-velocity curves can also be used to find stable orbits around the system.

The paper proposes two distinct methods to search for stable orbits around the binary asteroids. The first
method, named the grid search method, results in easy and practical visualization of stable orbits around the
binary system. The maps are based on the initial state of the spacecraft and the time period of the spacecraft
orbit before a collision or an escape occurs.

The second method to look for stable orbits is based on zero-velocity curves. The method has proved to be
efficient to find stable orbits around different allowable regions based on the Jacobi constant.

The greatest advantage of the methods studied in this paper is to easily find stable orbits around binary
asteroid systems in a fast and practical way using the grid zearch method and/or zero-velocity curves based on
the full restricted circular three-body problem.

The authors gratefully acknowledge the financial support of FAPESP (2016/01430-7).
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