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ABSTRACT

We present a simple, analytic model of an incompressible fluid accreting onto
a moving gravitating object. This solution allows us to probe the highly subsonic
regime of wind accretion. Moreover, it corresponds to the Newtonian limit of a
previously known relativistic model of a stiff fluid accreting onto a black hole.
Besides filling this blank in the literature, the new solution should be useful as a
benchmark test for numerical hydrodynamics codes. Given its simplicity, it can
also be used as an illustrative example in a gas dynamics course.

RESUMEN

Presentamos un modelo anaĺıtico sencillo de un fluido incompresible que
acrece hacia un objeto gravitacional en movimiento. Esta solución nos permite
estudiar el régimen altamente subsónico de acreción de viento. Adicionalmente,
esta solución corresponde al ĺımite newtoniano de un modelo relativista ya cono-
cido de un fluido con ecuación de estado ŕıgida que acrece hacia un agujero negro.
Además de llenar este espacio en blanco en la literatura, el nuevo modelo podrá ser
de utilidad como una prueba de referencia para códigos numéricos de hidrodinámica.
Dada su simplicidad, también se puede usar como un ejemplo ilustrativo como parte
de un curso de dinámica de fluidos.
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1. INTRODUCTION

The study of wind accretion phenomena has
been an active field of research since the pioneer-
ing work of Hoyle & Lyttleton (1939) and Bondi &
Hoyle (1944). In its basic formulation, this prob-
lem deals with the accretion flow onto a massive,
gravitating object traveling at a constant veloc-
ity across an otherwise unperturbed, homogeneous
gaseous medium. Alternatively, this same situation
can be reversed to consider instead a constant wind
accreting onto a massive object held fixed at the
origin of coordinates. The Bondi–Hoyle–Lyttleton
model (BHL hereafter) provides an analytic descrip-
tion of this problem by approximating the incoming
accretion flow by ballistic trajectories. Other an-
alytic solutions have been found in the spherically
symmetric case (zero relative velocity between the
accretor and the ambient gas, Bondi 1952; Michel
1972) as well as for the relativistic wind accretion
of a stiff fluid (Petrich, Shapiro, & Teukolsky 1988,
PST hereafter). Further advances have been mostly
based on numerical studies, both in the Newtonian

(Hunt 1971; Ruffert & Arnett 1994; Shima et al.
1985) and relativistic regimes (Petrich et al. 1989;
Font & Ibáñez 1998; Zanotti et al. 2011), as well as
on the stability of the resulting accretion flow (Mat-
suda et al. 1991; Foglizzo et al. 2005; Cruz-Osorio
et al. 2012). For a general review on wind accretion
see Edgar (2004).

In this article we present an analytic solution for
an incompressible fluid accreting onto a moving mas-
sive object. The solution is based on the assump-
tions of stationarity, axisymmetry and irrotational
flow. The accretor, which we shall treat as a perfect
sink of gas, interacts with the fluid via a Newtonian
gravitational potential, while the self-gravity of the
fluid is neglected.

The relativistic solution found by PST describes
a stiff fluid accreting onto a moving black hole. With
the stiff equation of state adopted by PST, the fluid’s
sound speed equals the speed of light everywhere.
Because of this, the PST model was thought to have
no Newtonian analogue. With this article, however,
we intend to fill a blank in the literature by showing
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that the incompressible flow presented here corre-
sponds to the non-relativistic limit of the PST solu-
tion.

It is customary to characterize a given wind
flow in terms of the asymptotic Mach number
M = v

∞
/a

∞
, where v

∞
is the wind velocity and a

∞

the speed of sound, both measured far away from
the central accretor. In terms of this parameter,
the BHL model is well suited to study a supersonic
regime with M ≫ 1, where the ballistic treatment
is a valid approximation given that the fluid cannot
oppose pressure gradients readily (effectively behav-
ing as infinitely compressible). At the other end of
the spectrum, the incompressible approximation is
valid in the subsonic regime with M ≃ 0 (the sound
speed in an incompressible fluid can be considered as
infinitely large).1 We expect then to contribute to
a better understanding of accretion phenomena by
studying this extreme regime.

Although usually based on highly idealized as-
sumptions, analytic solutions are useful to guide our
intuition and to understand the basic principles be-
hind a physical problem. Moreover, analytic solu-
tions are valuable as benchmark tools for developing
and testing numerical codes. Indeed, both the BHL
and PST models have been successfully used to this
end in several numerical studies (Banyuls et al. 1997;
Duez et al. 2008; Moeckel & Throop 2009). Then, in
spite of the incompressible flow approximation hav-
ing a rather limited applicability in astrophysics,2

we propose that the analytic model presented in this
article also can be useful as a benchmark solution.

2. ANALYTIC SOLUTION

Consider a steady wind passing by a gravitating
object of mass M that sits at the origin of coordi-
nates. We assume that the gas consists of an in-
compressible fluid described by a constant density
ρ

∞
and two variables: its pressure P and a velocity

field ~v. Furthermore, we take the central object as a
spherically symmetric, perfect sink of gas. Far away
from the central object, the fluid is described by the
asymptotic boundary conditions

P |
∞

= P
∞
, (1)

~v|
∞

= v
∞
ẑ, (2)

1The classic Bondi (1952) solution for spherical ac-
cretion corresponds as well to the subsonic limit with
M = v∞/a∞ ≃ 0. Note, however, that in the Bondi model
the asymptotic sound speed has a finite value a∞ > 0 while
v∞ = 0, whereas in the present case v∞ > 0 and a∞ → ∞.

2The only possible exception being the nearly incompress-
ible, dense interior of a neutron star (Abramowicz et al. 2009;
Capela et al. 2013)

where we have aligned the z axis with the incoming
wind direction.

In general, for a single perfect fluid the flow dy-
namics will be governed by the continuity and Euler
equations:

∂ρ

∂t
+∇ · (ρ~v) = 0, (3)

∂~v

∂t
+ ~v · ∇~v = −1

ρ
∇P − GM

r2
r̂. (4)

Under the assumptions of stationarity and incom-
pressibility, equation (3) reduces to

∇ · ~v = 0, (5)

while integration of equation (4) leads to the
Bernoulli constant

B =
v2

2
+

P

ρ
∞

− GM

r
=

v2
∞

2
+

P
∞

ρ
∞

, (6)

where we have imposed the boundary conditions in
equations (1) and (2).

The boundary condition for the velocity field at
infinity in equation (2) corresponds to an irrotational
flow, i.e. ∇× ~v = 0. Given the axisymmetry of the
problem and assuming a smooth laminar flow, we
shall expect this condition to hold everywhere else.
We can then propose a velocity potential Φ such that
~v = ∇Φ which, according to equation (5), satisfies
the Laplace equation

∇2Φ = 0. (7)

Adopting spherical coordinates, we can write the
well known solution to this equation as (Jackson
1998)

Φ =
∞

∑

n=0

(

An rn +Bn r
−(n+1)

)

Pn(cos θ), (8)

where An and Bn are constant coefficients and
Pn(cos θ) is the Legendre polynomial of degree n.
With these same coordinates, the boundary condi-
tion in equation (2) is

~v|
∞

= v
∞
ẑ = v

∞

(

cos θ r̂ − sin θ θ̂
)

, (9)

from where it follows that
(

∂Φ

∂r

)∣

∣

∣

∣

∞

=

(

dr

dt

)∣

∣

∣

∣

∞

= v
∞

cos θ, (10)

(

1

r

∂Φ

∂θ

)
∣

∣

∣

∣

∞

=

(

r
dθ

dt

)
∣

∣

∣

∣

∞

= −v
∞

sin θ. (11)
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Substituting Φ from equation (8) into equations (10)
and (11) we obtain3

A1 = v
∞
, (12)

An = 0 for n ≥ 2. (13)

On the other hand, since we are interested in find-
ing a steady-state solution, we have the additional
condition of a constant accretion rate Ṁ across any
closed surface surrounding the central object. In par-
ticular, if we take a sphere of radius r centered at the
origin, we have

Ṁ =

∫ 2π

0

∫ π

0

ρ
∞
(~v · r̂) r2 sin θ dθ dφ

= 2π r2
∫ π

0

ρ
∞

(

−dr

dt

)

sin θ dθ

= 4πρ
∞
B0,

(14)

which implies that

B0 =
Ṁ

4πρ
∞

. (15)

Note that at this point we do not have any re-
striction on the coefficients Bn for n > 0 since, due
to the orthogonality of the Legendre polynomials, it
will always be guaranteed that

∫ π

0

Pn(cos θ) sin θ dθ = 0. (16)

These higher order multipoles could, in principle, be
used to match some given inner boundary condition
close to the accretor. In the absence of any such
boundary condition (we have assumed a perfect sink
as central accretor), we take the lowest order solution
given by

Φ = v
∞
r cos θ +

Ṁ

4πρ
∞
r
, (17)

which leads to the velocity field

dr

dt
= v

∞

(

cos θ − s2

r2

)

, (18)

dθ

dt
= −v

∞

r
sin θ, (19)

where we have introduced the stream length scale

s =

√

Ṁ

4πρ
∞
v
∞

. (20)

3The coefficient A0 only contributes an additive constant
to the velocity potential and, therefore, does not convey any
physical information.

An equation for the streamlines can be obtained
by combining equations (18) and (19), which results
in the differential equation

dr

dθ
=

s2 csc θ

r
− r cot θ. (21)

Equation (21) can be integrated at once to give

r =

√

b2 − 2 s2(cos θ + 1)

sin θ
, (22)

where b is an integration constant which we have cho-
sen in such a way that it corresponds to the impact
parameter of each streamline, i.e.

(r sin θ)|θ=π = b. (23)

Now that we have an expression for the veloc-
ity field and the streamlines of this model; we can
proceed to visualize the resulting accretion flow. In
Figure 1 we show the streamlines of this model to-
gether with isocontours of the magnitude of the ve-
locity field. The red cross in this figure indicates the
location of the so-called stagnation point where, ac-
cording to equations (18) and (19), the velocity field
vanishes. From these equations we can see that it is
located at r = s, θ = 0. On the other hand, from
equation (22) we can show that the unique stream-
line that ends up at the stagnation point is char-
acterized by the critical impact parameter bc = 2s.
Moreover, this same streamline separates the flow
into two regions: all the streamlines with an impact
parameter b < bc end up accreting onto the central
object (constituting thus the accretion basin) while
those with b > bc escape to infinity.

The pressure can now be recovered from the
Bernoulli constant in equation (6) as

P = P
∞
+

GM ρ
∞

r
+ρ

∞
v2
∞

s2

r2

(

cos θ − s2

2 r2

)

, (24)

where we have used the velocity components given
in equations (18) and (19).

From equation (24) we see that P will become
negative at sufficiently small radii. In order to pre-
vent this from happening, we can take the accretor
to have a finite radius R and require the central ob-
ject to fully enclose the region where P < 0. Using
equation (24), it is easy to see that this condition
can be satisfied by taking a sufficiently large value
for the asymptotic value of the pressure, namely

P
∞

ρ
∞
v2
∞

≥ s2

R2

(

1 +
s2

2R2

)

− GM

Rv2
∞

. (25)
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Fig. 1. Wind accretion of an incompressible fluid. The left-hand panel hows the streamlines as described by equation (22).
The right-hand panel shows the isocontour levels of the magnitude of the velocity field in equations (18) and (19), the
contour labels being expressed in units of v∞. The stagnation point is marked with a cross in both panels.

On the other hand, for fixed asymptotic values v
∞
,

ρ
∞
, P

∞
, and a given central accretor of mass M and

radius R, this same condition can be rewritten as an
upper limit on the accretion rate:

Ṁ ≤ 4π ρ
∞
v
∞
R2

(
√

1 +
2GM

Rv2
∞

− 1

)

. (26)

Furthermore, in order for the central accretor to be-
have as a true sink, it is necessary to require that
R < s, i.e. for the stagnation point to lie outside the
accretor. From equation (20), this condition trans-
lates as the following lower limit on the accretion
rate

Ṁ > 4π ρ
∞
v
∞
R2. (27)

Consistency between the two inequalities in equa-
tions (25) and (27) imposes the following relation-
ship between the rest of the model’s parameters

P
∞

ρ
∞
v2
∞

+
GM

Rv2
∞

>
3

2
. (28)

We have thus found that, with this model, we
cannot determine a unique accretion rate for a given
central object and asymptotic gas properties. In
other words, Ṁ plays the role of an additional pa-
rameter of the model that, at most, should conform

to the range given by equations (26) and (27). This
is analogous to the case of Bondi’s spherical accre-
tion where, in the absence of any additional inner
boundary condition, steady solutions are found for
any value of the accretion rate within the range

0 ≤ Ṁ ≤ ṀB ≡ π

(

2

5− 3γ

)

5−3γ
2(γ−1) (GM)2

a3
∞

ρ
∞
,

(29)
where γ is the polytropic index of the equation of
state and ṀB, the maximum possible accretion rate,
corresponds to a transonic solution.

We would like to remark here that the stan-
dard result from spherical accretion in equation (29)
should be modified when the accretor radius is com-
parable or larger than the so-called Bondi radius
RB = GM/a2

∞
, in which case the maximum accre-

tion is given by

Ṁ = 4π ρ
∞
a

∞
R2

{

2

(

1 + (γ − 1)RB/R

γ + 1

)}

γ+1
2(γ−1)

.

(30)
Note that taking the limit v

∞
→ 0 in equation (26)

leads to

Ṁ = 4π ρ
∞

√
2GMR3, (31)
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which is the same value for the maximum accretion
rate that results by taking the limiting case γ → ∞
(that corresponds to a → ∞) in equation (30).

Finally, it is interesting to notice that the equa-
tion for the streamlines in equation (22) is indepen-
dent of both the mass of the central object M and
the fluid pressure. In fact, M only affects directly
the fluid’s pressure via equation (24). Moreover, all
of the expressions that we have found remain valid
even forM = 0 (provided that a massless sink can be
conceived in three dimensions). The role played by
M > 0 is to contribute to a steeper pressure gradient
and to confine the region of negative pressure to a
smaller volume than the one arising for a massless
sink.

3. RELATIVISTIC MODEL

The relativistic solution found by Petrich et al.
(1988) (PST) describes a wind accreting onto a ro-
tating black hole (Kerr spacetime) under the condi-
tions of stationarity and irrotational flow. Similarly
to the Newtonian case, an irrotational flow in general
relativity can be described by a velocity potential Φ
such that4

huµ = gµν
∂Φ

∂xν
, (32)

where h = (e + P )/ρ c2 is the relativistic enthalpy,
e the relativistic internal energy density,5 uµ =
dxµ/dτ the four-velocity, and gµν the inverse of the
spacetime metric. Substituting equation (32) into
the continuity equation (in this case ∇µ(ρ u

µ) = 0,
where ∇µ stands for the covariant derivative) leads
to

gµν∇µ

(

ρ

h

∂ Φ

∂xν

)

= 0. (33)

In general, equation (33) is a non-linear equa-
tion in Φ except in the special case where h ∝ ρ.
Specifically, PST considered a stiff equation of state
for which P ∝ ρ2 and P = e.6 With this choice,

4Greek indices run over spacetime components, e.g. xµ =
(c t, r, θ, φ). We adopt Einstein’s summation convention over
repeated indices.

5In the PST paper the authors use the symbol ρ to de-
note the relativistic internal energy density and work with
the baryon number density n. For an average baryonic rest
mass m, n is related to the rest mass density by ρ = mn.

6The relativistic energy density is defined as e = ρ(u+c2),
where u is the non-relativistic internal energy (per unit mass).
For a polytropic equation of state P = K ρ2 one has u = K ρ.
Thus, the equations P ∝ ρ2 and P = e are incompatible un-
less the rest-mass energy is negligible compared to the internal
energy, i.e. u ≫ c2. These two equations will also be compat-
ible for the case of a massless scalar field, in which case the
number density n plays the role of a comoving marker.

the fluid’s sound speed is constant and equal to the
speed of light c everywhere in the fluid.7

In the case of a non-rotating black hole
(i.e. Schwarzschild spacetime), PST found the fol-
lowing expression for the velocity potential

Φ = −Γ
∞

[

t c2 + 2 c rg ln
(

1− 2
rg
r

)

− v
∞
(r − rg) cos θ

]

,
(34)

where rg = GM/c2 is the gravitational radius and
Γ

∞
is the Lorentz factor as measured at infinity

Γ
∞

≡
(

dt

dτ

)∣

∣

∣

∣

∞

=
1

√

1− v2
∞
/c2

. (35)

Substituting the velocity potential Φ into equa-
tion (32) leads to the velocity field

ρ
dt

dτ
= Γ

∞
ρ

∞

(

1− 2
rg
r

)

−1

, (36)

ρ
dr

dτ
= Γ

∞
ρ

∞

[

v
∞

(

1− 2
rg
r

)

cos θ − 4 c
r2g
r2

]

,

(37)

ρ
dθ

dτ
= −Γ

∞
ρ

∞

v
∞

r2
(r − rg) sin θ. (38)

The special restrictions that arise in general rel-
ativity from demanding a regular solution across
the black hole’s event horizon (located at 2 rg for a
Schwarzschild spacetime) imply that the PST model
is characterized by the unique accretion rate

Ṁ = 16π
(GM)2

c3
ρ

∞
Γ

∞
. (39)

This is an important difference with respect to the
Newtonian solution discussed in the previous section
where the accretion rate was a free parameter [at
most restricted by the inequalities in equations (26)
and (27)].

Let us now define the constant

σ =

√

Ṁ

4πρ
∞
v
∞
Γ

∞

=
s√
Γ

∞

, (40)

as a natural extension of the stream length scale s
introduced in equation (20). Using this definition to-
gether with equation (36), we can rewrite the veloc-
ity components in equations (37) and (38) in terms

7The relativistic expression for the sound speed is
a = c

√

∂P/∂e|s as opposed to a =
√

∂P/∂ρ|s in non-
relativistic physics.
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Fig. 2. Wind accretion of the PST model for a Schwarzschild black hole. In this case we have taken σ = 3 rg (which
corresponds to v∞ ≃ 0.44 c). The left-hand panel shows the streamlines as described by equation (45). The right-hand
panel shows the isocontour levels of the magnitude of the velocity field in equations (41) and (42), the contour labels
being expressed in units of v∞. The stagnation point (located at θ = 0, r = rg + (r2g + σ2)1/2 ≃ 4.2 rg) is marked with
a cross in both panels. The black circle shows the black hole’s event horizon located at the Schwarzschild radius 2 rg.

of the coordinate time t as

dr

dt
= v

∞

(

1− 2
rg
r

)

[

(

1− 2
rg
r

)

cos θ − σ2

r2

]

, (41)

dθ

dt
= −v

∞

r

(

1− 2
rg
r

)(

1− rg
r

)

sin θ. (42)

Just as in the Newtonian case, an equation for the
streamlines can be obtained by first combining equa-
tions (41) and (42) as (Karas & Mucha 1993)

dr

dθ
=

σ2 csc θ

r − rg
− r

(

r − 2 rg
r − rg

)

cot θ, (43)

and then integrating this differential equation to ob-
tain the following expression

r = rg +

√

b2 − 2 σ2(cos θ + 1)

sin2 θ
+ r2g , (44)

where, as before, the integration constant b corre-
sponds to the impact parameter characterizing each
individual streamline.

From the velocity components in equations (41)
and (42) we can see that the stagnation point in
this case is located at r = rg + (r2g + σ2)1/2, θ = 0.
Completely analogously to the Newtonian case, from
equation (44) we can show that the critical im-
pact parameter bc = 2 σ corresponds to the unique

streamline ending up at the stagnation point. By
combining equations (39) and (40) we obtain the fol-
lowing relationship between the stream length scale
σ and the wind speed at infinity

v
∞

c
= 4

r2g
σ2

, (45)

from which we can see that even in the limit v
∞

→ c,
the stagnation point reaches a minimum radius of
r ≃ 3.2 rg, i.e. it is always located outside the event
horizon.

In Figure 2 we show the streamlines and isocon-
tour levels of the velocity field of the PST model
for the particular case σ = 3 rg which, from equa-
tion (45), corresponds to a wind speed at infinity of
v
∞

≃ 0.44 c. From this figure [and also from equa-
tions (41) and (42)] we can see that, in addition to
the stagnation point, the velocity field also vanishes
at the event horizon r = 2 rg. This is only a coordi-
nate effect related to the fact that the light cones
close onto themselves when described in terms of
the coordinate time t, which implies that t is not
well suited for describing physical processes close to
the event horizon. Indeed, from equations (36)–(38),
we can see that the velocity components dr/dτ and
dθ/dτ do not show this behavior.
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Fig. 3. Comparison between the streamlines of the relativistic PST model (blue lines) and the Newtonian model discussed
in § 2 (red lines). In the left-hand panel we have taken s = σ = 3 rg (v∞ ≃ 0.4 c) while, for the right-hand one we
have s = σ = 30 rg (v∞ ≃ 0.004 c). Pairs of streamlines originate from the exact same point at infinity (θ = π) with
uniformly distributed impact parameters b = rg, 2 rg, 3 rg, . . . (left panel) and b = 10 rg, 20 rg, 30 rg, . . . (right panel).
In both panels, the black circle shows the black hole’s event horizon located at the Schwarzschild radius 2 rg. The color
figure can be viewed online.

Contrary to the Newtonian model where the re-
sulting flow was described by only one characteris-
tic length scale, namely the stream length scale s,
the relativistic model is characterized by two length
scales: the stream length scale σ and the gravita-
tional radius rg.

Also in contrast to the Newtonian solution, the
rest mass density ρ in the PST model is not con-
stant. An expression for ρ can be found by impos-
ing the normalization condition of the four-velocity
(gµνu

µuν = −c2) in equations (36)–(38), which re-
sults in

ρ = Γ
∞
ρ

∞

[

(

1 + 2
rg
r

)

(

1 + 4
r2g
r2

)

+ 8
v
∞

c

r2g
r2

cos θ

− v2
∞

c2

(

1− 2
rg
r

+
r2g
r2

sin2 θ

)]1/2

.

(46)

Let us now consider the non-relativistic limit,
that is, the regime in which v

∞
/c ≪ 1 and rg/r ≪ 1.

Within this limit, we have that Γ
∞

→ 1 and σ → s.
It then follows that the velocity components in equa-
tions (41) and (42) reduce to the ones correspond-
ing to the Newtonian model in equations (18) and
(19). On the other hand, from the expression for the
rest mass density in equation (46), it follows that
ρ → ρ

∞
= const. In other words, within the non-

relativistic limit we recover the incompressible flow
approximation on which we based our Newtonian so-
lution.

Finally, in order to facilitate the comparison be-
tween the Newtonian and the PST models, in Fig-
ure 3 we show the corresponding streamlines side by
side for two cases: s = σ = 3 rg and s = σ = 30 rg.
From equation (45) it is simple to see that σ ≫ rg
implies v

∞
≪ c. Therefore, as the ratio σ/rg grows,
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the non-relativistic limit should be recovered, just
as we can confirm by comparing the left and right
panels of this figure.

4. SUMMARY

In this paper, we have presented a simple analytic
model of wind accretion for an incompressible fluid
falling onto a massive gravitating object. We have
shown that this model constitutes a probe into the
highly subsonic regime with M ≃ 0. Moreover, this
solution corresponds to the Newtonian limit of the
relativistic model of wind accretion onto a black hole
found by Petrich et al. (1988) (PST). The fluid in the
PST model obeys a stiff equation of state P = e for
which the sound speed is constant everywhere and
equal to the speed of light. In hindsight, it is not
surprising that the Newtonian limit of such a fluid
corresponds precisely to an incompressible fluid for
which the sound speed is, formally, equal to infinity.

The incompressible fluid approximation effec-
tively decouples the flow dynamics from the central
object’s gravitational field. This is reflected in the
fact that the expression for the streamlines given in
equation (22) is independent of the accretor massM .
Only the fluid’s pressure is directly influenced by M ,
as expressed in equation (24). We have found that as
M increases, the pressure gradient becomes steeper
so as to oppose the enhanced gravitational attrac-
tion, and, at the same time, the negative pressure
region becomes confined to a smaller volume.

The Newtonian model features only one char-
acteristic length scale: the stream length scale
s = (Ṁ/4πρ v

∞
)1/2. In addition to this the PST

model is also characterized by the gravitational ra-
dius rg = GM/c2. The existence of these two char-
acteristic length scales leads to a richer variety of
flow morphologies than that of the Newtonian model
(see Figure 3). The Newtonian model is recovered in
the limit s ≫ rg which naturally coincides with the
non-relativistic limit v

∞
≪ c.

Another difference between the Newtonian and
relativistic models is that, in the former, the accre-
tion rate Ṁ is an external parameter of the model (at
most restricted by the inequalities in equations (26)
and (27)) while, in the latter, it has to have the fixed
value Ṁ = 16π(GM)2ρ

∞
Γ

∞
/c3 in order to guaran-

tee a regular solution across the black hole’s event
horizon.

Emilio Tejeda: Instituto de Astronomı́a, Universidad Nacional Autónoma de México, AP 70-263, Ciudad de
México, 04510, México (etejeda@astro.unam.mx).

The Newtonian model presented in this article
can be used as an illustrative example in a gas dy-
namics course. Moreover, it should be useful as
a benchmark for testing Newtonian hydrodynamics
codes.
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